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Abstract

Lentiviruses infect myeloid cells, leading to acute infection followed by persistent/latent infections 

not cleared by the host immune system. HIV and SIV are lentiviruses that infect CD4+ 

lymphocytes in addition to myeloid cells in blood and tissues. HIV infection of myeloid cells in 

brain, lung and heart cause tissue specific diseases that are mostly observed during severe 

immunosuppression, when the number of circulating CD4+ T cells declines to exceeding low 

levels. Antiretroviral therapy (ART) controls viral replication but does not successfully eliminate 

latent virus, which leads to viral rebound once ART is interrupted. HIV latency in CD4+ 

lymphocytes is the main focus of research and concern when HIV eradication efforts are 

considered. However, myeloid cells in tissues are long-lived and have not been routinely examined 

as a potential reservoir. Based on a quantitative viral outgrowth assay (QVOA) designed to 

evaluate latently infected CD4+ lymphocytes, a similar protocol was developed for the assessment 

of latently infected myeloid cells in blood and tissues. Using an SIV ART model, it was 

demonstrated that myeloid cells in blood and brain harbor latent SIV that can be reactivated and 

produce infectious virus in vitro, demonstrating that myeloid cells have the potential to be an 

additional latent reservoir of HIV that should be considered during HIV eradication strategies.

Introduction

AIDS emerged as a new disease in 1980 and was shown to be caused by a retrovirus, the 

human T-cell lymphotrophic virus III (HTVL-III), thought to be similar to human viruses 

HTLV-I and II (1–4). AIDS pathogenesis included not only immunosuppression but also 

infection of tissues; in particular the brain, causing encephalitis and dementia in adults and 

children (5, 6). Soon after the AIDS virus was isolated and molecular clones were 

constructed to further characterize the virus molecular hybridization studies demonstrated 

that HTLV-III was actually more closely related to the ungulate lentiviruses than to the 

human deltaretroviruses HTLV-I and II, and the virus was renamed human 

immunodeficiency virus (HIV) (7, 8). HIV infection in vivo has many parallels to lentivirus 

pathogenesis causing not only primary immunodeficiency but also CNS- and lung-specific 

diseases. In contrast to most lentiviruses, the cellular tropism of HIV included not only 

macrophage lineage cells but also CD4+ lymphocytes (9). While classic lentiviruses like 
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visna virus do not infect lymphocytes, infection of macrophages does cause lymphocyte 

activation and lymphocytic proliferation in infected tissues such as brain, lung, and joints 

(10, 11). Lentivirus infections are characterized by an acute phase followed by suppression 

of virus replication in blood and tissues that led to a state of undetectable virus in most 

animals (12). Despite lack of detectable viral RNA, cells from infected, suppressed animals 

can be activated to produce virus in vitro. This was also an early observation in studies of the 

ovine (visna virus) and caprine (caprine arthritis-encephalitis virus, CAEV) viruses in which 

monocytes from infected animals without detectable viral RNA mature in vitro into 

macrophages with subsequent reactivation and detection of viral cellular RNA and virus in 

the culture supernatant (13). Viral latency in myeloid lineage cells in lentiviruses in vivo is 

also a feature of non-primate lentiviruses shared by SIV and HIV.

The pathogenesis of HIV during the early AIDS epidemic and before the development of 

antiretroviral therapy was characterized by immunodeficiency disease as a result of loss of 

circulating CD4+ T cells and by subsequent opportunistic infections. CNS neurologic 

disease accompaniea these infections and infectious virus is detected in the cerebrospinal 

fluid (CSF) (5, 14, 15). HIV infection in brain of infected adults and children was shown to 

be responsible for the neurologic disease and was called AIDS Dementia Complex (ADC). 

This neurologic syndrome, ADC, was the cause of mortality in HIV infected individuals. 

Although HIV enters the CNS during acute infection, CNS disease manifested mainly 

during later stages of infection, when individuals were immunosuppressed (16).

Initially, the cause for the late stage development of ADC was not clear, however, later 

studies of the replication and regulation of HIV in macrophages, the cells infected in brain 

demonstrated differential regulation of HIV in myeloid cells as compared to lymphocytes 

(17–19). HIV transcription in macrophages is regulated by the transcription factor c/EBPβ 
and its isoforms (17–22), in contrast to transcriptional regulation of HIV by NF-kΒ in CD4+ 

lymphocytes (23, 24). The differential expression of c/EBPβ isoforms is modulated in 

macrophages by IFNβ (17–19). Presence of this cytokine in brain causes the translation of a 

dominant negative form of c/EBPβ that down-regulates viral transcription and histone 

acetylation of the HIV LTR, resulting in transcriptional silencing of HIV in vitro and SIV in 

vitro and in vivo (20–22, 25, 26). Thus, regulation of HIV transcriptional activation and 

suppression by IFNβ may be one mechanism for establishing HIV latency in macrophages 

in tissues. Viral latency is a state of reversibly nonproductive infection of individual cells 

and provides an important mechanism for viral persistence and escape from immune 

recognition and drug pressure.

In the era of ART, fully suppressed HIV-infected individuals usually control virus replication 

in blood controlling viral levels below 50 copies of HIV/ml. The occurrence of systemic 

immunosuppression and HIV-associated dementia has been greatly diminished by treatment. 

ART does not eliminate the viral provirus from tissues but suppresses virus that becomes 

latent, the latent reservoir is recognized as a major barrier to curing HIV-1 infection. HIV 

research is mainly focused on the suppression of virus replication in CD4+ lymphocytes 

(CD4+T) and on mechanisms of virus latency and the formation of long-lived CD4+T 

reservoirs (27). The dramatic decrease in CNS dementia suggests that the infected brain 

macrophages (microglia and perivascular macrophages) are no longer actively infected 
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during ART. In contrast to the availability of CD4+T cells in blood, however, brain 

macrophages cannot be directly studied in humans because of the difficulty of analysis in 
situ. To circumvent this hurdle, HIV studies performed in cerebrospinal fluid (CSF) and 

brain (post-mortem) of HIV infected individuals on ART demonstrated that HIV is present 

in brain despite undetectable virus in the plasma (28, 29). The identification of HIV-

neurocognitive disorders (HAND) and HIV RNA in the CSF in HIV-infected individuals on 

suppressive ART further demonstrates that HIV infection persists in brain in either a latent 

or persistent form (28, 29). SIV-infected macaques on ART regimens, similar to those used 

in humans, provide the opportunity to study longitudinal progression of AIDS, CNS 

infection, disease pathogenesis and viral latency of both CD4+T and myeloid cells in blood, 

CSF, and tissues, including brain.

HIV & SIV Infection in the CNS

Both HIV and SIV infect the CNS as early as the first week after infection, and both viruses 

are detectable in CSF as well as in the blood of infected individuals during acute, chronic, 

and late stage disease. Infection of the CNS is caused by entry of infected CD4+ T cells and 

monocytes trafficking across the blood brain barrier (BBB). HIV and SIV infection is then 

spread to perivascular macrophages that line the BBB and to microglia, the resident brain 

macrophages. Microglia are embryonically derived cells that self-renew rather than being 

replenished from circulating monocytes (30, 31). Infected microglial cells have been 

identified in HIV-infected humans and SIV-infected non-human primates (32–37) However, 

the role of microglia infection in long-term HIV latency and persistence is controversial 

despite the detection of HIV DNA in post-mortem brain of ART-suppressed individuals. In 

SIV infection, microglia isolated from both viremic and ART suppressed macaques contain 

SIV DNA and RNA (see below for detailed studies).

New Insights on Macrophage Origin and Phenotypes

Depletion of CD4+ T cells is the hallmark of HIV-1 infection, and most studies of 

pathogenesis and latency of HIV and SIV have focused on lymphocytes. Nonetheless, 

macrophages are a natural host cell for lentiviruses (13, 38–40) and multiple lines of 

evidence point to the importance of macrophages during HIV infection: 1) The accessory 

protein Vpx (HIV-2) specifically enhances viral replication in macrophages (41, 42), but not 

in CD4+ T cells. Comparably, Vpr (HIV-1) recruits UNG2 into virions and modulates viral 

mutation rates in macrophages (43)(2) Many HIV-1 strains replicate efficiently in 

macrophages, independent of the presence of Vpx (44, 45); 3) AIDS is characterized by 

dramatic depletion of CD4+ T cells, however, despite depletion of these cells high plasma 

viral load persists, suggesting that viral replication is occurring in cells other than CD4+ 

lymphocytes. In the macaque models for SIV infection, experimental depletion of CD4+ T 

cells results in an increase in viral load and selection in vivo of CD4-independent 

macrophage-tropic SIV phenotypes (46–48)(4). Damage to both lung and brain (interstitial 

pneumonia and encephalitis) are directly associates with infections of macrophages (49, 50); 

5) Finally, activation of monocytes and macrophages during cART suppression in HIV is 

associated with higher morbidity (51–53).
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In the last several years, advances in myeloid cell biology have shown that every tissue 

harbors distinct populations of macrophages: those arriving during embryogenesis (both 

yolk-sac and fetal liver-derived), and post-natal bone marrow-derived blood monocytes (31). 

A similar classification can be extended to humans based on transcriptomic and phenotypic 

profiling (30). Most resident tissue mononuclear phagocytes - including Kupffer cells in the 

liver, Langerhans cells in the skin, microglia in brain, and alveolar and periotoneal 

macrophages –originate from Myb-independent progenitor cells that migrated directly or 

indirectly from the yolk sac to their respective tissues during embryogenesis (30, 54). They 

are predominantly maintained through self-renewal during steady state, independently of 

adult hematopoiesis (55). These cells have only recently been thoroughly characterized as 

distinct from monocyte-derived macrophages, and little is known about their in vitro 
function (54). Resident tissue macrophages, infected with HIV or SIV, have the potential to 

divide and expand the viral reservoirs in tissues. In addition, HIV and SIV infected 

macrophages are not efficiently killed by CD8+ T cells unlike infected CD4+ T cells (56, 

57). Thus, resident tissue macrophages remain in tissues long-term, are capable of self-

renewal, are relatively resistant to the cytopathic effects of HIV infection compared to CD4+ 

T cells, and may serve as stable viral reservoirs.

Some tissue macrophages are directly derived from blood monocytes, which arise from 

common monoblasts in bone marrow. Especially during infection or inflammation, 

circulating monocytes infiltrate tissues via pro-inflammatory mediators, including 

chemokine gradients, and differentiate into cells with a broad range of functions, depending 

on the microenvironment (58, 59). Although morphologically similar, macrophages 

originating from monocytes have distinct transcriptomes, surface markers, and phenotypic 

profiles from those of embryonic origin (31, 60). Macrophages with the same ontogeny can 

express different sets of transcripts and may respond differently to pathogens, depending on 

the tissue location (61).

In addition to distinct ontogenies, in vitro studies have demonstrated that monocyte-derived 

macrophages (MDM) can dramatically change their phenotype, pattern of gene expression, 

and functionality under different culture conditions (62). Generally, macrophages matured in 

CSF-1 are the starting point for many murine and human experiments. Any alteration to 

these culture conditions will present specialized functional properties, referred to as 

polarization. Historically, post-differentiated MDMs treated with IFN-γ were defined as M1, 

or classically activated, and MDMs treated with IL-4 termed M2, or alternatively activated. 

Current perspective acknowledges a spectrum of polarization, with large shifts in gene 

expression based on stimuli used in culture, and suggests terminology specific to the 

activator, such as M(IFN-γ + LPS). MDMs activated by IFN-γ alone or in combination with 

microbial stimuli (LPS) or cytokines (TNF) express copious amounts of inflammatory and 

effector molecules (IL-6, IL-2, CCL2, CXCL10, iNOS, and ROS), contribute to the 

induction and maintenance of TH1 and TH17 responses. They also have enhanced 

complement- and antibody-mediated phagocytosis with microbicidal capacity (63) 

Conversely, MDMs exposed to anti-inflammatory stimuli such as IL-4, IL-13, IL-10, TGF-

beta, immune complexes, or glucocorticoids are associated with TH2 responses, high levels 

of Fc receptors (CD16, CD32, CD64), and the resolution of inflammatory responses (64, 

65). These phenotypes are likely to be less distinctive in vivo since the microenvironments 
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that macrophages inhabit are exposed to a broad and changing range of signaling molecules. 

Also, in vitro studies show that macrophages, even after full polarization, can rapidly change 

phenotypes when exposed to a novel stimulus (66).

In the context of HIV infection, polarization studies demonstrate the antiviral features of M1 

MDM (67). This inflammatory phenotype has poor surface expression of CD4 and DC-

SIGN, which are important receptors for viral binding. They also inhibit intracellular steps 

of viral replication due to high levels of APOBEC3A, tetherin, and TRIM22 (68, 69). These 

cells present a transcription profile (65), which, at least in theory, should support HIV RNA 

expression (70, 71). Thus, while cell activation is directly related to increased viral 

transcription in CD4+ T lymphocytes, this is not the case in macrophages. Polarization has 

been mainly explored in bone marrow-derived MDMs in vitro; while in vivo macrophages 

are incredibly heterogeneous, and likely exist along a continuum of the M1-M2 spectrum.. 

During inflammatory and infectious processes, there is a major influx of monocytes into 

tissues (75, 76), making it difficult to demonstrate that shifts in polarization are occurring in 

resident cells and not in recently arrived monocytes. Recent studies on brain macrophages 

show that microglia respond to cytokine stimulation similar to MDMs (77–79). While the 

concepts described by in vitro studies have been useful in tissue macrophages (72–74), 

direct translation of these studies has not been comprehensively explored in vivo (80).

SIV Macaque Models

SIV infection in macaques comprehensively reproduces the immunodeficiency symptoms 

observed in HIV-infected humans, with infection of CD4+T cells and monocytes in blood, 

and of macrophages in tissues such as lymph nodes, bowel, brain, lung, spleen, and heart 

(81, 82). Antiretroviral drugs have been shown to fully suppress SIV replication in blood 

(82) and, in limited studies, CSF (83–85) to levels comparable to those in ART-suppressed 

HIV-infected individuals. SIV-infected macaques carry latently infected CD4+T cells that 

harbor replication competent virus, as shown by quantitative viral outgrowth assays (QVOA) 

(86) and by the rapid rebound of SIV in plasma when ART is discontinued (87). The role of 

infection and latency in monocytes and tissue macrophages in ART-suppressed macaques 

has only been recently addressed. This is important to pursue because, in the era of ART and 

potential HIV cure approaches, fully characterizing all latently infected cells that may 

contribute to viral rebound after cessation of ART has become a priority. Initial trials of HIV 

eradication strategies have focused on viral load (VL) in plasma as an indication of HIV 

reactivation or change in the latent reservoir, although there is evidence from the “Boston 

Patients” that virus rebound occurred not only in the blood but also in the brain, based on 

CNS symptoms prior to virus rebound and presence of HIV in CSF (88). However, the 

mechanisms that drive latency in macrophages remain unclear and, probably, are distinct 

from those in CD4+ T-cells. Also, new evidence indicates that many latent SIV genomes 

located in tissues may respond differently to latency reversing agents (LRA) (84).

Several well-characterized SIV macaque models have been used mainly to study the 

development of AIDS and the pathogenesis of infection using a variety of SIV viral strains 

and molecular clones. The most commonly used strains are cloned SIVmac239 and 

SIVmac251 strains, or viruses derived from these strains. Also, there are SIV models 
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focused on the study of infection and disease progression in the CNS (81). Each model uses 

distinct mechanisms to achieve SIV encephalitis, which includes infecting macaques with 

naturally occurring neurotropic and immunosuppressive virus swarms, neurotropic virus 

adapted by in vivo passage of SIV, and non-neurotropic strains in association with CD8+ 

lymphocyte depletion (81). A recent review has compared these SIV models concluding that 

all the models include monocyte/macrophage infection and activation, and increased number 

of macrophages in the brain of macaques that develop encephalitis (81).

This review focuses on studies using an SIV macaque model in which animals are 

inoculated with a viral strain swarm (SIVdelta/B670) that contains 22 SIV env-defined 

genotypes and a neurovirulent, molecular clone (SIV/17E) that consistently causes AIDS in 

90 days with a high incidence of CNS infection and encephalitis (89–91). This SIV model 

has been characterized longitudinally, demonstrating that SIV infection in brain occurred in 

the first week of infection (by 4 d p.i.) and that virus infection in brain was differentially 

regulated from the periphery (89, 92). Macrophages in brain, including resident microglia 

and perivascular macrophages are the major target cell in the CNS; SIV and HIV infection 

of macrophages has been shown to be transcriptionally regulated by C/EBPβ isoforms (17–

22), which are regulated by innate immune responses as discussed previously in this review. 

The regulation of SIV transcription in brain macrophages provides a mechanism for 

silencing of the viral genome in macrophages and is likely to contribute to mechanism of 

SIV and HIV latency in tissue resident macrophages, particularly in the CNS.

ART regimens in this dual-infection SIV model result in suppression of viral load to 

undetectable levels in the plasma and CSF (86), There is an extensive literature that 

addresses the frequency of HIV infection and latency in CD4+T cells in ART suppressed 

humans, but this same rigorous analysis had not been applied to the ART-suppressed SIV 

macaque models. Therefore, we developed an SIV rCD4+ QVOA analogous to the HIV 

quantitative viral outgrowth assay (QVOA) (86) and used it to measure the frequency of 

rCD4+ cells harboring replication competent SIV latent genomes, not only plasma but also 

in spleen and multiple lymph nodes and spleen (FIGURE 1) (86). These studies 

demonstrated that the frequencies of latently infected rCD4+ cells in blood, lymph nodes, 

and spleen are very similar to those in ART-suppressed HIV-infected individuals. In another 

study using the same macaque model, it was shown that SIV DNA persists in the brain 

despite undetectable levels of SIV cellular RNA in the CNS (83).

Evidence for a Functional Viral Reservoir in Brain Macrophages

Our well-characterized and consistent macaque model for AIDS and CNS disease was also 

used to evaluate the contribution of brain macrophages in SIV latency and reactivation 

during ART (84). In this study, SIV-infected macaques were fully suppressed with ART for 

over one year (<30 copies of SIV RNA per ml of plasma). To induce in vivo activation of 

latent reservoirs we tested a combination of two synergistic LRAs: the protein kinase C 

(PKC) activator ingenol-B and the histone deacetylase (HDAC) inhibitor vorinostat. We had 

previously shown that the ingenol-B reactivated HIV-1 genomes in two different in vitro 
HIV-1 latency models as well as in CD4+T isolated from HIV-infected individuals (93). Our 

results show that LRA administration led to an increase in VL in cerebrospinal fluid (CSF) 
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in one of two SIV-infected macaques. The increase in virus in the CSF was 10-fold higher 

than virus rebound in the plasma and phylogenetic analyses of viruses demonstrated distinct 

genotypes in the plasma and CSF, suggesting compartmentalization of virus in the brain. 

These findings suggest that the CNS harbors latent SIV genomes despite long-term ART 

suppression and that these reservoirs can be activated with LRAs. Although a small number 

of animals were assessed, this study is the first in vivo demonstration that the brain 

represents a consequential viral reservoir (84).

Relative Levels of Infection of CD4+ T Lymphocytes and Macrophages in 

SIV infected Macaques

The frequency of HIV or SIV infection of macrophages in tissues has been examined 

previously in a number of studies by measuring viral DNA in cells isolated from tissues 

(94). However, this approach overestimates the number of productively infected CD4+ T 

cells due to the presence of a large proportion of defective proviruses in vivo (95). Thus, we 

developed a quantitative viral outgrowth assay similar to the CD4+ T cell assay for HIV and 

for SIV to estimate the size of the potential latent reservoir of monocytes and macrophages 

(MΦ-QVOA) (94) (Figure 2 Macrophage QVOA). To validate this assay, we first examined 

the number of macrophages and CD4+ T cells in in blood and tissues of viremic SIV-

infected macaques (94). To eliminate the potential contribution of CD4+ T cells to the 

quantitation of infected macrophages, we also assessed the number of CD3+ T cells in each 

assay by measuring TCRβ RNA.

The MΦ-QVOA utilized the expression of the integrin CD11b (96) on monocytes and tissue 

macrophages and separated these myeloid cells from other cell types by sorting with CD11b 

Miltenyi magnetic beads (94). Like the CD4+ T cell QVOA, the MΦ-QVOA involved a 

serial dilution of selected cells. Antiretroviral drugs were added to the culture to prevent 

virus spread from any CD4+ T cells that might be in the culture during the first couple of 

days, while macrophage differentiated and matured in vitro. Unlike T cells, macrophages do 

not divide exponentially when activated in culture and strongly adhere to culture plates when 

grown in vitro. Cell supernatants were collected from the MΦ-QVOA wells after 12 days of 

cultivation (Figure 2). Viral RNA was isolated from replicate wells and quantitated 

individually by qRT-PCR. The frequency of infectious virus per million (IUPM) was 

calculated using limiting dilution statistical analyses (97).

Quantitating macrophages with the QVOA from SIV-chronically and late-stage infected 

macaques demonstrated that the number of productively infected macrophages in a given 

tissue was surprisingly similar from macaque to macaque, whereas the number of 

productively infected macrophages varied widely across different tissues from the same SIV-

infected macaque. The highest number of infected macrophages (424 IUPM) was measured 

in spleen demonstrating that splenic macrophages are highly susceptible to SIV infection 

and harbor high levels of productive genomes (Figure 3 IUPM CD4+ T cells, monocytes, 
macrophages). This suggests a role for tissue microenvironments in mediating virus 

infection of macrophages, since populations of macrophages that reside in each tissue may 
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be differentially susceptible to SIV/HIV infection based on the cytokine profiles of the 

organs (98).

The number of infected brain macrophages, including both microglia and perivascular 

macrophages, were quantitated by MΦ-QVOA in SIV infected macaques during both the 

chronic and late stage disease. Brain sections of these animals were examined for 

pathological changes associated with SIV encephalitis and were scored as none, mild, 

moderate, or severe disease. It was found that the brain of animals with mild to severe CNS 

disease contained the next highest level of infected cells (median 231 IUPM) compared to 

spleen. The two macaques with the most productively infected cells brain macrophages 

s(Pm3 and Pm4 with 24,000 IUPM) had severe encephalitis and high levels of viral RNA in 

brain. The macaques without CNS disease had undetectable numbers of infected microglia/

macrophages and little or no detectable viral RNA in the brain. Thus, the number of 

productively infected cells in the brain correlated with the severity of disease and the level of 

viral RNA detected in brain by qPCR. This study provided the first estimate of productively 

infected CD4+ T cells and myeloid cells in SIV-infected tissues in vivo.

Quantitation of Latently Infected Brain Macrophages in ART Suppressed 

SIV Macaques

ART has dramatically reduced the severe forms of HAND, but milder forms of neurologic 

impairment are still observed in HIV-infected individuals virally suppressed on ART. HAND 

is thought to be a result of chronic central nervous system (CNS) inflammation in the brain 

(99–102). It is unclear whether inflammation is caused by incomplete penetrance of 

antiretroviral drugs into the CNS or the persistence of virus in brain macrophages (BrMΦ) in 

a latent state that reactivate causing sporadic inflammatory responses (103). Indeed, some 

HIV-infected individuals on ART have no detectable virus in the plasma but have 

measurable levels of HIV RNA in the CSF (104, 105). Also, HIV was detected after rebound 

in the CSF of the Boston patients, who had undetectable plasma HIV during ART 

interruption for several months (88). There is a continuing debate on the sources of virus in 

the CSF and the cause of the chronic inflammation in brain that leads to HAND.

Using our SIV macaque model with SIV-infected macaques suppressed with four 

antiretroviral drugs for 100–500 days, we evaluated whether infected cells persist in brain 

despite ART. SIV-infected pigtailed macaques were virally suppressed with ART, and 

plasma and CSF VL were analyzed longitudinally to demonstrate viral suppression in the 

peripheral blood and the CNS. To assess whether virus persisted in brain macrophages 

(BrMΦ) in these long-term ART suppressed macaques, we used MΦ-QVOA, qPCR, and in 
situ hybridization (ISH) to measure the frequency of infected cells and levels of viral RNA 

and DNA in brain. Viral RNA in brain tissue of suppressed macaques was undetectable, 

although viral DNA was observed in all animals. The MΦ-QVOA demonstrated that the 

majority of suppressed animals contained latently infected BrMΦ. We also showed that virus 

produced in the MΦ-QVOAs was replication competent, suggesting that latently infected 

BrMΦ are capable of re-establishing productive infection upon ART interruption. This study 

provides the first confirmation of replication-competent SIV in BrMΦ of ART-suppressed 
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macaques and suggests that the highly debated question of viral latency in macrophages, at 

least in brain, has been addressed in SIV-infected macaques treated with ART.

In this study, we identified latently infected BrMΦ in brain samples containing fewer than 

10 copies of SIV DNA per million cells. In animals suppressed for more than 500 days, the 

number of infected macrophages measured in the Mø-QVOA ranged from 3.6 to 15 in a 

hundred million cells, supporting the low level of DNA quantitated by qPCR. Thus, the 

quantitation of SIV DNA or RNA by PCR in brain tissue does not fully reflect the size of the 

latent functional reservoir, which is the main target in eradication strategies. (FIGURE 3 

Brain Macrophage IUPM Frequency)

Most animals in the study harbored latently infected macrophages in regions of the brain 

that contained no detectable viral RNA. After 1.7 years of viral suppression, three macaques 

in the study showed no viral RNA in basal ganglia and parietal cortex. Nevertheless, all three 

macaques had replication competent virus produced in the isolated BrMΦ. Of note, we 

detected viral RNA by ISH in the brain of one of the macaques in the study treated with a 

LRA. However, the RNA was detected the occipital cortex, a brain section not used for the 

BrMΦ QVOA. These results corroborate findings showing that SIV, and potentially HIV, 

infection in brain is highly focal (84) and can provide variable results depending on the brain 

region analyzed for each specific assay.

Also, the results from the MΦ-QVOA showing that a small number of replication competent 

viruses are sporadically released in some latent BrMΦ indicate that parameters we used to 

define a positive QVOA well supernatants with > 50 SIV RNA copies/mL) underestimate 

the number of latently infected cells that produce replication competent virus, at least in 

macrophages. Indeed, viruses collected from most QVOA assay supernatants were able to 

spread in healthy PBMC.

The demonstration that there is latent replication-competent virus in SIV-infected ART 

suppressed macaque brain provides a mechanism for the ongoing macrophage activation 

observed both in the macaques and HIV individuals suppressed on ART. Recent studies have 

suggested that, while virus does not spread during ART suppression, there is ongoing 

stochastic activation of virus genomes in latently infected cells (106, 107). Reactivation of 

virus without spread in the macrophage is likely to induce innate immune responses and 

cellular activation. Thus, productively infected latent macrophages in brain provide a 

mechanism for the ongoing inflammation of HIV in a fully suppressed individual. Also, it 

has been recently demonstrated that defective provirus expressed in rCD4s could be 

recognized by adaptive immune responses, shaping the proviral landscape (95). It is possible 

that similar responses might happen with viral proteins generated from defective proviruses 

in BrMΦ.

Conclusions

The presence of a long-term functional reservoir of SIV in brain macrophages that parallels 

the biologic and pathologic features of infected individuals with HIV encephalitis suggests 

that the HIV in brain may be a formidable barrier to strategies to decrease or eliminate latent 
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reservoirs. Further, the presence of low levels of viral DNA in brain of ART-suppressed 

macaques can contribute to virus spread in brain and potentially in the periphery during 

cessation of ART or eradication treatments. While the brain is protected by the blood brain 

barrier and eradication approaches may not penetrate the brain, immune activation in the 

periphery could potentially activate virus in the CNS. On the other hand, the lack of CNS 

penetrance of such eradication therapies would potentially leave the CNS functional 

reservoir intact and undermine virus eradication. Strategies that include activation of virus in 

brain may have the effect of increasing inflammation and neuronal toxicity due to increased 

macrophage activation and production of cytokines, as we observed in a suppressed 

macaque treated with two cycles of LRAs (84). Our studies demonstrating the presence of a 

functional latent reservoir in brain macrophages have major implications for SIV eradication 

studies used to model treatment for HIV individuals. Examining recrudescence of virus in 

plasma but not CSF may overlook a source of virus that significantly contributes to the virus 

rebound.
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Figure 1. 
(a) Viral RNA levels in plasma and CSF increase rapidly during the first 7–10 days prior to 

ART treatment. Within a few days after initiation of ART, plasma and CSF viral load 

decline. By approximately 60 days p.i., plasma and CSF viral load have declined to below 

the level of detection (<50 copy eq./ml) and viral loads remain low during ART. (c) The 

decline in plasma and CSF viral RNA occurred in two phases: an initial short-term rapid 

decline followed by a longer term slower decline similar to the two-phase decline seen in the 

plasma of HIV-infected individuals on HAART. At 80 days p.i., there were 8–10 latently 

infected resting CD4+ T cells per million resting CD4+ T cells in the blood. These numbers 

declined gradually to ~ one latently infected resting CD4+ T cells per million by 175 days 

p.i. Abs., absolute; CSF, cerebrospinal fluid; p.i., post-inoculation; Rx, therapy; vRNA, viral 
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RNA., plasma vRNA;, CSF vRNA (severe/moderate encephalitis);, CSF vRNA (no/mild 

encephalitis);, Abs. CD4+ cell counts in blood.
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Figure 2. 
MΦ-QVOA. Monocytes from blood and macrophages from brain were collected from SIV-

infected animals and purified by CD11b-specific bead selection. Macrophages expressing 

CD11b were plated in serial dilutions in triplicate wells. Cells were cultured with zidovudine 

(AZT) and darunavir (DRV). Nonadherent cells and the antiretrovirals were removed prior 

to activation with TNF and co-culture with CEMx174 cells (85, 94).
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Figure 3. 
Quantitation of latently infected brain macrophages in ART-treated macaques by MΦ-

QVOA. Quantitation of infected brain macrophages from ART-treated macaques (85). 

Comparison between the numbers of SIV-infected brain macrophages isolated from animals 

that were not given ART (-ART) and the numbers isolated from animals that were treated 

with ART and with viral suppression <10 copies SIV RNA/ml plasma. The horizontal black 

line represents the median IUPM values. The MΦ QVOA results from SIV-infected animals 

with and without ART have been reported (85, 94). Significance was determined by Mann-

Whitney nonparametric t test; a P of <0.05 was considered significant.
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