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Abstract

Classical epidemiology has focused on the control of confounding, but it is only recently

that epidemiologists have started to focus on the bias produced by colliders. A collider

for a certain pair of variables (e.g. an outcome Y and an exposure A) is a third variable

(C) that is caused by both. In a directed acyclic graph (DAG), a collider is the variable in

the middle of an inverted fork (i.e. the variable C in A! C Y). Controlling for, or condi-

tioning an analysis on a collider (i.e. through stratification or regression) can introduce a

spurious association between its causes. This potentially explains many paradoxical

findings in the medical literature, where established risk factors for a particular outcome

appear protective. We use an example from non-communicable disease epidemiology to

contextualize and explain the effect of conditioning on a collider. We generate a dataset

with 1000 observations, and run Monte-Carlo simulations to estimate the effect of 24-h di-

etary sodium intake on systolic blood pressure, controlling for age, which acts as a
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confounder, and 24-h urinary protein excretion, which acts as a collider. We illustrate

how adding a collider to a regression model introduces bias. Thus, to prevent paradoxi-

cal associations, epidemiologists estimating causal effects should be wary of condition-

ing on colliders. We provide R code in easy-to-read boxes throughout the manuscript,

and a GitHub repository [https://github.com/migariane/ColliderApp] for the reader to re-

produce our example. We also provide an educational web application allowing real-

time interaction to visualize the paradoxical effect of conditioning on a collider [http://wat

zilei.com/shiny/collider/].

Key words: Epidemiological methods, causality, non-communicable disease epidemiology

Introduction

During the past 30 years, classical epidemiology has fo-

cused on the control of confounding.1 It is only recently

that epidemiologists have started to focus on the bias pro-

duced by colliders in addition to confounders.2,3 Directed

acyclic graphs (DAGs) can help to visualize the assumed

structural relationships between the variables under analy-

sis. With this framework, we can distinguish between

biases resulting from: (i) not conditioning on common

causes of exposure and outcome (unadjusted confound-

ing); or (ii) conditioning on common effects (collider

bias).4,5 Epidemiologists use DAGs to determine the set of

variables that are necessary to control for confounding and

to summarize the subject-matter knowledge of the data-

generating process. Using the DAGs terminology, variables

including A (exposure) and Y (outcome) are ‘nodes’ con-

nected by an arrow (a.k.a. directed edge), and a ‘path’ is a

way to get from one node to another travelling along its

arrows. The directed arrow (!) from A to Y means that

one does not exclude the possibility that A causes Y.6–8

A collider for a certain pair of variables (e.g. outcome and

exposure) is a third variable that is caused by both of them.

In DAG terminology, a collider is the variable in the middle

of an inverted fork (i.e. variable C in A! C Y).6–8 Using

regression to control for a collider, or stratifying the analysis

with respect to a collider, can introduce a spurious associa-

tion between its causes, which can potentially introduce non-

causal associations between the exposure and the outcome.

This has been used to explain why the medical literature con-

tains many paradoxical findings, where established risk fac-

tors appear protective for the outcome.9–12 For instance,

numerous studies have reported a paradoxical protective ef-

fect of maternal cigarette smoking during pregnancy on pre-

eclampsia, which has been named the pre-eclampsia smoking

paradox. This paradox is due to gestational age at delivery,

which is a collider between smoking (exposure) and pre-

eclampsia (outcome).9 However, the magnitude of the result-

ing bias will depend on the associations between the collider

and the two parent variables.

We hope that this methodological note will contribute

to the increasing awareness of ‘colliders’ and an under-

standing of the potential magnitude of collider bias among

applied epidemiologists. The remainder of this note is

structured as follows:

i. We review terminology related to DAGs and the rules

one can follow to determine whether a causal effect is

estimable.

Key Messages

• Paradoxical associations between an outcome and exposure are common in epidemiological studies using observa-

tional data.

• A collider is a variable that is causally influenced by two other variables.

• Controlling for a collider in multivariable regression analyses can introduce a spurious association between its causes

(e.g. exposure and outcome).

• Directed acyclic graphs based on existing subject-matter knowledge can help to identify colliders.

• Whether or not it is advisable to adjust for a collider depends on the main analytical objective. For instance, a predic-

tive model may condition on a collider to increase prediction accuracy, whereas one should typically not condition

on it when estimating causal effects to prevent bias.
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ii. We demonstrate the statistical structure of collider

bias using a simulated dataset.

iii. We illustrate the effect of conditioning on a collider us-

ing a realistic non-communicable disease epidemiology

example (hypertension and dietary sodium intake).

iv. We provide R code in easy-to-read boxes throughout

the manuscript and in a GitHub repository: [https://

github.com/migariane/ColliderApp].

v. We provide readers with an educational web applica-

tion allowing real-time interaction to visualize the par-

adoxical effect of conditioning on a collider [http://

watzilei.com/shiny/collider/].

Statistical structure of confounding and
collider bias

Review of confounding

Confounding arises from common causes of the exposure (A)

and the outcome (Y). Note that in Figure 1A, both the out-

come (Y) and the exposure (A) share a common ‘parent’

(direct cause). Y and A are both called ‘descendants’ of W as

they are both caused by W. The confounder wholly or par-

tially accounts for the observed association of the exposure

(A) on the outcome (Y). The presence of a confounder can

lead to ‘confounding bias’, and thus inaccurate estimates of

the effect of A on Y. More precisely, bias means that the as-

sociational measure, for example the crude odds ratio, is dif-

ferent from the causal effect, such as the true marginal causal

odds ratio (we give a clear definition of a marginal causal

effect further below).

Figure 1A gives an example of a confounding structure,

where the path A  W ! Y is called a ‘back-door path’

which is defined as any path from A to Y that starts with an

arrow into A. Without conditioning on variables, a path is

open when it does not contain colliders. An open back-door

path can be blocked and confounding removed by

conditioning on non-colliders (via regression or stratifica-

tion). In Figure 1A, conditioning on the confounder W

blocks the open back-door path. A path that is blocked by a

collider can be opened by conditioning on the collider.12 To

sufficiently control for confounding, epidemiologists must

identify a set of variables in the DAG that block all open

back-door paths from the exposure (A) to the outcome (Y)

by conditioning on variables along each path (i.e. using

stratification or regression). In statistical terms, being able

to block all back-door paths is known as conditional ex-

changeability or ignorability.

To describe confounding and collider bias, we may use

the expression ‘association is not causation’. This means

that measures of association, such as the conditional

mean difference in the case of a binary A, E(YjA¼ 1,

W)-E(YjA¼ 0, W), is not identical to its marginal causal

counterpart, the average treatment effect: E(Y(1))-E(Y(0)).

Causal effects are often formulated in terms of potential

outcomes, as formalized by Rubin.13 Let A denote a con-

tinuous exposure, W a pre-exposure vector of potential

confounders and Y a continuous outcome. Each

individual has a potential outcome corresponding to any

given level of the exposure, that is the outcome they would

have received had they been exposed to A¼ a, denoted

Y(a). However, it is only possible to observe a single real-

ization of the outcome for an individual. We may observe

Y(a) only for those who were exposed with A¼ a.13 If W is

the set of confounding variables, then Y(a)\AjW refers to

conditional exchangeability, where the symbol \ means

‘independent’. It implies that (within the strata of W)

the distribution of Y(a) is the same regardless of the

value of A that the individual actually received, i.e.

E(Y(a)jA, W) is the same regardless of the value of A

that the individual actually received. We therefore have no

systematic differences in how subjects would have per-

formed, under any given exposure, which are not already

explained by W.

Figure 1. Basic structural associations between exposure and outcome: confounding (A), collider (B), and M-bias (C).
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Demonstration of confounding and regression

adjustment

We now demonstrate adjustment for confounding via lin-

ear regression models. In Box 1 we show how to generate

data consistent with the DAG from Figure 2A, after which

we run two different regression models. The confounder W

is generated as a standard normal random variable, i.e.

with mean 0 (l ¼ 0) and variance 1 (r2 ¼ 1). The genera-

tion of A depends on the value of W plus an error term,

and Y is generated depending on both A and W plus an er-

ror term, where both error terms have independent stan-

dard normal distributions. Note that the simulation

assumes linear relationships between the variables, and

that the true simulated causal effect of the exposure A on

Y is 0.3 (the coefficient in the linear regression model).

Then, we fit unadjusted (fit1) and adjusted (fit2: adjusted

for W) linear regression models to estimate associations be-

tween A and Y. We visualize the fit of both models using

the R software package visreg, where we used R version

3.5.1 (R Foundation for Statistical Computing, Vienna).

Note that our confounder W is the only variable that

does not have parents in Figure 1A, i.e. it is not caused by

any variable in the DAG. Therefore, in the code, it is the

only variable that is generated independently of the other

variables in the model. However, both A and Y depend on

a common cause W (their parent) which is the source of

the open back-door path between A and Y. As an

illustration of the confounding bias due to W, Table 1 (col-

umns 1, 2) shows the coefficients of A and W from the fit-

ted regression models. The first regression does not

condition on W and therefore has an upwards bias in the

coefficient of A (0.471). However, the second regression

closes the open back-door path by including the con-

founder W in the regression model. Thus, it estimates the

causal effect as 0.289, close to the true coefficient (0.3)

(Figure 2A, Table 1: columns 1, 2), the residual difference

being entirely due to sampling variability.

Collider structure

Unlike in Figure 1A, where the causal arrows start from

W, in Figure 1B they now point towards C from A and Y.

If we condition on C (e.g. using regression or stratifica-

tion), we will create collider bias. The common effect C is

referred to as a collider on the path A ! C  Y because

two arrow heads collide on this node. For intuition, sup-

pose that rain (A) and a sprinkler (Y) are the only two

causes of a wet ground (C). We also assume that the sprin-

kler is on a daily timer, and not related to the weather.

Then, if the ground is wet, knowing that it has not rained

implies that the sprinkler must be on. If we ignore the col-

liding structure, we may conclude that rain has a negative

effect on the sprinkler even when we know a priori that

this is not the case.8

Box 1. To generate data consistent with Figure 2A

library(visreg) # load package to visualize regression output

library(ggplot2)# load package to visualize regression output

N <- 1000 # sample size

set.seed(777)

W <- rnorm(N) # confounder

A <- 0.5 * W þ rnorm(N) # exposure

Y <- 0.3 * Aþ0.4 * W þ rnorm(N) # outcome

fit1 <- lm(Y � A) # crude model

fit2 <- lm(Y � AþW) # adjusted model

# visualize crude and adjusted models

visreg(fit1, ‘A’, gg ¼ TRUE, line ¼ list(col ¼ ‘blue’),

points ¼ list(size ¼ 2, pch ¼ 1, col ¼ ‘black’)) þ theme_classic()

visreg(fit2, ‘A’, gg ¼ TRUE, line ¼ list(col ¼ ‘blue’),

points ¼ list(size ¼ 2, pch ¼ 1, col ¼ ‘black’)) þ theme_classic()

International Journal of Epidemiology, 2019, Vol. 48, No. 2 643



Conditioning on the collider induces an association be-

tween the potential outcomes (Y(a)) and the exposure (A),

and conditional ignorability (Y(a)\AjW, C) no longer holds.

In other words: in Figure 1B and C, conditioning on the col-

lider C opens the back-door path between A and Y which

was previously blocked by the collider itself (A ! C  Y).

Thus, the association between A and Y would be a mixture

of the association due to the effect of A on Y and the associa-

tion due to the open back-door path. Thus, association

would not be causation any more.

Figure 1C gives another, more complex collider structure

usually known as M-bias, in which the collider (C) is the

effect of a common cause (W1) of the exposure (A) and a

common cause (W2) of the outcome (Y). There is only one

back-door path, and it is already blocked by the collider (C);

thus we do not need to control for anything. This is the dif-

ference between confounders and colliders: a path will be

open if one does not adjust for confounders, but blocked if

adjustment is made; for colliders, it is the other way around.

However, some could consider C to be a classical confounder

as it is associated with both A, via (A W1! C), and with

Y, via a path that does not go through A (C  W2 ! Y),

and it is not in the causal pathway between A and Y.

However, controlling for C will introduce a collider bias.

Figure 2. Visualization of the collider effect. A: model fit2 (Box 1). B: model fit4 (Box 2).

Table 1. Coefficients and standard errors of the linear association between Y (outcome) and A (exposure) illustrating confound-

ing and collider effects, n ¼ 1000

Dependent variable (Y)

W (confounder) C (collider)

Unadjusted coefficient

(standard error)

Adjusted coefficients

(standard error)

Unadjusted coefficient

(standard error)

Adjusted coefficients

(standard error)

(Fit 1) (Fit 2) (Fit 3) (Fit 4)

A 0.471 0.289 A 0.326 20.416

(0.030) (0.032) (0.031) (0.035)

W 0.425 C 0.491

(0.035) (0.018)

Intercept �0.061 �0.060 0.010 0.035

(0.033) (0.031) (0.031) (0.023)

AIC 100.420 �31.992 �55.369 �626.824

Note: lower AIC is better.
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Note that if you use the traditional characteristics used to

identify confounders ([i.e. a third variable (W) associated

with both the exposure (A) and the outcome (Y) that is not in

the causal pathway between A and Y], you can confuse a col-

lider with a confounder.

To simulate the scenario portrayed in Figure 2B, we

generate data again using a simple linear data generating

mechanism (Box 2). First, we simulate A as a standard nor-

mally distributed variable. Y equals the value of A plus an

error term, and C is generated depending on both A and Y,

plus error. Note that as shown in Figure 1B, now the expo-

sure A and the outcome Y are the parents of C (their com-

mon effect). We fit the unadjusted model excluding the

collider (fit3) and then the model including the collider

(fit4: collider model). The true causal coefficient of the ex-

posure A is �1.2, and the coefficients for the association of

the collider C with the exposure A and the outcome Y are

1.0 and 1.0, respectively (Box 2).

Table 1 (columns 3, 4) shows the coefficient of A in the

unadjusted model (fit3) and the coefficients of A and C in the

model adjusting for the collider (fit4). Unlike in the previous

section, the simpler regression without C approximately

recovers the true coefficient of A (0.3) with an estimate of

0.326, whereas the regression adjusting for C is substantially

biased (-0.416). The model which includes the collider (fit4)

is not unequivocally inferior from a predictive point of view,

where the main focus is to improve the model’s predictive

performance. For instance, the model containing the collider

has a much lower Akaike Information Criterion (AIC) than

the one without the collider (Table 1). However, condition-

ing on the collider C has paradoxically changed the direction

of the association between A and Y (Figure 2B, Table 1: col-

umn 4). Thus in this case, conditioning on the collider in the

regression model introduces a bias whereas ignoring the col-

lider does not add bias. The paradoxical negative association

occurs when both A and Y are positively correlated with the

collider.

From this demonstration, it is clear that subject-matter

knowledge (i.e. plausible biological mechanisms in clinical

epidemiological settings) is necessary to perform causal es-

timation.14 Thus, using DAGs to communicate causal

structural relationships between variables helps in identify-

ing variables that act as a colliders, and identify where con-

ditioning may create non-causal associations between the

exposure (A) and outcome (Y).14–16

Motivating example

Data generation

Based on a motivating example in non-communicable dis-

ease epidemiology, we generated a dataset with 1000

observations to contextualize the effect of conditioning on

a collider. Nearly one in three Americans suffer from hy-

pertension and more than half do not have it under con-

trol.17 Increased levels of systolic blood pressure over time

are associated with increased cardiovascular morbidity and

mortality.18

Box 2. To generate data consistent with Figure 2B

library(visreg) # load package to visualize regression output

library(ggplot2) # load package to visualize regression output

N <- 1000 # sample size

set.seed(777)

A <- rnorm(N) # exposure

Y <- -1.2 * A þ rnorm(N) # outcome

C <- 1 * Aþ1 * Y þ rnorm(N) # collider

fit3 <- lm(Y � A) # crude model

fit4 <- lm(Y � AþC) # adjusted model

# visualize adjusted model

g2 <- visreg(fit4, ‘A’, gg ¼ TRUE, line ¼ list(col ¼ ‘red’),

points ¼ list(size ¼ 2, pch ¼ 1, col ¼ ‘black’)) þ theme_classic()þ

coord_cartesian(ylim = c(-4, 4)) þ

ggtitle("Figure 2B")
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Summative evidence shows that exceeding the recom-

mendations for 24-h dietary sodium intake in grams (g) is

associated with increased levels of systolic blood pressure

(SBP) in mmHg.19 Furthermore, with advancing age, the

kidney undergoes several anatomical and physiological

changes that limit the adaptive mechanism responsible for

maintaining the composition and volume of the extracellu-

lar fluid. These include a decline in glomerular filtration

rate and the impaired ability to maintain water and sodium

homeostasis in response to dietary and environmental

changes.20 Likewise, age is associated with structural

changes in the arteries and thus SBP.18

Age is a common cause of both high SBP and impaired

sodium homeostasis. Thus, age acts as a confounder for the

association between sodium intake (SOD) and SBP (i.e. age

is on the back-door path between sodium intake and SBP) as

depicted in Figure 3. However, high levels of 24-h excretion

of urinary protein (proteinuria) are caused by sustained high

SBP and increased 24-h dietary sodium intake. Therefore, as

depicted in Figure 3, proteinuria acts as a collider (via the

path SOD! PRO SBP). In a realistic scenario, one might

control for proteinuria if physiological factors influencing

SBP are not completely understood by the researcher, the

relationships between variables are not depicted in a DAG

or proteinuria is conceptualized as a confounder.

Controlling for proteinuria (PRO) introduces collider bias.

We are interested in estimating the effect of 24-h dietary

sodium intake (in grams) on SBP, adjusting for age. The

objective of the illustration is to show the paradoxical ef-

fect of 24-h dietary sodium intake on SBP after condition-

ing on a collider (proteinuria). Box 3 shows the data

generation for the simulated data based on the structural

relationship between the variables depicted in the DAG

from Figure 3. We assumed that SBP is a common cause of

age and dietary sodium intake. We also simulated 24-

h excretion of urinary protein as a function of age, SBP

and sodium intake. We aimed to have a range of values of

the simulated data which was biologically plausible and as

close to reality as possible.21,22

Supplementary Table 1 (available as Supplementary

data at IJE online) shows the descriptive statistics (mini-

mum, maximum, mean, median, first and third quartiles)

of the generated data. Note that for educational purposes,

we present the code and results for a single dataset simu-

lated by our data-generating mechanism. However at the

end of the illustration, we also present the results of 1000

Monte-Carlo simulations with a sample size of 10 000

patients, aiming to quantify the bias associated with condi-

tioning on a collider.

The simulation assumes linear relationships between

the variables. Thus, the interpretation of the beta coeffi-

cients in the formulae of the code in Box 3 is straightfor-

ward. The true causal effect of sodium intake on SBP is

1.05 (i.e. systolic blood pressure ¼ b1 x sodium þb2 x age

þ e; where b1¼ 1.05, b2 ¼ 2.00 and e is a standard nor-

mally distributed error). The coefficients for the associa-

tion of PRO with SBP and sodium intake are 2.0 and 2.8,

respectively (i.e. Proteinuria ¼ b1 x SBP þ b2 x Sodium

þ e; where b1 ¼ 2.0, b2 ¼ 2.8 and e is a standard normally

distributed error) (Box 3). Supplementary Figure 1 (avail-

able as Supplementary data at IJE online) shows the func-

tional form for each variable and the multivariable

Spearman’s correlation matrix.

We fit three different linear regression models (Box 4)

to evaluate the effect of sodium intake on SBP: (i) unad-

justed model; (ii) model adjusted for age; (iii) model ad-

justed for age and the collider (proteinuria). The model

specifications are shown here below; in Box 4 we show

how to fit and visualize the corresponding models in R.

Models specification

Model 0: Systolic Blood Pressure in mmHg ¼ b0 þ b1�
Sodium in gþe

Model 1: Systolic Blood Pressure in mmHg ¼ b0 þ b1�
Sodium in g þb2� Age in yearsþe

Model 2: Systolic Blood Pressure in mmHg ¼ b0 þ b1�
Sodium in g þb2� Age in years þb3�Proteinuria in mg þe

We also fit three logistic regression models to evaluate the

effect of sodium intake on hypertension defined as a binary

outcome (SBP >¼ 140 mmHg ¼ 1, SBP <140 mmHg ¼ 0):

(i) an unadjusted model; (ii) a model adjusted for age; and

(iii) a model adjusted for age and the collider (proteinuria).

Figure 3. Directed acyclic graph depicting the structural causal relation-

ship of the exposure and outcome, confounding and collider effects.

Exposure: 24-h sodium dietary intake in g (SOD); outcome: systolic

blood pressure in mmHg (SBP); confounder: age in years (AGE); col-

lider: 24-h urinary protein excretion, proteinuria (PRO).
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The model specifications are the same as described above,

but now with a binary outcome (hypertension); in Box 5 we

show how to fit and visualize the corresponding models in R

using a forest plot function.

Effect of conditioning on a collider

Table 2 shows the model coefficients and goodness of fit

from the linear regression models, and Figure 5 shows

odds ratios from the logistic regression models. Figure 4

shows the regression line and 95% confidence interval for

the predicted level of SBP, illustrating the effect of condi-

tioning on a collider. The adjusted regression line was de-

rived as the predicted estimate of SBP, conditional on the

median value of age for Figure 4B and age and proteinuria

for Figure 4C.23 As opposed to the unadjusted and bivari-

ate models (Figure 4A and B), the collider model

(Figure 4C) suggests a negative relationship between so-

dium intake and SBP (i.e. for one unit increase in sodium

intake, the expected SBP decreases by 0.9 mmHg).

Box 3. Data generation consistent with Figure 3

generateData <- function(n, seed){

set.seed(seed)

Age_years <- rnorm(n, 65, 5)

Sodium_gr <- Age_years / 18þrnorm(n)

sbp_in_mmHg <- 1.05 * Sodium_gr þ 2.00 * Age_years þ rnorm(n)

hypertension <- ifelse(sbp_in_mmHg>140, 1, 0)

Proteinuria_in_mg <- 2.00*sbp_in_mmHg þ 2.80*Sodium_gr þ rnorm(n)

data.frame(sbp_in_mmHg, hypertension, Sodium_gr, Age_years, Proteinuria_in_mg)

}

ObsData <- generateData(n¼1000, seed ¼ 777)

Box 4. Linear regession models in R

library(broom) # load packages to visualize regression model’s output

library(visreg)

## Models Fit

fit0 <- lm(sbp_in_mmHg � Sodium_gr, data ¼ ObsData); tidy(fit0)

fit1 <- lm(sbp_in_mmHg � Sodium_gr þ Age_years, data ¼ ObsData); tidy(fit1)

fit2 <- lm(sbp_in_mmHg � Sodium_gr þ Age_years þ Proteinuria_in_mg, data ¼ ObsData); tidy(fit2)

## Models visualization

par(mfrow ¼ c(1, 3))

visreg(fit0, ylab ¼ ‘SBP in mmHg’, line ¼ list(col ¼ ‘blue’),

points ¼ list(cex ¼ 1.5, pch ¼ 1), jitter ¼ 10, bty ¼ ‘n’)

visreg(fit1, ylab ¼ ‘SBP in mmHg’, line ¼ list(col ¼ ‘blue’),

points ¼ list(cex ¼ 1.5, pch ¼ 1), jitter ¼ 10, bty ¼ ‘n’)

visreg(fit2, ylab ¼ ‘SBP in mmHg’, line ¼ list(col ¼ ‘red’),

points ¼ list(cex ¼ 1.5, pch ¼ 1), jitter ¼ 10, bty ¼ ‘n’)
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The odds ratio for the effect of sodium on hypertension

similarly suggests that it is protective (i.e. for one unit in-

crease in sodium intake, the risk of hypertension decreases

by 98%) (Figure 5).

Monte-Carlo simulation results

Box 6 shows the code used to run the Monte-Carlo simula-

tion on the additive scale, using the same setting as in Box 3.

The true simulated causal effect of 24-h sodium intake on

SBP was 1.05 mmHg in the linear model, and the coeffi-

cients for the association of PRO with SBP and sodium in-

take were 2.0 and 2.8, respectively. After 1000 simulation

runs, the estimated additive effect of 24-h sodium intake on

SBP was -0.91 mmHg (i.e. for one unit increase in sodium

intake, there was a decrease of -0.91 units in SBP). The rela-

tive bias due to conditioning on proteinuria (the collider)

was 13.3%.

Box 5. Multiplicative scale visualization using a forest plot function

## Models fit on multiplicative scale

library(dplyr)

library(forestplot)

fit3 <- glm(hypertension � Sodium_gr, family¼binomial(link¼‘logit’), data¼ObsData)

or <- round(exp(fit3$coef)[2], 3) # conditional odds ratio from logistic model

ci95 <- exp(confint(fit3))[-1,] # 95% CI of odds ratio

fit4 <- glm(hypertension � Sodium_gr þ Age_years, family ¼ binomial(link ¼ ‘logit’), data ¼ ObsData)

or <- round(exp(fit4$coef)[2], 3)

ci95 <- exp(confint(fit4))[2,]

fit5 <- glm(hypertension � Sodium_gr þ Age_years þ Proteinuria_in_mg, family ¼ binomial(link ¼
‘logit’), data ¼ ObsData)

or <- round(exp(fit5$coef)[2], 3)

ci95 <- exp(confint(fit5))[2,]

## Forest plot (see supplementary material for accessing the complete code)

fp <- rbind(result1, result2, result3); fp %>% or_graph()

Table 2. Univariate, bivariate and multivariate coefficients and standard errors for the linear association between systolic blood

pressure and 24-h sodium dietary intake, adjusted for age acting as a confounder and proteinuria acting as a collider, n¼ 1000

Dependent variable: systolic blood pressure in mmHg

Univariate coefficient

(standard error)

Bivariate coefficients

(standard error)

Multivariate collider

coefficients (standard error)

True effect of sodium in g 1.05

Sodium in g 3.960 1.039 20.902

(0.298) (0.032) (0.036)

Age in years 2.004 0.416

(0.007) (0.027)

Proteinuria in mg 0.396

(0.007)

Intercept 119.420 �0.311 �0.091

(1.122) (0.407) (0.192)

AIC 7363.45 2807.89 1302.66

Note: lower AIC is better.
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The code included in all of the boxes is provided in a sup-

plementary file (available as Supplementary data at IJE on-

line). We also provide the link to a web application [http://

watzilei.com/shiny/collider/] (Supplementary Figure 2, avail-

able as Supplementary data at IJE online) where users can

dynamically modify the values of the true causal effect and

the coefficients in the data generation process of the collider

model. The collider web application allows users to

interactively modify the range of values of the slider input

and visualize the collider effect of the example. As shown in

the web application, the strength of the association of the col-

lider with both the exposure and the outcome determines the

strength of the paradoxical protective effect of 24-h dietary

sodium intake in grams on systolic blood pressure.

The magnitude of the causal effect between the expo-

sure and the outcome, and the collider with the exposure

Figure 4. Collider effect for the illustration: univariate (A), bivariate (B) and multivariate (C) models fit for the linear association between systolic blood

pressure and 24-h sodium dietary intake, adjusted for age acting as a confounder and proteinuria acting as a collider, n¼ 1000.

Figure 5. Collider effect for the illustration in a multiplicative scale for the effect of 24-h sodium dietary intake on systolic blood pressure, adjusted for

age acting as a confounder and proteinuria acting as a collider, n¼ 1000. Crude model: unadjusted model. Adjusted model: adjusted for age acting as

a confounder. Collider model: adjusted model including age and proteinuria acting as a collider.
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Box 6. Monte Carlo simulations

# Monte Carlo Simulations

R<-1000

true <- rep(NA, R)

collider <- rep(NA, R)

se <- rep(NA, R)

set.seed(050472)

for(r in 1: R) {

if (r%%10 ¼¼ 0) cat(paste(‘This is simulation run number’, r, ‘\n’))

# Function to generate data

generateData <- function(n){

Age_years <- rnorm(n, 65, 5)

Sodium_gr <- Age_years / 18 + rnorm(n)

sbp_in_mmHg <- 1.05 * Sodium_gr + 2.00 * Age_years + rnorm(n)

Proteinuria_in_mg <- 2.00 * sbp_in_mmHg + 2.80 * Sodium_gr + rnorm(n)

data.frame(sbp_in_mmHg, Sodium_gr, Age_years, Proteinuria_in_mg)

}

ObsData <- generateData(n=10000)

# True effect

true[r] <- summary(lm(sbp_in_mmHg � Sodium_gr + Age_years, data = ObsData))$coef[2,1]

# Collider effect

collider[r] <- summary(lm(sbp_in_mmHg � Sodium_gr + Age_years + Proteinuria_in_mg, data =

ObsData))$coef[2,1]

se[r] <- summary(lm(sbp_in_mmHg � Sodium_gr + Age_years + Proteinuria_in_mg, data =

ObsData))$coef[2,2]

}

# Estimate of sodium true effect

mean(true)

# Estimate of sodium biased effect in the model including the collider

mean(collider)

# simulated standard error/confidence interval of outcome regression

lci <- (mean(collider) - 1.96*mean(se)); mean(lci)

uci <- (mean(collider) + 1.96*mean(se)); mean(uci)

# Bias

Bias <- (true - abs(collider)); mean(Bias)

# % Bias

relBias <- ((true - abs(collider)) / true); mean(relBias) * 100

# Plot bias

plot(relBias)
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Table 3. Different scenarios for the true causal effect and the magnitude of the association between the collider with the expo-

sure (a1) and the outcome (a2), n¼ 1000

Causal model Collider model

True causal effect (b1) Magnitude of the association between the collider with

the exposure (a1) and the outcome (a2), assuming a1¼ a2

Estimated causal effect Absolute bias

1 0.5 0.630 0.370

1.0 0.033 0.967

1.5 �0.368 1.368

2.0 �0.596 1.596

2.5 �0.727 1.727

3.0 �0.807 1.807

3.5 �0.858 1.858

4.0 �0.892 1.892

4.5 �0.916 1.916

5.0 �0.933 1.933

2 0.5 1.453 0.547

1.0 0.558 1.442

1.5 �0.045 2.045

2.0 �0.388 2.388

2.5 �0.586 2.586

3.0 �0.706 2.706

3.5 �0.783 2.783

4.0 �0.835 2.835

4.5 �0.871 2.871

5.0 �0.897 2.897

3 0.5 2.277 0.723

1.0 1.082 1.918

1.5 0.278 2.722

2.0 �0.181 3.181

2.5 �0.445 3.445

3.0 �0.606 3.606

3.5 �0.709 3.709

4.0 �0.778 3.778

4.5 �0.826 3.826

5.0 �0.861 3.861

4 0.5 3.100 0.900

1.0 1.607 2.393

1.5 0.600 3.400

2.0 0.027 3.973

2.5 �0.304 4.304

3.0 �0.505 4.505

3.5 �0.634 4.634

4.0 �0.721 4.721

4.5 �0.781 4.781

5.0 �0.825 4.825

5 0.5 3.923 1.077

1.0 2.132 2.868

1.5 0.923 4.077

2.0 0.234 4.766

2.5 �0.163 5.163

3.0 �0.405 5.405

3.5 �0.560 5.560

4.0 �0.664 5.664

4.5 �0.737 5.737

5.0 �0.789 5.789

Causal model: SBP¼ b0 þ b1SOD þ b2AGE þ b3PRO. Collider model: PRO¼ a0 þ a1SOD þ a2SBP. Absolute bias ¼ true – estimate. AGE ¼ age in years.

SOD ¼ 24-h dietary sodium intake (g). PRO ¼ 24-h excretion of urinary protein (proteinuria) (mg).

SBP ¼ systolic blood pressure (mmHg).
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and the outcome, determines whether paradoxical effects

arise when conditioning on the collider. Table 3 shows dif-

ferent values for the true causal effect of sodium intake on

SBP and the estimated causal effect for different values of

the association between PRO (i.e. the collider) with

sodium intake (a1) and SBP (a2) in the collider model, and

assuming a1 ¼ a2 (i.e. the same magnitude for the collider-

exposure and the collider-outcome associations in the col-

lider model). Overall, with this data-generating structure,

the collider bias reduces the magnitude of the estimated

causal effect between sodium intake and SBP. To create a

paradoxical effect (i.e. the negative association between

sodium intake and SBP), we found that increasing the true

causal effect requires an increase of the strength of the as-

sociation between collider-exposure and collider-outcome

association with respect to the magnitude of the true causal

effect (Table 3). Note that assuming a1 ¼ a2 is not realistic,

but it is a convenient simplification that helps to gain intui-

tion about changes in the magnitude of bias.

There are two additional situations where collider bias

arises, which are important to point out: (i) collider bias

arising not from the choice of variables to control in the

analysis, but from conditioning on a measured or unmeas-

ured common effect of the exposure and the outcome in a

sample selection; and (ii) situations where the collider is

both a collider and a confounder.24

Recent evidence shows that even modest influences on

sample selection can generate biased and potentially

misleading estimates of both phenotypic and genotypic

associations.25 However, the solution is not often clear, as

information regarding sample selection and attrition might

be unmeasured. On the other hand, in M-bias settings

where the collider is also a confounder, it is useful to un-

derstand the trade-offs in bias between collider and

confounder control. The size in the magnitude of collider

bias may often be comparable with bias from classical con-

founding.24 It has been shown that M-bias has a small

impact unless associations between the collider and con-

founders are very large (relative risk >8). Generally in this

situation, controlling for confounding would be prioritized

over avoiding M-bias.26

Conclusion

We investigated a situation where adding a certain type of

variable to a linear regression model, called a ‘collider’, led

to bias with respect to the regression coefficient estimates

while still improving the model fit. DAGs are based on

subject-matter knowledge and are vital for identifying col-

liders. Determining if a variable is a collider involves criti-

cal thinking about the true unobserved data-generation

process and the relationship between the variables for a

given scenario.16,27 Then, the decision whether to include

or exclude the variable in a regression model using obser-

vational data in epidemiology is based on whether the pur-

pose of the study is prediction or explanation/causation.

Under the structures we investigated here, adding a collider

to a regression model is not advised when one is interested

in the estimation of causal effects, as this may open a back-

door path. However, if prediction is the purpose of the

model, the inclusion of colliders in the models may be ad-

visable if it reduces the model’s prediction error. Most re-

search in epidemiology tries to explain how the world

works (i.e. it is causal); thus to prevent paradoxical associ-

ations, epidemiologists estimating causal effects should be

aware of such variables.

Supplementary Data

Supplementary data are available at IJE online.
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