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Inhibiting the histone H3–ASF1 (anti-silencing function 1) pro-

tein–protein interaction (PPI) represents a potential approach
for treating numerous cancers. As an a-helix-mediated PPI,

constraining the key histone H3 helix (residues 118–135) is a
strategy through which chemical probes might be elaborated

to test this hypothesis. In this work, variant H3118–135 peptides

bearing pentenylglycine residues at the i and i++4 positions
were constrained by olefin metathesis. Biophysical analyses

revealed that promotion of a bioactive helical conformation
depends on the position at which the constraint is introduced,

but that the potency of binding towards ASF1 is unaffected by
the constraint and instead that enthalpy–entropy compensa-

tion occurs.

A significant unmet goal in chemical biology is to develop

methods for inhibiting protein–protein interactions (PPIs).[1, 2] In
the context of a-helix-mediated PPIs,[3] considerable effort has

been exerted on developing methods for constraining (or “sta-
pling”) peptides in an a-helical conformation. This approach

has been used to confer enhanced proteolytic stability, en-

hanced cell-uptake and, in some cases, enhanced target affinity
on constrained peptide sequences.[4–23] We recently introduced

a series of reagents and approaches for constraining peptides
in a helical conformation.[24–27] Of these, the use of variant pep-

tides bearing alkenyl glycine residues in the i and i++4 positions

constrained through olefin metathesis was shown to be effec-

tive in biasing the sequences of variant BCL-2 BH3 sequences
towards the helical conformation.[27] Subsequently, we demon-

strated that these peptides bind to their target BCL-2 proteins
through an induced-fit mechanism but do not elicit enhanced

target affinity arising from enthalpy–entropy compensation,

as demonstrated by surface plasmon resonance (SPR)
and van’t Hoff analyses, respectively.[26] Herein, using the anti-

silencing function 1 (ASF1) chaperone as a protein target, we
demonstrate the broader applicability of S-pentenyl-glycine

variant peptides as substrates for hydrocarbon constrain-
ing and further reinforce the notion that constraining the pep-

tide in a bioactive conformation might not lead to increased

affinity for the target protein due to enthalpy–entropy com-
pensation.

Histone chaperones regulate the association of basic histone
proteins with DNA, thereby permitting nucleosome assembly

in an ordered and controlled manner.[28–33] ASF1 is a highly
conserved histone chaperone that is involved in both histone

H3–H4 handling and buffering.[34–38] It has been shown to play

a key role in the development and progression of some can-
cers; hence, it is a potential target for chemical probes and

drug discovery.[39–41] The interaction between ASF1 and the H3
and H4 histone proteins forms a ASF1–(H3–H4) complex that

prevents the formation of the histone H3–H4 tetramer and
shields H3–H4 dimers from unfavourable interactions. Re-es-

tablishment of the tetramer was proposed to be the key ele-

ment for the formation of the nucleosome (Figure 1 A).[42] The
ASF1 protein comprises a conserved N-terminal domain of 156
amino acids, which is essential for its function in vivo, and a
divergent unstructured C-terminal domain, which is not con-

sidered necessary for function.[37, 43] Its structure comprises an
elongated b sandwich core with three a-helices in the loops

between the b-strands (Figure 1 B). The contacts between H3
and ASF1 are extensive and result in a buried surface area of
909 a2. The histone H3 binding site is located in the concave

face of ASF1 (Figure 1 B) and involves b-strands b3, b4 and b6–
9.[37, 43, 44] The main interactions occur through the C-terminal

helix of H3 (residues 122–134), where the key residues Leu126
and Ile130 form a hydrophobic clamp with the hydrophobic

region of ASF1. Additionally, there is a network of electrostatic

interactions at the PPI interface, such as the salt bridge be-
tween Arg129 from H3 and Asp54 from Asf1.[45] The ASF1–H3–

H4 structure also shows extensive contacts between ASF1 and
histone H4[44] in two parts (not shown): the globular core of

ASF1 interacts with the C-terminal tail of H4 to form a strand-
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swapped dimer, and the C-terminal tail of ASF1 binds to the

histone fold region of histone H4.
We envisioned the C-terminal a-helix peptide of H3 as a

template for the design of molecules able to recognise ASF1.
We used S-pentenylglycine rather than S-pentenylalanine, as

the former is easier to synthesise and demonstrates compara-
ble behaviour in biophysical analyses.[27] The sites to incorpo-
rate the mono-alkenyl-substituted amino acids within the pep-

tide sequence were selected by taking into account: 1) the re-
quirement to appropriately position the unnatural amino acids

so as to constrain in a manner that promotes a helical confor-
mation (i.e. , the i and i++4 positions) ; 2) the need to position

the hydrocarbon bridge so as not to sterically occlude the

“wild-type” interactions necessary for recognition. On this
basis, two options were considered Met120/Ile124 and

Asp123/Ala127. H3118–135, together with variants bearing S-pen-
tenylglycine in the identified positions were prepared by solid-

phase peptide synthesis (see the Supporting Information), and
the latter were crosslinked by olefin metathesis to give

H3118–135(St120–124) and H3118–135(St123–127)GCA (the GCA sequence
was introduced for future functionalisation, e.g. , cell-penetrat-

ing sequences, fluorophores, etc. through the nucleophilic
thiol of the cysteine residue). On-resin ring closure proceeded

quantitatively in 4 h.
The helical character of all three peptides was investigated

by using circular dichroism (CD) in both 40 mm phosphate
buffer and trifluoroethanol (TFE). In aqueous solvent, H3118–135

and H3118–135(St120–124) both gave CD spectra consistent with

a predominantly random-coil conformation (% helicities
H3118–135 = 15 % and H3118–135(St120–124) = 20 % ), whereas in the
presence of the helix-promoting TFE (Figure S1 in the Support-
ing Information)[46–47] the CD spectra were indicative of a more

a-helical signature, thus indicating that both possess sufficient
conformational flexibility to access the helical conformation re-

quired for specific ASF1 binding. It is perhaps unsurprising that

constraining the peptide between residues 120 and 124 did
not promote a helical conformation in H3118–135(St120–124) given

the observation from the H3/ASF1 NMR structure that the H3
helix is distorted/frayed at the N terminus close to M120. In

contrast, CD analyses showed H3118–135(St123–127)GCA to adopt a
more helical conformation in aqueous solution by (% helicity =

29 %), as expected. The data for all three peptides in TFE (see

the Supporting Information) demonstrate that each is capable
of adopting a helical conformation to a comparable extent,

and, that there is little difference between buffer and TFE for
H3118–135(St123–127)GCA; this indicates that the sequence has in-

trinsically low helical propensity. (Figure 2).

Binding of the peptides to ASF1 was then assessed by iso-
thermal titration calorimetry (ITC; Figure 3, Table 1). All three

peptides exhibited exothermic binding and could be fitted to
a 1:1 binding isotherm. Strikingly, the binding potency was

similar in all three cases, DG =@7.3 to @8.0 kcal m@1, despite

H3118–135(St123–127)GCA adopting a more helical conformation and
therefore presumably being more pre-organised towards ASF1

recognition. Analyses of the thermodynamic determinants of
binding reveal enthalpy–entropy compensation. Both H3118–135

and H3118–135(St120–124) exhibited favourable enthalpies of binding
(DH =@14.4 to @15.0 kcal m@1) but the binding entropies were

Figure 1. ASF1 as a target for constrained peptides. A) Schematic illustration
of the role of ASF1 (green) in displacing CAF-1 (purple) through the recogni-
tion of histone H3 (cyan) and H4 (yellow) so as to facilitate nucleosome for-
mation. B) Structure of the histone H3(118–135) (cyan)–ASF1A(1–156) (dark
green) interaction as determined by NMR spectroscopy (PDB ID: 2IIJ)[45]—the
histone side chains located on one face that are perceived to be important
for binding are shown as orange sticks. C) The key H3 helix (cyan), key side
chains (orange) and residues at i, i++4 positions considered suitable for intro-
duction of a constraint (purple) are highlighted. D) Sequences of the pep-
tides used in this study with the positions of the hydrocarbon constraints.

Figure 2. Conformation analyses of histone H3 variant peptides ~: H3118–135,
*: H3118–135(St120–124) and &: H3118–135(St123–127)GCA (100 mm in 40 mm sodium
phosphate, pH 7.5, 293 K) by CD analyses.
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unfavourable (TDS =@6.4 to @6.7 kcal m@1). In contrast, for the

more helical peptide, H3118–135(St123–127)GCA, the entropy of bind-
ing (TDS = 3.1 kcal m@1) was favourable, consistent with the

anticipated effect of pre-organisation; however, the enthalpy
of binding (DH =@4.2 kcal m@1) was less favourable than for
the less helical variants. It is noteworthy that, despite the fact

that both contain a staple, H3118–135(St120–124) is less helical and
exhibits a large favourable enthalpy change with unfavourable
entropy, whereas H3118–135(St123–127)GCA is more helical and has a
less favourable enthalpy of binding but more favourable entro-

py of binding. Such an effect might arise because the less heli-
cal peptides H3118–135 and H3118–135(St120–124) form enthalpically fa-

vourable backbone hydrogen bonds upon a change in confor-
mation to the helix, whereas the more pre-organised helix
H3118–135(St123–127)GCA neither gains new hydrogen bonds nor

undergoes an entropically costly change in conformation on
binding ASF1. Alternatively, differential changes in the solva-

tion of the peptides upon binding could account for such a
difference in thermodynamic signature. Either way, the results

underscore a limitation in correlating conformational stability

against binding potency for the unconstrained (H3118–135) and
constrained (H3118–135(St123–127)GCA) peptides; although the heli-

cal conformation is preferred for H3118–135(St123–127)GCA, this can
be considered as arising from an increase in energy (or desta-

bilisation) of nonhelical conformations for this sequence as op-
posed to preorganisation of the wild-type sequence.

In order to confirm the binding mode of the constrained

peptides with ASF1, chemical-shift-perturbation studies were
carried out for all three peptides (Figure S2) by using uniformly
15N labelled ASF1A(1–156). The chemical-shift variation was
mapped onto the protein structure of ASF1A–H3 (PDB ID: 2IIJ).
All three peptides induced the highest values of chemical-shift

variation and a “slow-exchange” regime for the ASF1 residues
defining the already well characterised H3 binding site (V45–
E51, V90–I97, R108–Y111, V146–T147),[37, 45] thus confirming the
preservation of the specific binding mode for the constrained

peptides. In addition, both H3118–135 and H3118–135(St120–124) exhibit-
ed chemical-shift variations on the opposite side of the protein

surface corresponding to the B domain binding site (S59–
F72);[48] these most probably correspond to nonspecific bind-
ing in the case of the histone peptide. Interestingly, constrain-

ed H3118–135(St123–127)GCA induced no chemical-shift variation in
this region of ASF1 (Figure S2 B). This result suggests that un-

folding of the helical conformation is probably required for
this nonspecific binding.

The proteolytic stability of the peptides was also investigat-

ed by using trypsin and proteinase K. The unconstrained
H3118–135 was cleaved within 14 minutes by both proteases

(Figure 4, Table 2 and the Supporting Information), whereas
the constrained peptides had increased stability depending on

the position of the constraint. H3118–135(St120–124) was less suscep-
tible to cleavage by proteinase K (t1/2 = 65.8 min). On the other

Figure 3. ITC thermograms and data fitting for the interaction of A) H3118–135, B) H3118–135(St120–124) and C) H3118–135(St123–127)GCA with ASF1A(1–156).

Table 1. Thermodynamic parameters for the binding of histone H3 peptide variants to ASF1 as determined by ITC (see Figure 3 for details)

Peptide Kd [mm] DG [kcal m@1] N* DH [kcal m@1] TDS [kcal m@1]

H3118–135 1.34:0.33 @8.0:0.14 0.94:0.04 @14.4:0.37 @6.4:0.51
H3118–135(St120–124) 0.86:0.11 @8.3:0.07 0.97:0.01 @15:0.96 @6.7:1.03
H3118–135(St123–127)GCA 1.6:0.13 @7.3:0.05 0.97:0.01 @4.2:0.08 3.1:0.2
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hand H3118–135(St123–127)GCA showed increased stability against

trypsin (t1/2 = 40.5 min). The constraint also affected the profile

of cleavage sites, most notably for H3118–135(St123–127)GCA, for
which two proteinase K cleavage sites were suppressed

by introducing the constraint. Thus, the results of proteolytic
cleavage studies on constrained peptides need to be consid-

ered, as the protective effect is likely to arise not only from
the enhanced helicity, that is, the greatest effect is observed

for the constraint that does not markedly promote helicity

(H3118–135(St120–124)).
In conclusion, we have shown that variant H3118–135 peptides

with pentenylglycine residues at the i and i++4 positions
can be constrained by olefin metathesis to generate a

peptide more biased towards a helical conformation than the
parent sequence, thus further broadening the scope of this un-

natural amino acid for hydrocarbon “stapling”. In addition, we

have illustrated that a more helical conformation (i.e. , for
H3118–135(St123–127)GCA) does not necessarily correlate with signifi-

cant proteolytic protection or enhanced binding potency;
rather where the later aspect is concerned, enthalpy–entropy

compensation is observed. Nonetheless, constraining peptides
has been shown to reduce nonspecific binding and to enhance

a range of additional pharmacokinetic properties such as cellu-
lar uptake. The peptide sequence used in this work was shown
to have moderate helical propensity. Thus our future studies

will centre on exploiting the constraining strategy together
with helix-stabilising amino acids to optimise these reagents

for binding and cell permeability so as to develop chemical
probes of the H3-ASF1 interaction.
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