Skip to main content
. 2019 Mar 7;9(1):29. doi: 10.3390/diagnostics9010029

Table 2.

Deep learning algorithms applied to the LIDC-IDRI database.

Author Year Malignant Benign Accuracy (%) Sensitivity (%) Specificity (%) AUC Noduli Type Architecture
Chen et al. [26] 2018 NA NA NA 93.7 NA NA All types CNN
Sun et al. [33] 2017 47576 41372 NA NA NA 0.890 All types CNN
Wang et al. [34] 2017 NA NA NA 83.1 NA NA All types CNN
Da Silva et al. [29] 2018 3415 8742 97.6 92.2 98.2 0.955 All types CNN
Da silva et al. [28] 2017 1413 1830 94.75 94.7 95.1 0.940 All types CNN
Causey et al. [6] 2018 NA NA 94.6 94.8 94.3 0.984 All types CNN
Ramachandran et al. [31] 2018 3300 3300 93.0 89.0 NA NA All types CNN
Zhu et al. [36] 2018 450 554 90.4 NA NA NA All types CNN
Da Nóbrega et al. [27] 2018 NA NA 88.4 85.3 NA 0.931 All types CNN
Song et al. [32] 2017 2311 2265 84.2 84.0 84.3 0.910 All types CNN
Han et al. [30] 2018 538 622 82.5 96.6 71.4 NA GGO CNN
Zhao X. et al. [35] 2018 375 368 82.2 NA NA 0.877 All types CNN
Zhang et al. [37] 2017 40800 32000 95.0 93.5 90.2 0.930 > 30 mm DBN
Xie et al. [39] 2018 648 1324 89.53 84.2 92.0 0.960 All types DCNN
Li et al. [40] 2016 40772 21720 89.0 87.1 NA NA All types DCNN
Shaffie et al. [42] 2018 NA NA 91.2 85.0 95.8 0.95 All types Deep autoencoder
Gruetzemacher et al. [43] 2018 NA NA NA 94.2 NA NA All types DNN
Abbas et al. [44] 2017 1300 1300 95.0 94.0 96.0 0.950 All types DNN
Hamidian et al. [45] 2017 NA NA NA 80.0 NA NA All types FCN + CNN
Xie et al. [38] 2018 644 1301 91.6 86.5 94.0 0.95 All types MV-KBC
Nibali et al. [46] 2017 420 411 89.9 91.1 88.6 NA All types ResNet
Naqi et al. [47] 2018 NA NA 96.9 95.6 97.0 NA All types SA + softmax