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Abstract

Background: Multi-atlas segmentation, a popular technique implemented in the Automated 

Segmentation of Hippocampal Subfields (ASHS) software, utilizes multiple expert-labelled 

images (“atlases”) to delineate medial temporal lobe substructures. This multi-atlas method is 

increasingly being employed in early Alzheimer’s disease (AD) research, it is therefore becoming 

important to know how the construction of the atlas set in terms of proportions of controls and 

patients with mild cognitive impairment (MCI) and/or AD affects segmentation accuracy.

Objective: To evaluate whether the proportion of controls in the training sets affects the 

segmentation accuracy of both controls and patients with MCI and/or early AD at 3T and 7T.

Methods: We performed cross-validation experiments varying the proportion of control subjects 

in the training set, ranging from a patient-only to a control-only set. Segmentation accuracy of the 

test set was evaluated by the Dice similarity coeffiecient (DSC). A two-stage statistical analysis 

was applied to determine whether atlas composition is linked to segmentation accuracy in control 

subjects and patients, for 3T and 7T.
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Results: The different atlas compositions did not significantly affect segmentation accuracy at 3T 

and for patients at 7T. For controls at 7T, including more control subjects in the training set 

significantly improves the segmentation accuracy, but only marginally, with the maximum of 

0.0003 DSC improvement per percent increment of control subject in the training set.

Conclusion: ASHS is robust in this study, and the results indicate that future studies 

investigating hippocampal subfields in early AD populations can be flexible in the selection of 

their atlas compositions.
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INTRODUCTION

The hippocampus and adjacent cortical regions play an important role in Alzheimer’s 

disease (AD) as they are early sites of neurofibrillary tangle pathology [1]. This has sparked 

interest in studying these medial temporal lobe (MTL) regions in vivo. While several studies 

have investigated generally larger MTL regions using T1-weighted MRI [2–4], studies of the 

role of more finegrained MTL subregions in AD and memory became feasible when using 

high-resolution T2-weighted images at high-field 3T and 7T MRI which allow for improved 

visualization of the inner structure of the hippocampus. So far, a considerable number of 

studies on the involvement of hippocampal subfields and extrahippocampal regions in AD, 

mild cognitive impairment (MCI) [5] and even in preclinical AD [6] have been published in 

the last decade. However, these studies have been inconsistent with regard to which 

hippocampal subfields [5] and extrahippocampal cortical regions [3, 4, 7, 8] are involved in 

early stages of AD.

Most previous studies have a limited sample size, which may have contributed partly to the 

inconsistencies in the literature. More research in larger study populations is therefore 

needed to elucidate the role of MTL subregions in early AD. This would require automated 

segmentations, as the manual segmentation of hippocampal and extrahippocampal 

subregions is labor-intensive and not feasible in large sample sizes. Indeed, automated 

segmentation of hippocampal and extrahippocampal subregions is increasingly utilized [9, 

10]; among others, the Automated Segmentation of Hippocampal Subfields (ASHS) tool 

based on multi-atlas segmentation is increasingly popular. Briefly, multi-atlas segmentation 

algorithms deformably register a set of expert-labelled MRI scans (called “atlases”) to the 

target MRI scan and combine them into a consensus segmentation [11]. However, when 

analyzing datasets including both controls and patients with MCI and/or AD, the best way to 

construct the training set (or the atlas set in the multi-atlas segmentation framework), namely 

the optimal patient to control atlas composition ratio in terms of segmentation accuracy, is 

unknown. As several large-scale studies are underway, including the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) 3 which aims to obtain a high-resolution 3T T2 sequence in 

over a 1000 participants [12], it is becoming increasingly important to know what atlas 

composition leads to the most reliable automated segmentation of a mixed dataset of control 

and patients. In this study, we tested different atlas compositions from scans of controls, 
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patients with MCI and/or early AD acquired at 3T and 7T and evaluated the effect on 

segmentation accuracy in terms of overlap between automated and manual segmentations, as 

measured by the Dice similarity coefficient (DSC).

MATERIALS AND METHODS

Participants

3T: Twenty-nine participants from a research study of aging and cognitive impairment 

conducted at the Penn Memory Center at the University of Pennsylvania were included. 

Fourteen participants received a diagnosis of amnestic MCI (referred to as the PAT-3T 

group) according to the Petersen et al. [13] criteria and 15 participants were cognitively 

normal controls (NC-3T) recruited from the community.

7T: Patients with MCI, all but one amnesic MCI, or early-stage AD were recruited through 

the memory clinic of the University Medical Center Utrecht (UMCU) [14]. Diagnoses of 

possible and probable AD were made according to the the National Institute of Neurological 

Disorders and Stroke – Alzheimer’s Disease and Related Disorders Association clinical 

criteria [15]. A diagnosis of MCI was based on Petersen criteria [13]. Participants without 

cognitive impairment (controls) were selected from two studies at the UMCU: (1) the 

Utrecht Diabetic Encephalopathy Study 2 (UDES2) [16] (25% of the subjects included in 

the current study had diabetes); and (2) the PREDICT-MR study [17]. Both UDES2 and 

PREDICT-MR recruited their subjects from general practices in Utrecht and surrounding 

areas. In total, 81 subjects (53 controls, 16 MCI, 12 AD) were available and 38 (19 controls, 

12 MCI, 7 AD) of them were included in this study. The selection will be discussed in “MRI 

protocols and manual segmentations” section.

Both studies were carried out in accordance with the principles of the Declaration of 

Helsinki and approved by the local ethics committee. Written informed consent was 

obtained from all participants. Demographics of the control and patient groups of both study 

populations are shown in Table 1.

MRI protocols and manual segmentations

3T: MRI scans were acquired on a 3T Siemens Trio scanner with an 8-channel receive coil. 

For all participants, a T2-weighted scan with partial brain coverage angulated perpendicular 

to the long axis of the hippocampus was obtained with an in-plane resolution of 

0.4×0.4mm2, 2mm slice thickness, and an acquisition time of 7:12min. Additionally, a T1-

weighted scan was obtained at 1.0×1.0×1.0mm3 resolution during an acquisition time of 

5:13min. For more details on this protocol, see Yushkevich et al. [9]. Manual segmentations 

were performed by author JP according to the protocol in Yushkevich et al. [9]. Cornu 

ammonis (CA) 1, CA2, CA3, dentate gyrus (DG), subiculum (SUB), entorhinal cortex 

(ERC), Brodmann area (BA) 35, BA36 [BA35 and BA36 are subregions of the perirhinal 

cortex (PRC)] and parahippocampal cortex (PHC) were segmented. Total hippocampal 

volume was defined as the sum of CA1, CA2, CA3, DG and SUB. Reliability values for 

manual and automated segmentations are reported in Yushkevich et al. [9].
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7T: All imaging was performed on a 7T MR scanner (Philips Healthcare, Best, the 

Netherlands) with a volume transmit coil and a 16-channel receive coil (Nova Medical, 

Wilmington, Massachusetts) or 32-channel receive head coil (Nova Medical, Massachusetts) 

for participants included in the study later than May 2011. A T2-weighted turbo spin echo 

with 0.7×0.7×0.7mm3 resolution in an acquisition time of 10:15 minutes was obtained as 

well as a T1-weighted scan with 1.0×1.0×1.0mm3 resolution and an acquisition time of 

1:57min. For more details on this protocol, see Wisse et al. [18]. From 81 available T2-

weighted scans in total, scans from 10 controls, 4 MCI patients and 5 AD patients were 

considered to have relatively poor quality due to motion or other image artefacts, leaving 43 

controls, 12 MCI patients and 7 AD patients for the current study. The MCI and AD patients 

from the 7T study population were combined (PAT-7T; n=19) and the 19 oldest subjects 

were selected from the control group (NC-7T) to approximate the mean age of the patient 

group. Manual segmentations were performed by author LW according to the protocol in 

Wisse et al. [18]. The same regions were segmented, but BA35, BA36 and PHC were not 

included in this protocol. Total hippocampal volume was defined as the sum of CA1, CA2, 

CA3, DG, SUB and a separate tail segment [8]. Reliability values for manual and automated 

segmentations are reported in Wisse et al. [18, 19]. The volumes of hippocampal subfields 

and the whole hippocampus from the manual segmentations are summarized in Table 1, 

averaged between the left and right hemispheres.

See Supplementary Figure 2 for a comparison of the two segmentation protocols.

Automatic segmentation of hippocampal subfields (ASHS)

A multi-atlas label fusion pipeline implemented in ASHS software [9] was used to 

automatically segment subregions of the MTL for both 3T and 7T images using 

corresponding atlases. ASHS combines deformable registration, joint label fusion [11], 

corrective machine learning [20], and bootstrapping, which are described in more detail in 

Supplementary Material 1.

Since some of the 7T T2-weighted MRI images in this study have poor contrast between 

gray matter and cerebrospinal fluid, the registration using only 7T T2-weighted images may 

be unreliable. In order to improve registration robustness, we extended the deformable 

registration step in ASHS, which originally only made use of T2-weighted MRI, to have 

multi-modal support. Specifically, we take the similarity of both T1-weighted and T2-

weighted MRI between the source and target images into account during the optimization 

process. We have found this to greatly improve the robustness of the deformable registration 

step for 7T images and not to affect the segmentation accuracy for 3T images (data not 

shown).

Cross-validation experiments

Cross-validation experiments were performed separately for 3T and 7T to evaluate the 

accuracy of automatic segmentation for different atlas compositions. At 3T, in each cross-

validation experiment, 3 NC-3T and 3 PAT-3T subjects were randomly assigned to the test 

set, and the remaining 12 NC-3T and 11 PAT-3T subjects were used to construct an atlas set 

of 11 subjects. The proportion of NC-3T was modulated (0/11, 1/11, 3/11, 5/11, 7/11, 9/11, 
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and 11/11) across the cross-validation experiments, i.e., ranging from a PAT-only atlas to an 

NC-only atlas. For each given proportion of NC-3T, 10 experiments were conducted with 

random atlas/test assignment, for a total of 70 experiments. The expected number of times 

that each subject appeared in the test set was 2.0 [repetition times multiple by the probability 

that a subject is selected in the atlas set, in this case, 10×(3/15)=2.00]. At 7T, a similar 

design was followed, but with atlas set of size 16, 9 proportion levels (0/16, 2/16, . . . , 

16/16), 13 experiments for each proportion level, for a total of 117 experiments, and 

expected number of times that each subject appears in the test set is equal to 2.14. Overall, a 

total of 420 3T and 702 7T bilateral segmentations were performed.

Segmentation accuracy for each subfield was measured as the DSC between its automatic 

and manual segmentations in each test set, and averaged between left and right hemispheres. 

For the compound labels including HIPPO (CA1–3, DG, and SUB) and ALL (all the gray 

matter labels), generalized DSC (GDSC) [21] was used. Importantly, GDSC of a compound 

label is generally lower than DSC of the corresponding binary label merging all the 

sublabels because GDSC takes the size of each sublabel into account and thus will be 

negatively affected by the relatively lower DSC of smaller sublabels.

Visual inspection was performed to assess the quality of the automatic segmentations and 

the failed cases were excluded from the specific cross-validation experiment as is a common 

procedure when utilizing an automated segmentation method. Because of the large number 

of total automatic segmentations produced in our experiments, we were not able to visually 

check all segmentations. Instead, we selected automated segmentations with the 5% highest 

and lowest entropy, the 5% lowest GDSC of the compound label “ALL”. In addition, we 

also included 60 randomly selected segmentations into the QC dataset to ensure that 

segmentations not flagged by the heuristics above did not contain significant failures. 

Entropy of automated segmentation is computed from the average entropy of the warped 

atlas labels at each voxel and is a useful indicator on ASHS pipeline failure. High entropy 

indicates a lot of disagreement between atlases (i.e., likely poor individual registration) and 

low entropy might indicate an error because the atlases agree too much (e.g., all voxels are 

assigned background label). Segmentations were labeled as ‘failed’ if there was a major 

deviation, defined as a segmentation extending well outside the anatomical structures of 

interest or under-segmentation of significant portions of the structures of interest. Note that 

if either of the bilateral segmentations failed, the case was excluded because we used DSC/

GDSC averaged over both hemispheres for the statistical analyses. To assess the effect of 

excluding failed cases, we repeated all statistical analyses (next section) including them.

Statistical analysis

To determine if atlas composition is linked to segmentation accuracy, a two-level analysis 

(similar to mixed linear models) was applied. Each anatomical substructure or compound 

label was analyzed separately. First, for each subject, linear regression was performed with 

the proportion of NC (NC refers to either NC-3T or NC-7T, the same for PAT for either 

PAT-3T or PAT-7T) in the atlas set as the independent variable and segmentation accuracy as 

the dependent variable. Second, the regression coefficients from all subjects in each group 

(NC-3T, PAT-3T, NC-7T, PAT-7T) were entered into a one-sample t-test to test the 
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hypothesis that there is no correlation between atlas composition and segmentation accuracy 

(the regression coefficients do not differ from 0). Since the regression coefficients within 

each group are correlated according to the experimental setup in this study, permutation tests 

with 104 iterations were used to generate a null distribution of the t-statistics which was used 

to compute the p-value of the observed t-statistics for each anatomical substructure in each 

subject.

In an additional analysis, we investigated whether the ASHS’ segmentation accuracy across 

the spectrum of proportion of control subjects in the atlas set differs between PAT and NC. 

For each label, a tailored two-step strategy was used to test this, accounting for the 

correlated nature of the samples. In the first step, two linear models were fit to the DSC/

GDSC of all the test set samples. The independent variable of the first model was the 

proportion of control subjects in the atlas set and the second model additionally included the 

diagnosis of the subjects (with an interaction term). In the second step, ANOVA was 

performed to compare the output of the two models to obtain the observed F-statistics, 

which estimates the influence of including diagnosis in the model fitting. To obtain the null 

distribution of the observed F-statistics, we performed the analysis 104 times with the 

diagnoses of the subjects permuted. The p-value was computed as the proportion of times 

the generated F-statistics under the null distribution were larger than the observed statistic.

The analyses were performed separately for 3T and 7T imaging. A significance level of p < 

0.05 was used for all the statistical analyses.

RESULTS

In the 7T experiments, in eleven cases out of 702, automatic segmentations were excluded 

due to mis-segmentation; none of the randomly selected segmentations failed. A common 

miss-segmentation was the undersegmentation of CA1 in the lateral portion of the 

hippocampus. The failed segmentations occurred in a small number of subjects (n=4) 

exhibiting very limited contrast between gray matter and cerebrospinal fluid on the 7T T2-

weighted MRI. All automatic segmentations at 3T passed quality control. Figure 1 plots the 

average segmentation accuracy for each label at 3T and 7T versus the proportion of NC in 

the atlas set and the results of the statistical analysis testing whether segmentation accuracy 

differs between PAT and NC. At 3T, the overall segmentation accuracy did not differ 

between NC-3T and PAT-3T for any label; however at 7T, segmentation accuracy of DG, 

ERC, and ALL were significantly higher in NC-7T. There is no visible trend as to whether 

increasing the proportion of NC in the atlas set affects segmentation accuracy. This was 

confirmed by the analysis of the regression coefficients shown in Table 2. In 3T and in the 

PAT-7T group, none of the regression coefficients were significantly different from zero for 

any of the labels. In the NC-7T group, the regression coefficients for labels CA1, CA3, DG, 

SUB, ERC, and ALL were significantly above zero, however, the magnitude of the 

coefficients was very small, ranging from 0.0000 to 0.0003 DSC/GDSC per percent 

increment of NC-7T subject in the atlas set. For the largest observed regression coefficient, 

the expected difference in segmentation accuracy between a 100% NC-7T atlas set and a 

100% PAT-7T atlas set is only 0.03 DSC. To be noted, experimental results of the 7T dataset 

did not notably change when including the 11 cases with failed segmentations.
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DISCUSSION

In this study we measured the effect of modulating the proportion of controls in the atlas set 

on the accuracy of automated multi-atlas segmentation of hippocampal subfields and 

extrahippocampal cortical regions in studies of AD at 3T and 7T. The main finding is that 

the different atlas compositions did not differ in terms of segmentation accuracy at 3T, and 

although we found a significant increase in accuracy for the segmentation of controls with 

each control added to the atlas set for 7T, this increase was very small. The results suggest 

that multi-atlas segmentation using ASHS is robust to changes in atlas composition; however 

due to a relatively small number of subjects in this study, further replication will be 

necessary to confirm that this robustness can be generalized to other datasets.

To compare our segmentation accuracy of the whole hippocampus with the current literature, 

we also generated a binary segmentation of the hippocampus by merging the hippocampal 

subfield labels. The average DSCs of the whole hippocampus throughout all the experiments 

(including the ones that did not survive quality control) were 0.89±0.01 for 7T and 

0.89±0.03 for 3T, which are comparable to the state-of-the-art methods [11, 22–25]. The 

DSC/GDSC values reported here for the subregions for 3T and 7T are similar to previously 

reported results in overlapping datasets [9, 19] but are slightly lower for some of the 

subregions, likely due to smaller overall atlas size in the experiments above. Interestingly, 

while we observed no significant difference in the segmentation accuracy between controls 

and MCI patients at 3T, we observed slightly, but significantly, lower DSC values (~0.03) for 

some labels for the patients as compared to the controls at 7T. This difference in 

segmentation accuracy could potentially be due to a difference in image quality (more 

motion artifacts and reduced contrast). It seems unlikely that this difference is due to 

differences in amount of atrophy, as both 3T and 7T groups show similar amounts of total 

hippocampal atrophy relative to the controls (~11%), or to severity of the disease population 

at 7T as the GDSC in the two patient groups, computed post hoc from the control-only atlas 

experiments, were comparable (GDSCs of the compound label “ALL” are 0.75±0.05 for AD 

and 0.74±0.05 for MCI patients). The segmentation accuracies for CA2 and CA3 were low, 

likely due to their relatively small sizes and perhaps because a large part of their boundaries 

are determined by heuristic rules in in vivo MRI. Indeed, these two subregions are difficult 

to segment, even manually, as indicated by the relatively low inter- and intra-rater reliability 

in prior studies [9, 19, 26, 27]. The 7T atlas did not include PRC and PHC labels, so 

accuracy for different atlas compositions should be evaluated in the future, especially since 

PRC is an early site for neurofibrillary tangle pathology [1].

The current result that the automated segmentation of hippocampal subfields and 

extrahippocampal regions using ASHS in controls and MCI or AD patients is at most mildly 

affected by atlas composition indicates that future studies can be flexible in choosing their 

atlases. Thus, researchers could either choose one of the existing atlases composed of elderly 

subjects, whether they include patients or not, or could construct their own atlas determined 

by their own needs. However, image quality and severity of the disease population should be 

taken into consideration both for atlas selection and when performing automated 

segmentation. The current findings have broad implications as most labs use either 3T or 7T 

imaging, the latter has seen increasing use (see review from Giuliani et al. [28], but also note 
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the European Ultrahigh-Field Imaging Network for Neurodegenerative Diseases (EUFIND), 

an effort aiming to summarize and investigate the potential of ultrahigh-field imaging in 

neurodegenerative research). It should be noted that there is variability in MRI protocols at 

both 3T and especially at 7T, and many 7T acquisition protocols have different voxel 

dimensions. Indeed, most 7T groups acquire anisotropic voxels, as in the 3T data here, 

though with thinner slices.

Guidelines on how to compose the atlas set is especially relevant for large studies, such as 

ADNI-3, where manual segmentation becomes infeasible. Additionally, it might also be 

relevant to the harmonization effort for hippocampal subfield segmentation, as this group is 

planning to incorporate the harmonized protocol, once finished, in one of the existing 

algorithms [29, 30] (http://www.hippocampalsubfields.com). While the current findings give 

guidance for the atlas composition to automatically segment older populations including 

MCI or early AD patients, this should be replicated in larger samples sizes in future work. 

Moreover, as the 3T atlas did not include early AD patients, future studies should therefore 

confirm if the findings hold in a 3T dataset including this patient group. Relatedly, it is not 

clear whether these results hold for other diseases or age groups and future work should 

address this.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Average DSC for labels of the substructures or GDSC for the compound labels, i.e., HIPPO 

and ALL, versus the proportion of normal control subjects in the atlas set of 3T (top) and 7T 

images (bottom). Error bars indicate standard error of the mean. Importantly, GDSC of a 

compound label is generally lower than DSC of the corresponding binary label merging all 

the sublabels, because GDSC takes the size of each sublabel into account and thus will be 

negatively affected by the relatively lower DSC of the smaller sublabels. F statistics and p 
value (*p<0.05) show whether segmentation accuracy (across all atlas compositions in the 
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atlas set) differ between patients and controls for each label. Note that the comparison 

between 3T and 7T is not feasible because the segmentation protocols are different. The 

ranges of y-axis of all labels in this figure are set to be the same for easier comparison 

between labels. Zoomed-in view of each label is available in Supplementary Figure 1. 

HIPPO is the compound label of CA1–3, DG and SUB. ALL is the compound label of all 

the gray matter labels. of CA, cornu ammonis; DG, dentate gyrus; SUB, subiculum; ERC, 

entorhinal cortex; BA35/36, Brodmann area 35/36; PHC, parahippocampal cortex; HIPPO, 

hippocampus; DSC, Dice similarity coefficient; GDSC, generalized DSC.
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