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Abstract

Introduction: White matter hyperintensities (WMHs) are areas of abnormal signal on magnetic 

resonance images (MRIs) that characterize various types of histopathological lesions. The load 

and location of WMHs are important clinical measures that may indicate the presence of small 

vessel disease in aging and Alzheimer’s disease (AD) patients. Manually segmenting WMHs is 

time consuming and prone to inter-rater and intra-rater variabilities. Automated tools that can 

accurately and robustly detect these lesions can be used to measure the vascular burden in 

individuals with AD or the elderly population in general. Many WMH segmentation techniques 

use a classifier in combination with a set of intensity and location features to segment WMHs, 

however, the optimal choice of classifier is unknown.

Methods: We compare 10 different linear and nonlinear classification techniques to identify 

WMHs from MRI data. Each classifier is trained and optimized based on a set of features obtained 

from co-registered MR images containing spatial location and intensity information. We further 

assessed the performance of the classifiers using different combinations of MRI contrast 

information. The performances of the different classifiers were compared on three heterogeneous 

multi-site datasets, including images acquired with different scanners and different scan-

parameters. These included data from the ADC study from University of California Davis, the 

NACC database and the ADNI study. The classifiers (naïve Bayes, logistic regression, decision 
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trees, random forests, support vector machines, k-nearest neighbors, bagging, and boosting) were 

evaluated using a variety of voxel-wise and volumetric similarity measures such as Dice Kappa 

similarity index (SI), Intra-Class Correlation (ICC), and sensitivity as well as computational 

burden and processing times. These investigations enable meaningful comparisons between the 

performances of different classifiers to determine the most suitable classifiers for segmentation of 

WMHs. In the spirit of open-source science, we also make available a fully automated tool for 

segmentation of WMHs with pre-trained classifiers for all these techniques.

Results: Random Forests yielded the best performance among all classifiers with mean Dice 

Kappa (SI) of 0.66±0.17 and ICC=0.99 for the ADC dataset (using T1w, T2w, PD, and FLAIR 

scans), SI=0.72±0.10, ICC=0.93 for the NACC dataset (using T1w and FLAIR scans), 

SI=0.66±0.23, ICC=0.94 for ADNI1 dataset (using T1w, T2w, and PD scans) and SI=0.72±0.19, 

ICC=0.96 for ADNI2/GO dataset (using T1w and FLAIR scans). Not using the T2w/PD 

information did not change the performance of the Random Forest classifier (SI=0.66±0.17, 

ICC=0.99). However, not using FLAIR information in the ADC dataset significantly decreased the 

Dice Kappa, but the volumetric correlation did not drastically change (SI=0.47±0.21, ICC=0.95).

Conclusion: Our investigations showed that with appropriate features, most off-the-shelf 

classifiers are able to accurately detect WMHs in presence of FLAIR scan information, while 

Random Forests had the best performance across all datasets. However, we observed that the 

performances of most linear classifiers and some nonlinear classifiers drastically decline in 

absence of FLAIR information, with Random Forest still retaining the best performance.
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1. Introduction

White matter hyperintensities (WMHs), commonly identified as areas of increased signal in 

relation with the surrounding white matter regions on T2w, PD and FLAIR MRIs, are one of 

the non-specific yet typical and constant MRI expressions of cerebral small vessel disease 

(CSVD), along with lacunar infarcts and microhemorrhages (Conklin et al., 2014; Gouw et 

al., 2010). They have been shown to be more extensive in patients with Alzheimer’s disease 

compared to age-matched healthy normal populations (Yoshita et al., 2005). WMHs reflect 

ischemic injury in the elderly and AD populations and the existence and severity of WMHs 

can lead to or accelerate decline in cognitive as well as executive functions (Dubois et al., 

2014). As a result, the location and load of WMHs are important clinical measures, raising 

substantial need for their accurate quantifications. WMHs are generally detected using fluid 

attenuated inversion recovery (FLAIR) or T2w/PD scans. Manually labeling WMHs is 

challenging due to time constraints as well as inter-rater and intra-rater variabilities 

(Grimaud et al., 1996). As a result, automated tools that can segment WMHs robustly and 

with high accuracy are extremely useful, particularly in large scale studies such the 

Alzheimer’s Disease Neuroimaging Initiative (http://www.loni.ucla.edu/ADNI/), the 

National Alzheimer’s Coordinating Center (NACC) database (https://

www.alz.washington.edu/) and others where it is desired to estimate the contribution of 

neurovascular disease to cognitive decline.
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The heterogeneity in the distribution and patterns of WMHs makes the segmentation task 

intrinsically complex (Caligiuri et al., 2015). Automated segmentation tools usually 

integrate information from multiple complementary MRI contrasts including T1w, T2w, PD 

and FLAIR to reduce uncertainty and improve segmentation accuracy. Most successful fully 

automated WMH segmentation techniques extract a combination of location and intensity 

features from these images and use them as inputs to a linear or nonlinear classifier. Here we 

review the most commonly used linear and nonlinear classifiers in general as well as their 

application to the task of segmenting lesions in general or WMHs of vascular etiology 

specifically.

While there have been many studies attempting to segment WMHs using these classification 

techniques, drawing meaningful comparisons between their performance is not possible 

since they have been applied to different datasets and results are highly variable across 

different populations and imaging protocols (García-Lorenzo et al., 2013) (Caligiuri et al., 

2015). To our knowledge, no studies have compared the performance of these classification 

techniques for detecting WMHs against one another on the same datasets, especially for 

cases where classification is attempted without using the optimal FLAIR information. In this 

paper, we have extensively compared the performance of these different classification 

techniques in detecting WMHs with and without FLAIR information using 3 different large 

publicly available datasets with different scanners and acquisition protocols. This enables us 

to draw more generalizable conclusions regarding the performance of the classifiers. Our 

contributions include an extensive comparison of 10 widely used classification techniques in 

detecting WMHs across 4 different datasets, three of which are from multi-site and multi-

scanner studies and across different combinations of imaging modalities. In addition, we 

make publicly available an implementation of the segmentation tool along with all the pre-

trained classifiers (https://www.dropbox.com/sh/zbbqjjo1ilzuun2/

AABWN17N2fyzi8p3aSfiA0fEa?dl=0). The proposed tool is generalizable to data from 

different scanners since it has been trained on data from multiple scanners.

2. Materials and methods

2.1. Subjects

The performances of the different classifiers were assessed based on four datasets of subjects 

with different ranges of WMH loads. Table 1 shows the demographic information for each 

dataset.

I) ADC: This dataset consists of 70 individuals (70–90 years old) with normal cognition, 

mild cognitive impairment (MCI), and AD dementia from University of California, Davis 

Alzheimer’s Disease Center (ADC) who were scanned using T1w, double-echo T2w/PD, 

and FLAIR MRI modalities.

II) NACC: This dataset consists of a patient sample of 32 MCI and AD subjects obtained 

from the National Alzheimer’s Coordinating Center (NACC) database which is a database of 

subjects with a range of cognitive status, i.e. normal cognition, MCI, and demented who 

received T1w, and FLAIR MRI scans (https://www.alz.washington.edu/). Data consisted of 

variables from a Uniform Data Set collected from more than 30 Alzheimer’s disease centers 
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(ADC) throughout the United States and cataloged at the NACC. ADCs are National 

Institute on Aging–funded centers that enroll patients using different participation recruiting 

practices. A full description of the NACC data set has been previously provided (Beekly et 

al., 2004; Morris et al., 2006). NACC data used here has been acquired at six different ADCs 

using eight different scanner models of three different manufacturers. Subjects were selected 

to have low, medium, and large WMH loads.

ADNI:  Data used in the preparation of this article were obtained from the Alzheimer’s 

Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was 

launched in 2003 as a public-private partnership, led by Principal Investigator Michael W. 

Weiner, MD. The primary goal of ADNI has been to test whether serial magnetic resonance 

imaging (MRI), positron emission tomography (PET), other biological markers, and clinical 

and neuropsychological assessment can be combined to measure the progression of mild 

cognitive impairment (MCI) and early Alzheimer’s disease (AD).

III) ADNI1: This dataset consists of T1w, T2w, and PD scans of 53 subjects from ADNI1 

study. Despite the fact that all subjects had to have Hachinski Ischemic Score of less than or 

equal to 4 as part of the inclusion criteria (Petersen et al., 2010), we found many subjects 

that had high WMH loads. Subjects were selected from different sites and scanners and a 

preliminary assessment was performed to evaluate their WMH load with the goal of 

acquiring subjects with different scanner information as well as different loads of WMHs. 

For each scanner model, we selected datasets that had low, medium and high lesion loads. 

Approximately equal number of male and female subjects were selected. The age of the 

subjects was also considered for the selection, with the aim of achieving a normal 

distribution.

IV) ADNI2/GO: This dataset consists of T1w and FLAIR scans of 46 subjects from 

ADNI2/GO studies. Subject selection criteria were the same as ADNI1.

2.2. MR imaging

Table 2 summarizes the scanner information as well as the MR imaging parameters for each 

of the datasets.

2.3. Manual segmentation

In ADC, NACC, and ADNI2/GO datasets, the WMHs were manually segmented by experts 

with FLAIR used as the primary contrast and the other image contrasts used to aid in the 

decision process to include or exclude a voxel from the lesion mask. For the ADNI1 dataset, 

T2w was used as the primary contrast. All WMH masks were created fully manually, 

without using any thresholding technique. ADC, ADNI1 and ADNI2/GO datasets were 

scored by JM, an MD with training in general radiology, and specialized in MRI imaging 

methods of quantifying WM pathologies in MS and AD. JM has more than 12 years of 

experience in reading MRI and developing standardized MRI guidelines to detect WM 

lesions using different image modalities (Maranzano et al., 2016). The lesions were fully 

manually traced using the interactive software package Display, part of the MINC Tool Kit 

(https://github.com/BIC-MNI) developed at the McConnell Brain Imaging Center of the 
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Montreal Neurological Institute. The program allows simultaneous viewing and 

segmentation in the coronal, sagittal and axial planes, and cycling between each image 

volume. The image volumes were co-registered so that, when assessing a given voxel or 

region and switching from one contrast to another (e.g. T1w to FLAIR), the rater can assess 

the intensity signal of the same region of the brain on each contrast. In the NACC dataset, 

images were similarly segmented by two raters that had previously received training to 

segment WMHs, and ascertained by an expert neurologist. The between rater agreement was 

verified (Dice Kappa=0.70). All the manual raters were also asked to segment 3 scans with 

low (<5cm3), medium (5–20 cm3), and high (>20 cm3) WMH loads a second time without 

consulting the initial segmentations. Table 3 shows the intra-rater Dice Kappa obtained from 

these segmentations as well as WMH volume information for each dataset. Figure 1 shows 

examples of the available contrasts as well as the manual labels for each dataset.

2.4. Pre-processing

All the images were preprocessed using our standard pipeline from MINC toolkit, publicly 

available at https://github.com/BIC-MNI/minc-tools (Aubert-Broche et al., 2013) through 

three steps: I) Image noise reduction using mincnlm tool (Coupe et al., 2008), II) Correction 

of image intensity non-uniformity using nu_estimate tool (Sled et al., 1998) and III) 

Normalization of image intensity into range (0–100) using an intensity histogram matching 

algorithm (volume_pol tool). The T1w, T2w, PD, and FLAIR images were linearly co-

registered using a 6 parameter rigid registration (Collins et al., 1994). The T1w images were 

linearly and then nonlinearly registered to an average template (Collins and Evans, 1997) 

created based on data from the ADNI1 study (Fonov et al., 2011a) (Fonov et al., 2011b), 

enabling the use of anatomical priors in the segmentation process. Brain extraction was 

performed on the linearly registered T1w images as part of the standard pipeline (Aubert-

Broche et al., 2013).

2.5. Features

The classical features that are most commonly used in lesion segmentation tasks are the 

intensity of the voxel in each MRI contrast (García-Lorenzo et al., 2013). Here, these 

classical features as well as a variety of intensity and spatial features were used to train the 

classifiers. These features have been previously validated and verified to be informative in 

detecting WMHs. The rationale behind the selection of the suggested feature set as well as 

the contribution of each of the features has been described in more detail in an earlier work 

(Dadar et al., 2017).

i. Voxel intensity from T1w, T2w, PD, and FLAIR images

ii. Average voxel intensity of non-WMH tissue from T1w, T2w, PD, and FLAIR 

images for the specific voxel location obtained from averaging non-WMH voxels 

of the training subjects in stereotaxic space. Since datasets were selected to 

include subjects with very small WMH loads, there were at least several subjects 

in each training set that had no WMHs in each specific voxel location. The 

average intensity of non-WMH tissue feature was calculated using data from 

these subjects.
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iii. Probability of voxel being a lesion (PWMH) obtained by creating a probability 

distribution function (PDF) based on the intensity histogram of the WMH labels 

from manually segmented training data across all WMH voxels

iv. Probability of voxel being healthy tissue (PH) obtained by creating a PDF of 

Non-WMH voxels from manually segmented training data across all non-WMH 

voxels

v. Ratio of PH / PWMH

vi. Spatial WMH probability map created by averaging the WMH maps from the 

training dataset

vii. Ratio of T2w/T1w, PD/T1w, FLAIR/T1w

The WMH segmentations were performed in the native space of the primary image contrast, 

i.e. T2w for ADNI1 and FLAIR for ADC, NACC, and ADNI2/GO datasets to avoid the 

blurring caused by resampling of the primary image contrast. To achieve this, all images 

were nonlinearly transformed to the ADNI template space, and all the priors and averages 

were calculated in this stereotaxic space and then registered back and resampled in the 

native space using the inverse nonlinear transformations. The final segmentations were 

performed using the features in the native space of the image with optimal contrast. 

Therefore, the image with optimal contrast is not resampled, and only a 6-parameter rigid 

transformation is applied to the other co-registered contrasts (as opposed to other techniques 

where the nonlinearly registered images are used for segmentation). Figure 2 illustrates a 

flow-chart of the preprocessing, registration, and feature selection steps of the pipeline.

2.6. Classification Methods

In a binary classification setting, a classifier is a function that maps a set of input feature 

vectors x = (x1,x2, …,xn)T from feature space X to an output class label set y in Y = {0,1}. 

Here, we select and compare supervised methods as unsupervised techniques have been 

shown to be less robust, dependent on initialization, and do not necessarily arrive at 

meaningful segmentations (Clarke et al., 1995). Specifically for the task of WMH 

segmentation, supervised methods generally outperform unsupervised techniques (Anbeek et 

al., 2004; Caligiuri et al., 2015).

2.6.1. Naive Bayes—Naïve Bayes classifiers are a family of probabilistic classifiers that 

have been used for many simple classification tasks (Lewis, 1998). Naïve Bayes is a 

probabilistic classifier that returns the label that maximizes the posterior probability p(y|x) 

as the output, with the underlying assumption that given the class label, all the features are 

conditionally independent 

arg maxyp(y | x) = arg maxy
p(y)Πi = 1

n p xi | y
p(x) = arg maxyp(y)Πi = 1

n p xi | y  Naïve Bayes classifiers 

have previously been used to segment diabetic retinopathy lesions (Köse et al., 2012).

2.6.2. Discriminant Analysis—Linear and Quadratic Discriminant Analysis methods 

(LDA and QDA) are generalizations of Fisher’s linear discriminant method that can be used 

for performing classification (Fisher, 1936) (McLachlan, 2004). Using the assumption that 
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the conditional probability density functions of the classes are normally distributed with 

identical covariance, i.e.

p(x | y = k) = 1
(2π)n |Σ|1/2exp −1/2 x − μk

tΣ−1 x − μk  kϵ{0, 1}

LDA predicts input vector x as belonging to a class y based on the log likelihood ratio 

ln p(y = 1| x)
p(y = 0| x) . QDA is similar to LDA, without the identical covariance assumption.

p(x | y = k) = 1
(2π)n Σk

1/2exp −1/2 x − μk
tΣk

−1 x − μk  kϵ{0, 1}

Amato et al. proposed a non-parametric discriminant analysis technique for segmenting MS 

lesions (Amato et al., 2003). Akselrod-Ballin et al. have used LDA technique along with 

Random Forests to segment MS lesions (Akselrod-Ballin et al., 2009).

2.6.3. Logistic Regression—The idea of logistic regression was introduced by Cox 

with the purpose of estimating a binary response based on a set of independent features 

(Cox, 1958). The Logistic regression classifier models p(y|x) as a logistic function 

hθ(x) = 1

1 + e−θTx
 and estimates the error using a cumulative logistic distribution function.

E(θ) = 1
m ∑

i = 1

m
−yilog hθ xi − 1 − yi log 1 − hθ xi

Sánchez et al. used a logistic regression classifier for automatic detection of micro-

aneurysms in retinal images (Sánchez et al., 2009).

2.6.4. Decision Trees—The idea of performing induction using decision trees was first 

proposed by Hunt et al. (Hunt et al., 1966) and later developed by Quinlan for classification 

tasks (Quinlan, 1986). Decision tree classifiers map the feature vector x to conclusions about 

the target value y using a tree structure in which the leaves represent class labels y and the 

nodes represent partitionings of feature x that lead to these class labels. The decision tree is 

generally constructed in 2 phases: 1) A recursive, top-down procedure “grows” a tree to fit 

the training data. 2) A “pruning” phase to avoid overfitting. Decision tree classifiers have 

since been used for tissue classification (Chao et al., 2009) and lesion segmentation in 

Multiple Sclerosis (MS) (Kamber et al., 1992) (Kamber et al., 1995).

2.6.5. Random forests—Initially introduced by Breiman (Breiman, 2001), Random 

decision forests perform classification and regression by constructing a multitude of 

independent decision trees and using the mode or mean of their predictions as the final 

output for classification or regression tasks, respectively. They have since been widely used 
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for lesion segmentation in MS (Geremia et al., 2011) (Maier et al., 2015) (Mitra et al., 2014) 

(Akselrod-Ballin et al., 2009) as well as for WMH segmentation in aging and AD 

populations (Ithapu et al., 2014).

2.6.6. K-nearest neighbors—The K-nearest neighbours (KNN) is a non-parametric 

instance based algorithm developed by Altman for classification and regression (Altman, 

1992). The KNN classifier uses majority voting between the labels for the K closest data 

points in the feature space in the training data to assign a label to the new unseen test data. 

The distance metric used for determining the closest data points is generally the Euclidian 

distance for continuous variables or Hamming distance for discrete variables. Due to its 

simplicity, it has been popular for various applications including segmentation of MS lesions 

(Wu et al., 2006b) and WMHs (Anbeek et al., 2004).

2.6.7. Support Vector Machines—The idea of performing nonlinear classification 

using support vector machines (SVMs) was introduced by Boser et al. (Boser et al., 1992). 

SVMs perform classification by finding a maximum-margin hyperplane that separates the 

two classes while maximizing the distance between the nearest point from either class. 

SVMs have been widely used for lesion segmentation tasks in MS populations (Ferrari et al., 

2003) (Abdullah et al., 2011) as well as for WMH segmentation in aging and AD 

populations (Ithapu et al., 2014) (Quddus et al., 2005).

2.6.8. Bagging—Bootstrap aggregating, also called bagging, is a model averaging 

technique initially introduced by Brieman et al. with the purpose of improving stability and 

reducing variance (Breiman, 1996). Bagging is an ensemble method that builds multiple 

classifiers such as decision trees by uniformly sampling the training data with replacement, 

and voting, to output a consensus prediction. Madabhushi used bagging for detecting 

prostatic adenocarcinoma from high resolution MR images (Madabhushi et al., 2006).

2.6.9. AdaBoost—Adaptive Boosting or AdaBoost was developed by Freund and 

Schapire (Freund et al., 1999). AdaBoost performs classification by aggregating the outputs 

of other learning algorithms (also called weak learners) into a weighted sum that represents 

the final output of the boosted classifier. The subsequent weak learners are tweaked in favor 

of the instances that were misclassified by previous classifiers to improve classification 

accuracy. It has been used for MS lesion segmentation (Wels et al., 2008), interactive lesions 

segmentation (Li et al., 2007), as well as segmentation of WMHs (Quddus et al., 2005) 

(Ghafoorian et al., 2016a).

For all classification tasks, the Scikit-learn Python library implementations were used 

(Pedregosa et al., 2011). For Naïve Bayes, LDA, QDA, SVM, and Decision Tree classifiers, 

the default settings were used. For KNN, 10 neighbours were used. For Bagging, KNN 

classifiers were used with the default parameters. For AdaBoost and Random Forests 

classifiers, 100 estimators were used. Ten-fold cross validation across subjects was used to 

train and validate the performance of the classifiers; i.e. no voxels from subjects used for 

validation were used in training and feature selection stages. It is worthwhile noting that the 

spatial WMH probability maps, average intensities, and PWMH and PH were also calculated 

through the cross-validation to avoid any overfitting (no data used in testing was used to 
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generate the priors). All the segmentations were performed in the native space for the 

optimal primary modality to avoid resampling and further blurring of the lesion borders. To 

achieve this, all the priors and averages were first calculated in the stereotaxic template 

space and then registered back and recalculated in the native space using the inverse 

nonlinear transformations.

2.7. Evaluation metrics

There is no single similarity measure that can perfectly reflect the level of agreement 

between WMH segmentation maps. While Dice Kappa similarity measure (Dice, 1945) is 

the most commonly used, the Kappa values are highly dependent on the WMH loads and 

lesion sizes. To address this, the mean Dice Kappa values are generally reported for different 

ranges of WMH loads, i.e. small (<5 cm3), medium (5–20 cm3), and large (>20 cm3) 

separately (Admiraal-Behloul et al., 2005; Griffanti et al., 2016; Schmidt et al., 2012; 

Simões et al., 2013; Steenwijk et al., 2013; Dadar et al., 2017). In this study, while Dice 

Kappa was used as the primary similarity measure for validation of the classifiers, other 

similarity measures such as the intra-class correlation coefficient (ICC) for the total WMH 

loads to measure the volumetric correspondence between the manual and automatic 

segmentations (Koch, 1982), true positive rate (TPR), positive prediction value (PPV), 

outline error rate (OER) measuring agreement of the raters in outlining of the same lesion 

(Wack et al., 2012), and detection error rate (DER) measuring agreement in detecting the 

same regions (Wack et al., 2012) are reported to facilitate comparison with previously 

published papers. Table 4 shows the list of these metrics along with their definitions.

3. Results

3.1. Segmentation using T1w, T2w, PD, and FLAIR

The performance of each classifier was validated through 10-fold cross validation using 

T1w, T2w, PD, and FLAIR images for the ADC dataset. All voxels within a brain mask that 

contained the cerebrum, cerebellum and brain stem were classified. Table 5 shows the 

average Dice Kappa, detection/outline error rates (DER/OER), ICC, TPR, and PPV values 

for different classifiers. Figure 3 shows boxplot diagrams for the same results separately for 

subjects with small, medium and large WMH loads. Figure 4 shows the manual and 

automatic segmentation results of different classifiers on axial slices of one subject. To 

assess the statistical significance of the results, paired t-tests were performed on the Dice 

Kappa values of all pairs of classifier comparisons, and p-values were corrected for multiple 

comparisons using false discovery rate (FDR). Figure 5 shows the negative logarithm of the 

FDR corrected p-values.

3.2. Segmentation using T1w and FLAIR data

The performance of each classifier was validated through 10-fold cross validation using T1w 

and FLAIR images for the ADC, NACC, and ADNI2/GO datasets (recall that ADNI1 does 

not have FLAIR data). Table 6 shows the average Dice Kappa and detection/outline error 

rate (DER/OER) values for different classifiers. Table 7 shows corresponding ICC, TPR, and 

PPV values. Figure 6 shows boxplot diagrams for the same results separately for subjects 

with small, medium and large WMH loads. Figure 7 shows the manual and automatic 
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segmentation results of different classifiers on axial slices of one subject. Figure 8 shows the 

negative logarithm of the FDR corrected p-values of t-tests on Dice Kappa values of 

different classifier pairs. To assess the contribution of T2+PD features in the performance of 

different classifiers, paired t-tests were performed between the Dice Kappa values of the 

segmentations based on T1+T2+PD+FLAIR and T1+FLAIR in the ADC dataset. The “*” in 

Table 7 indicates the significant differences between the two segmentations, after correction 

for multiple comparisons using FDR. The performance of Naïve Bayes, QDA, and Bagging 

has significantly dropped without using FLAIR information.

3.3. Segmentation using T1w, T2w, and PD data

While FLAIR scans have the optimal contrast for differentiating WMHs from normal 

appearing white matter (Barkhof and Scheltens, 2002; Alexander et al., 1996; Bakshi et al., 

2001), many studies forgo acquisition of FLAIR images in favour of other modalities. In 

order to take advantage of large studies such as ADNI1 that do not have FLAIR, 

segmentation methods that can provide accurate segmentation results without using the 

optimal FLAIR contrast are highly advantageous. A relatively easier task (in comparison to 

using FLAIR) is to segment WMHs from T1w, T2w, and PD or T1w, and T2w images. 

While segmenting WMHs solely from T1w images with high accuracy proves to be 

extremely difficult, being able to obtain an estimate of the WMH load that is significantly 

correlated with the actual loads can still be useful.

To address the first challenge, we trained and validated the performance of the classifiers 

using the features obtained from T1w, T2w, and PD images from the ADC and ADNI1 

datasets. Table 8 shows the mean Dice Kappa, detection/outline error rates (DER/OER), and 

the corresponding ICC, TPR, and PPV values for each classifier and dataset, respectively. 

Figure 9 shows the corresponding boxplot diagrams for these results separately for subjects 

with small, medium and large WMH loads. Figure 10 shows the segmentation results on the 

axial slices for different classifiers and datasets. Figure 11 shows the negative logarithm of 

the FDR corrected p-values of t-tests on Dice Kappa values of different classifier pairs. To 

assess the contribution of FLAIR features in the performance of different classifiers, paired 

t-tests were performed between the Dice Kappa values of the segmentations based on 

T1+T2+PD+FLAIR and T1+T2+PD in the ADC dataset. The “*” symbol in Table 8 

indicates the significant differences between the two segmentations, after correction for 

multiple comparisons using FDR. The performance of all classifiers has significantly 

dropped without using FLAIR information.

3.4. Segmentation using T1w, and T2w data

Many studies forgo acquisition of PD images in favour of acquiring a higher resolution T2w 

image. Here we assess the performance of the classifiers without using PD images. Table 9 

shows the mean Dice Kappa and detection/outline error rates (DER/OER), and the 

corresponding ICC, TPR, and PPV values for each classifier and dataset, respectively. Figure 

12 shows the corresponding boxplot diagrams for these results separately for subjects with 

small, medium and large WMH loads. Figure 13 shows the segmentation results on the axial 

slices for different classifiers and datasets. Figure 14 shows the negative logarithm of the 

FDR corrected p-values of t-tests on Dice Kappa values of different classifier pairs. To 
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assess the contribution of PD feature in the performance of different classifiers, paired t-tests 

were performed between the Dice Kappa values of the segmentations based on T1+T2+PD 

and T1+T2 in ADC, and ADNI1 datasets. The “*” symbols in Table 7 indicate the 

significant differences between the two segmentations, after correction for multiple 

comparisons using FDR. No classifier has performed significantly worse after removing PD 

features for either dataset.

3.5. Segmentation using only T1w data

To address the second challenge, we trained and validated the performance of the classifiers 

with features only from T1w images from ADC, NACC, ADNI1, and ADNI2/GO datasets. 

Table 10 shows the mean Dice Kappa and detection/outline error rates (DER/OER), for each 

classifier and dataset. Table 11 shows the corresponding ICC, TPR, and PPV values. Figure 

15 shows boxplot diagrams for these results separately for subjects with small, medium and 

large WMH loads. Figure 16 shows the segmentation results on the axial slices for different 

classifiers from each study. Figure 17 shows the negative logarithm of the FDR corrected p-

values of t-tests on Dice Kappa values of different classifier pairs.

3.6. Oversegmentation/Undersegmentation

To provide information regarding oversegmentation/undersegmentation of WMHs, paired t-

tests were performed between total WMH loads in small, medium, and large groups on 

T1+FLAIR (n=147) and T1+T2+PD (n=123) experiments. Table 12 shows the mean and 

standard deviation of the volumes as well as statistical significance of the differences after 

correcting for multiple comparisons using FDR correction. From the results, we can see that 

Naïve Bayes and QDA significantly oversegment WMHs in all three groups. Logistic 

regression and Bagging significantly undersegment medium and large WMHs. LDA and 

Decision Trees seem to work well with T1+FLAIR images, but they tend to significantly 

oversegment when dealing with T1+T2+PD sequences. AdaBoost, KNN, SVM and Random 

Forest seem to work very well for medium and large WMHs, but slightly oversegment small 

lesions. However, KNN and SVM seem to show a lot of variability (high standard 

deviations) for small lesions using T1+T2+PD sequences.

3.7. Computational burden

In order for a segmentation technique to be applicable to large-scale datasets, reasonable 

computation time and memory demands are crucial. To assess this, all classifiers were 

trained on the same dataset consisting of 50 subjects and used to segment 20 subjects on an 

Intel(R) Core(TM) i7–5600 CPU @ 2.60 GHz machine with 20.0 GBs RAM. Table 13 

shows the training as well as segmentation time per subject in seconds for each classifier.

4. Discussion

In the recent years, there have been many different studies in the literature that address the 

challenge of automatically segmenting WMHs (Caligiuri et al., 2015; Admiraal-Behloul et 

al., 2005; Anbeek et al., 2004; Beare et al., 2009; De Boer et al., 2009; Dyrby et al., 2008; 

Ghafoorian et al., 2016a; Griffanti et al., 2016; Ithapu et al., 2014; Lao et al., 2008; Ong et 

al., 2012; Schmidt et al., 2012; Simões et al., 2013; Steenwijk et al., 2013; Wu et al., 2006a, 
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2006b; Yoo et al., 2014; García-Lorenzo et al., 2013; Shiee et al., 2010). However, drawing 

meaningful comparisons between these segmentation techniques proves to be practically 

impossible since the results are greatly influenced by the MRI acquisition characteristics and 

resolution as well as the quality of the manually segmented labels that are used for training 

and validation. Here we have validated and compared the performance of a variety of 

different supervised linear and nonlinear classifiers in segmenting WMHs using 4 relatively 

large datasets. We also provide our fully automated tool for segmentation of WMHs from 

multiple contrasts of MR images along with the pre-trained classifiers.

Several commonly used linear and nonlinear classifiers with different levels of 

computational complexity were employed for segmentation of WMHs from multiple 

contrasts of MR images. In presence of FLAIR information, most methods performed 

relatively well and can be employed for WMH segmentation. However, the performance of 

the classifiers declined significantly in absence of the optimal FLAIR modality information, 

with Random forests and AdaBoost classifiers still retaining the best performance. Using 

only T1w images, the performance of all classifiers declined drastically with random forest 

and AdaBoost classifiers still providing the best results. These segmentations tend to detect 

only the brightest of the WMHs. However, their high volumetric correlation with the gold 

standard values shows that while not perfectly accurate, they still might be used as surrogate 

measures to reflect WMH burden if they are also associated with risk factors and clinical 

measures. This can prove extremely valuable in studies that only have T1w scans and need 

to take into account the WMH burden.

One of the major issues when using automated techniques for segmenting WMHs is the 

variability caused by differences in the scanner and acquisition sequences which would in 

turn lead to differences in contrast and borders of WMHs. As a result, classifiers that are 

trained on data from a single scanner with a specific acquisition sequence tend to perform 

poorly on data from different scanners and/or sequences. To increase the generalizability of 

our tools, we have trained and validated our classifiers using data from different scanners/

sites.

It would be worthwhile to note that all of the voxels inside the brain were input to the 

classifiers and no white matter mask or any mask excluding either ventricles or 

cerebrospinal fluids were used. This makes the classification task more challenging, but on 

the other hand, makes the performance of the classifiers more easily comparable with other 

methods since the results will not be dependent on the quality of the tissue segmentation 

algorithm or whether specific regions such as brainstem or cerebellum which are generally 

more challenging to segment are masked out. Another valid concern in using tissue 

segmentation results is that most tissue classification techniques use only T1w images, on 

which some of the WMHs appear hypointense. This makes the tissue classification results 

prone to error since they will be likely to classify WMHs as grey matter while most WMHs 

occur in the white matter. This misclassification in the initial tissue segmentation will add an 

extra level of noise to the data that can significantly affect WMH segmentation results. One 

limitation of our technique is that it has not been validated on patients with stroke; the 

intensity profile in such subjects is likely very different from the subjects evaluated here.
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In detecting WMHs, FLAIR is of the highest importance since it provides the best lesion to 

WM contrast when compared with T1w, T2w and PD sequences. PD provides the most 

variable contrast difference between tissue types directly related to the parameters used in its 

acquisition. The more T2 weighted the PD sequence, the less supplemental contrast 

information it provides (since the information is already provided by the T2w sequence). 

Hence, the PD sequence is most meaningful if the parameters allow the CSF to be of the 

lowest possible signal. The T1w sequence on its own should only be considered in cases 

where other modalities are not available or their poor image quality prevents their use. The 

lower information given by T1w images resides in a poorer contrast between the signal of 

lesions and surrounding WM. Lesion intensity spans from iso-intense to WM to deep 

hypointense, causing the difficulty in detecting lesions using only T1w images. Another 

factor that can significantly affect the quality of both manual and automated segmentations 

is the signal to noise ratio (SNR). A lower SNR will impact the image quality and number of 

artifacts, which would then translate into poorer performance of either software or manual 

rater. The ADC, NACC, and ADNI2 FLAIRs had an average SNR value of 17.25±2.37, 

20.11±5.52, and 35.11±7.26 as estimated by our denoising tool (Coupe et al., 2008), 

respectively. This may partially explain the poorer results for ADC data. As a general rule, 

the highest possible SNR should be attained in each modality employed. In addition to SNR, 

ringing or ghosting caused by movement and inter-package motion also contribute to the 

deterioration of image quality.

Manually segmenting WMHs is a challenging task. Lesion edges always exhibit a degree of 

hyperintense signal that decreases gradually towards the healthy surrounding WM. In other 

words, no lesion edge goes from one pathologic hyperintense voxel, to a contiguous healthy 

hypointense WM voxel, and the edges may shift from scoring to scoring by one or two 

voxels. Additionally, when cases have multiple lesions, the surface to volume ratio of the 

lesions increases. Even when the rater identifies exactly the same lesions, one extra voxel 

around the edge of a small lesion may have a large impact on the Dice Kappa value. The 

small DER values for the manual segmentations further confirm that most of the 

disagreement between the manual segmentations occurs around the edges (0.03±0.04, 

0.05±0.04, 0.03±0.04, and 0.04±0.04 for ADC, NACC, ADNI1, and ADNI2, respectively). 

Also, the poorer image quality, in terms of SNR, of the ADC dataset, could partially account 

for the worse intra-rater performance for that dataset.

Segmenting WMHs without the optimal FLAIR modality is a challenging task. Additional 

errors might arise from comparing segmentations obtained without FLAIR with manual 

labels that are based on FLAIR images. The extent and borders of WMHs generally do not 

look the same on the different MRI sequences (Filippi et al., 1996). It has been shown that 

FLAIR sequence is less sensitive in detecting thalamic lesions in vascular disease 

populations (Leite et al., 2004). Furthermore, FLAIR may present hyperintense artifacts that 

can lead to an increase in false positives such as the hyperintensities often observed in insula 

(Hirai et al., 2000). As a result, a certain degree of disagreement between segmentations 

obtained with and without FLAIR information is expected. This explains the higher SI 

values for the ADNI1 dataset where the manual segmentations are based on T2w/PD scans 

compared with automatic segmentations with the same contrasts in ADC dataset (T1w, T2w, 

and PD) where FLAIR information was used for the manual segmentations. Additionally, 
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the difference in tissue contrast between the PD sequence of the ADC dataset and ADNI1 

may also partially account for the higher SI value for ADNI1. The PD scans in ADNI1 

dataset had a higher white-to-grey matter contrast, higher white matter-to-lesion contrast, 

and better delineation of CSF as a different tissue type, given its low signal. All these 

characteristics were absent in the ADC dataset, where PD was heavily T2 weighted. These 

differential characteristics are critical in the WMHs segmentation process either by a rater or 

an automatic tool, improving the accuracy of the segmentation in the ADNI1 cases.

Using classifiers such as KNN and Bagging with KNN has the additional drawback of 

longer computation time for segmenting new data. The fact that they do not require rigorous 

training is generally outweighed by their longer classification times, especially when one 

needs to segment 100s or 1000s of MRI volumes in larger datasets. In addition, these 

methods are generally more susceptible to skewedness in class distributions, which is the 

case in lesion segmentation tasks, since most voxels in the brain are non-WMHs. As a result, 

the examples of the more frequent non-WMH class tend to dominate the new predictions, 

simply owing to the fact that they are more common.

Accurate quantification and localization of WMHs is critical since they are important 

clinical measures in the elderly and AD populations. A Dice Kappa value of 0.7 is 

considered as a good segmentation in the literature (Caligiuri et al., 2015). Random forest 

was able to obtain average Dice Kappa values higher than 0.7 for the medium lesion load 

and 0.8 for large lesion load groups, which is considered as excellent agreement. Their 

average Dice Kappa for the small lesion group was higher than 0.5, which is still considered 

as a very good agreement, especially considering the fact that Dice Kappa values are smaller 

for objects with a high surface to volume ratio, as is the case for subjects with small lesion 

loads.

The Random Forests technique consistently had the best results across all the experiments 

when using Dice Kappa (SI) as the primary measure of comparison. Considering the fact 

that it also had a shorter computational time than the second-best classifier (AdaBoost), 

Random Forests was the best classifier amongst the nonlinear classification techniques 

tested. The Linear Discriminant Analysis method was the best linear classifier considering 

the Dice Kappa results and computation times.

In cases where different classifiers have different strengths and weaknesses, using an 

ensemble of all the classifiers can improve the overall classification accuracy. Here, 

performing a voting between the outputs of all 10 classifiers achieved Dice Kappa values of 

0.68±0.17, 0.74±0.10, 0.66±0.22, and 0.72±0.19 (versus 0.66±0.17, 0.72±0.10, 0.66±0.23, 

and 0.72±0.19 for the Random Forest classifier) for ADC, NACC, ADNI1, and ADNI2 

datasets, respectively, suggesting a slight improvement for ADC (p=0.001), and NACC 

(p=0.004), and no difference for ADNI1 and ADNI2 (p>0.05).

As mentioned previously, drawing meaningful comparisons between techniques that have 

been applied to different datasets, using different brain masks, and with different definitions 

of WMHs should be done with care. Taking these considerations into account, our Random 
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Forests classifier performs very well in comparison with other methods in the field (Table 

14).

Accurate quantification of WMHs is critical for evaluating the vascular burden contributing 

to cognitive deficits in the vascular dementia and AD patients as well as the aging 

population in general. Due to the high variability across different populations, image 

acquisition parameters and manual segmentation protocols, comparing different techniques 

in a meaningful way is practically impossible. Here we have extensively compared 10 most 

widely used off-the-shelf classifiers in segmenting WMHs with and without FLAIR 

information in terms of accuracy and computational burden. These experiments have 

enabled us to draw meaningful and generalizable comparisons between different methods 

and determine which classifiers are best suited to the task of segmenting WMHs.
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Fig. 1 - 
Axial slices comparing manual segmentations and T1w, T2w, PD, and FLAIR information 

for subjects from ADC, NACC, ADNI1, and ADNI2 datasets. Yellow color indicates regions 

labeled as WMH in manual segmentations.
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Fig. 2. 
Flow-chart of the preprocessing, registration, and feature selections steps. WMH-MM= 

White Matter Hyperintensity Manual Mask.
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Fig. 3- 
Dice Kappa (SI) for different classification methods for (<5 cm3, left), medium (5–20 cm3, 

middle), and high (>20 cm3, right) WMH load using T1w, T2w, PD, and FLAIR information 

for the ADC dataset.
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Fig. 4- 
Axial slices comparing manual and automatic segmentations using T1w, T2w, PD, and 

FLAIR information for a subject from ADC dataset. Yellow color indicates regions labeled 

as WMH in both manual and automatic segmentations, blue color indicates regions only 

segmented by the automatic technique, and red color indicates regions only segmented by 

the manual rater.
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Fig. 5- 
Negative logarithm of FDR corrected p-values of paired t-tests between Dice Kappa values 

of classifier pairs. Values higher than 1.3 are statistically significant.
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Fig. 6- 
Dice Kappa (SI) for different classification methods for low (<5 cm3, left), medium (5–20 

cm3, middle), and high (>20 cm3, right) WMH load using T1w and FLAIR information for 

ADC (red), NACC (black), and ADNI2/GO (magenta) datasets.
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Fig. 7 - 
Axial slices comparing manual and automatic segmentations using T1w and FLAIR 

information in one subject from each of ADC, NACC, and ADNI2/GO datasets. Yellow 

color indicates regions labeled as WMH in both segmentations, blue color indicates regions 

only segmented by the automatic technique, and red color indicates regions only segmented 

by the manual rater.
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Fig. 8- 
Negative logarithm of FDR corrected p-values of paired t-tests between Dice Kappa values 

of classifier pairs. Values higher than 1.3 are statistically significant.
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Fig. 9- 
Dice Kappa (SI) for different classification methods for low (<5 cm3, left), medium (5–20 

cm3, middle), and high (>20 cm3, right) WMH load using T1w, T2w, and PD information 

for ADC (red) and ADNI1 (blue) datasets.
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Fig. 10 - 
Axial slice comparing manual and automatic segmentations using T1w, T2w, and PD 

information for a subject from each of ADC and ADNI1 datasets. Yellow color indicates 

regions labeled as WMH in both segmentations, blue color indicates regions only segmented 

by the automatic technique, and red color indicates regions only segmented by the manual 

rater.

Dadar et al. Page 29

Neuroimage. Author manuscript; available in PMC 2019 April 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 11- 
Negative logarithm of FDR corrected p-values of paired t-tests between Dice Kappa values 

of classifier pairs. Values higher than 1.3 are statistically significant.
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Fig. 12 - 
Dice Kappa (SI) for different classification methods for low (<5 cm3, left), medium (5–20 

cm3, middle), and high (>20 cm3, right) WMH load using T1w and T2w information for 

ADC (red) and ADNI1 (blue) datasets.
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Fig. 13- 
Axial slice comparing manual and automatic segmentations using T1w and T2w information 

for ADC and ADNI1 datasets. Yellow color indicates regions labeled as WMH in both 

segmentations, blue color indicates regions only segmented by the automatic technique, and 

red color indicates regions only segmented by the manual rater.
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Figure 14. 
Negative logarithm of FDR corrected p-values of paired t-tests between Dice Kappa values 

of classifier pairs. Values higher than 1.3 are statistically significant.
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Fig. 15 - 
Dice Kappa (SI) for different classification methods for low (<5 cm3), medium (5–20 cm3), 

and high (>20 cm3) WMH load using only T1w information for ADC (red), NACC (black), 

ADNI1 (blue), and ADNI2/GO (magenta) datasets.
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Fig. 16 - 
Axial slice comparing manual and automatic segmentations using T1w information for 

ADC, NACC, ADNI1, and ADNI2/GO datasets. Yellow color indicates regions labeled as 

WMH in both segmentations, cyan color indicates regions only segmented by the automatic 

technique, and red color indicates regions only segmented by the manual rater.
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Fig. 17 - 
Negative logarithm of FDR corrected p-values of paired t-tests between Dice Kappa values 

of classifier pairs. Values higher than 1.3 are statistically significant.
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Table 1 -

Demographic information for ADC, NACC, ADNI1 and ADNI2/GO datasets.

Dataset ADC NACC ADNI1 ADNI2/GO

N 70 32 53 46

Sex 35 M 15 M 27 M 25 M

Age 78.0±7.3 74.9±8.0 75.7±6.6 74.1±6.5
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Table 2 -

Scanner information and MRI acquisition parameters for ADC, NACC, ADNI1, and ADNI2/GO datasets.

Modality Dataset ADC NACC ADNI1 ADNI2/GO

Scanner
Manufacturer

GE MS
Philips MS GE MS

GE MS
Philips MS
SIEMENS

Philips MS
SIEMENS

T1w

Slice 1.5 mm 1.5 mm 1.2 mm 1.2 mm

No. of slices 128 124 160 196

Field of view 250×250 cm2 256×256 cm2 192×192 cm2 256×256 cm2

Scan Matrix 256×256 cm2 256×256 cm2 192×192 cm2 256×256 cm2

Repetition 9 ms 9 ms 3000 ms 7.2 ms

Echo time 2.9 ms 1.8 ms 3.55 ms 3.0 ms

Pulse FSPGR FSPGR MPRAGE GR

Other

Contrast FLAIR FLAIR T2w/PD FLAIR

Slice 3 mm 3 mm 3 mm 5 mm

No. of slices 48 48 56 42

Field of view 220×220 cm2 256×256 cm2 256×256 cm2 256×256 cm2

Scan Matrix 256×192 cm2 256×256 cm2 256×256 cm2 256×256 cm2

Repetition 11000 ms 11002 ms 3000/3000 ms 11000 ms

Echo time 144 ms 147 ms 95.2/10.5 ms 150 ms

Pulse FSE Obl FSE SE/IR
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Table 3 -

Intra-rater mean Dice Kappa, range of WMHLs, and number (N) of subjects with low (<5cm3), medium (5–

20cm3), and high (>20cm3) WMHLs for manual segmentations of WMHs in different datasets. WMHL= 

White Matter Hyperintensity Load.

Dataset ADC NACC ADNI1 ADNI2/GO

Dice Kappa 0.72 0.78 0.80 0.86

WMHL Range (cm3) 0.2–148.6 0.2–109.0 0.0–119.3 0.2–63.0

NWMHL<5cm3 36 6 14 16

N5cm3<WMHL<20cm
3 23 11 10 11

NWMHL<20cm3 11 12 27 18

Neuroimage. Author manuscript; available in PMC 2019 April 17.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Dadar et al. Page 40

Table 4 -

List of similarity measures and their definitions. The metrics are listed in the table below using the following 

abbreviations: true positive (TP), true negative (TN), false positive (FP), false negative (FN), true positive rate 

(TPR), Mean Square Within samples based upon the anova (MSW), Mean Square F Statistic Regression Slope 

(MSR). CR1, CR2, and C12 represent region from only rater 1, region from only rater 2, and the combination 

of both raters, respectively. |cr| represents area of the connected region, cr ϵ CR1 or CR2 represents the set of 

connected regions that can be labeled either as CR1 or CR2. |R1(cr)|, |R2(cr)| represent the areas of rater 1 and 

rater 2 regions within cr, respectively (Wack et al., 2012).

Name Dice Kappa Intra-class correlation Sensitivity Outline Error Rate Detection Error Rate

Abbreviation SI ICC TPR OER DER

Equation 2 × TP
FP + FN + 2 × TP

MSR − MSW
MSR + MSW

TP
TP + FN

∑cr ∈ C12
|cr | − R1(cr) ∩ R2(cr) ∑cr ∈ CR1 or CR2

|cr|
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Table 5 -

Comparison between mean Dice Kappa, detection/outline error rate (DER/OER), intra-class correlation (ICC), 

true positive rate (TPR), and positive prediction value (PPV) values of different classifiers for segmentation of 

WMHs using T1w, T2w, PD and FLAIR data in the ADC dataset. Blue color indicates the best performance in 

terms of SI.

Dataset SI DER OER ICC TPR PPV

Naïve Bayes 0.32±0.27 0.53±0.34 0.82±0.21 0.27 0.23 0.96

Logistic Regression 0.57±0.22 0.32±0.36 0.54±0.14 0.97 0.65 0.57

LDA 0.56±0.23 0.41±0.38 0.46±0.20 0.88 0.48 0.83

QDA 0.36±0.26 0.55±0.36 0.74±0.17 0.44 0.26 0.96

KNN 0.66±0.17 0.18±0.18 0.52±0.18 0.99 0.73 0.65

Decision Trees 0.57±0.18 0.27±0.28 0.58±0.18 0.96 0.58 0.62

Random Forests 0.66±0.17 0.16±0.15 0.53±0.19 0.99 0.73 0.64

Bagging 0.63±0.19 0.21±0.26 0.57±0.03 0.99 0.75 0.58

SVM 0.57±0.24 0.32±0.42 0.54±0.11 0.98 0.66 0.60

AdaBoost 0.63±0.20 0.21±0.24 0.53±0.10 0.98 0.70 0.65
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Table 6 -

Comparison between mean Dice Kappa and detection/outline error rate (DER/OER) values of different 

classifiers for segmentation of WMHs using T1w and FLAIR data in the ADC, NACC, and ADNI2/GO 

datasets. Blue color indicates the best performance in terms of SI.

Dataset ADC NACC ADNI2/GO

Measure SI DER OER SI DER OER SI DER OER

Naïve Bayes 0.42±0.25* 0.34±0.27 0.82±0.30 0.50±0.21 0.43±0.26 0.74±0.34 0.50±0.29 0.43±0.30 0.73±0.39

Logistic 0.56±0.18 0.27±0.24 0.61±0.19 0.65±0.13 0.27±0.39 0.55±0.23 0.64±0.20 0.30±0.40 0.53±0.25

LDA 0.58±0.19 0.35±0.33 0.49±0.17 0.69±0.13 0.21±0.26 0.57±0.36 0.60±0.23 0.21±0.27 0.66±0.41

QDA 0.42±0.23* 0.44±0.32 0.73±0.22 0.54±0.21 0.48±0.32 0.62±0.27 0.51±0.29 0.48±0.34 0.64±0.33

KNN 0.65±0.16 0.18±0.18 0.51±0.18 0.71±0.13 0.15±0.17 0.50±0.23 0.72±0.18 0.17±0.20 0.48±0.24

Decision Trees 0.58±0.16 0.25±0.25 0.58±0.14 0.65±0.12 0.23±0.25 0.55±0.18 0.65±0.22 0.25±0.28 0.54±0.21

Random Forests 0.66±0.14 0.18±0.18 0.50±0.16 0.72±0.10 0.14±0.16 0.48±0.20 0.72±0.19 0.15±0.18 0.47±0.23

Bagging 0.14±0.16* 0.27±0.28 0.63±0.27 0.69±0.13 0.19±0.31 0.53±0.25 0.69±0.17 0.21±0.33 0.51±0.26

SVM 0.56±0.24 0.31±0.37 0.56±0.26 0.67±0.13 0.22±0.37 0.53±0.25 0.68±0.22 0.26±0.40 0.48±0.28

AdaBoost 0.65±0.15 0.18±0.18 0.50±0.17 0.72±0.11 0.16±0.22 0.49±0.23 0.71±0.20 0.18±0.25 0.49±0.27
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Table 7 -

Comparison between intra-class correlation (ICC), true positive rate (TPR), and positive prediction value 

(PPV) values of different classifiers for segmentation of WMHs in different datasets using T1w and FLAIR 

data for ADC, NACC, and ADNI2/GO datasets. Blue color indicates the best performance in terms of SI.

Dataset ADC NACC ADNI2/GO

Measure ICC TPR PPV ICC TPR PPV ICC TPR PPV

Naïve Bayes 0.81 0.31 0.93 0.45 0.38 0.89 0.54 0.41 0.91

Logistic Regression 0.98 0.73 0.48 0.85 0.78 0.59 0.86 0.70 0.70

LDA 0.98 0.56 0.65 0.92 0.78 0.63 0.80 0.63 0.71

QDA 0.77 0.30 0.94 0.53 0.42 0.91 0.57 0.41 0.95

KNN 0.99 0.76 0.60 0.94 0.80 0.69 0.96 0.74 0.78

Decision Trees 0.99 0.62 0.58 0.94 0.67 0.69 0.96 0.65 0.76

Random Forests 0.99 0.62 0.58 0.93 0.79 0.71 0.96 0.72 0.80

Bagging 0.16 0.63 0.09 0.89 0.83 0.63 0.91 0.76 0.70

SVM 0.95 0.70 0.56 0.90 0.83 0.60 0.95 0.67 0.79

AdaBoost 0.99 0.73 0.63 0.94 0.78 0.72 0.96 0.71 0.81
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Table 8 -

Comparison between mean Dice Kappa (SI), detection/outline error rate (DER/OER), intra-class correlation 

(ICC), true positive rate (TPR), and positive prediction value (PPV) values of different classifiers for 

segmentation of WMHs using T1w, T2w, and PD data, ADC and ADNI1 datasets. Blue color indicates the 

best performance in terms of SI.

Dataset ADC ADNI1

Measure SI DER OER ICC TPR PPV SI DER OER ICC TPR PPV

Naïve Bayes 0.17±0.17* 0.88±0.39 0.77±0.32 0.10 0.11 0.84 0.34±0.22 0.68±0.33 0.67±0.35 0.09 0.24 0.89

Logistic 0.09±0.14* 1.26±0.73 0.55±0.55 0.46 0.24 0.06 0.44±0.23 0.40±0.48 0.68±0.33 0.68 0.65 0.39

LDA 0.28±0.21* 0.08±0.05 1.35±0.42 0.45 0.24 0.66 0.48±0.28 0.17±0.34 0.82±0.53 0.62 0.46 0.73

QDA 0.13±0.13* 0.63±0.38 1.11±0.37 0.08 0.08 0.90 0.31±0.21 0.63±0.35 0.72±0.29 0.12 0.20 0.93

KNN 0.28±0.24* 0.77±0.68 0.66±0.34 0.69 0.44 0.22 0.59±0.23 0.25±0.33 0.56±0.27 0.74 0.67 0.58

Decision 0.38±0.20* 0.55±0.47 0.69±0.19 0.93 0.38 0.44 0.57±0.25 0.29±0.37 0.57±0.23 0.94 0.57 0.67

Random 0.47±0.21* 0.36±0.34 0.69±0.21 0.95 0.60 0.42 0.66±0.23 0.18±0.29 0.50±0.26 0.94 0.67 0.71

Bagging 0.17±0.18* 0.88±0.70 0.77±0.46 0.37 0.51 0.11 0.54±0.22 0.24±0.38 0.67±0.33 0.59 0.75 0.47

SVM 0.31±0.21* 0.62±0.54 0.76±0.31 0.65 0.48 0.31 0.61±0.24 0.25±0.43 0.56±0.34 0.83 0.62 0.70

AdaBoost 0.44±0.21* 0.43±0.47 0.69±0.21 0.93 0.53 0.42 0.64±0.24 0.20±0.33 0.55±0.32 0.94 0.66 0.73
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Table 9 -

Comparison between mean Dice Kappa (SI), detection/outline error rate (DER/OER), intra-class correlation 

(ICC), true positive rate (TPR), and positive prediction value (PPV) values of different classifiers for 

segmentation of WMHs using T1w, and T2w data – ADC and ADNI1 datasets. Blue color indicates the best 

performance in terms of SI.

Dataset ADC ADNI1

Measure SI DER OER ICC TPR PPV SI DER OER ICC TPR PPV

Naïve Bayes 0.25±0.22 0.59±0.37 0.68±0.41 0.37 0.18 0.79 0.43±0.26 0.52±0.30 0.24±0.21 0.51 0.33 0.87

Logistic 0.16±0.16 0.62±0.70 0.71±0.47 0.43 0.42 0.12 0.42±0.25 0.39±0.50 0.11±0.14 0.79 0.66 0.35

LDA 0.28±0.21 0.08±0.23 1.08±0.55 0.46 0.24 0.66 0.48±0.28 0.17±0.34 0.25±0.20 0.61 0.46 0.72

QDA 0.20±0.18 0.61±0.32 0.80±0.38 0.23 0.13 0.86 0.36±0.23 0.61±0.35 0.20±0.17 0.28 0.25 0.92

KNN 0.27±0.24 0.46±0.59 0.54±0.25 0.83 0.44 0.21 0.58±0.23 0.27±0.37 0.28±0.18 0.90 0.67 0.55

Decision 0.37±0.21 0.38±0.45 0.59±0.22 0.93 0.38 0.43 0.57±0.25 0.29±0.27 0.24±0.18 0.94 0.57 0.66

Random 0.45±0.22 0.25±0.37 0.55±0.27 0.93 0.56 0.41 0.65±0.23 0.19±0.29 0.34±0.19 0.95 0.67 0.70

Bagging 0.24±0.22 0.49±0.65 0.60±0.34 0.68 0.55 0.17 0.57±0.24 0.27±0.42 0.03±0.03 0.86 0.73 0.52

SVM 0.37±0.18 0.47±0.51 0.71±0.35 0.58 0.48 0.48 0.46±0.23 0.38±0.47 0.16±0.11 0.23 0.54 0.62

AdaBoost 0.44±0.21 0.29±0.47 0.57±0.31 0.92 0.53 0.42 0.64±0.25 0.21±0.34 0.26±0.10 0.95 0.66 0.72
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Table 11 -

Comparison between intra-class correlation (ICC), true positive rate (TPR), and positive prediction value 

(PPV) values of different classifiers for segmentation of WMHs in different datasets using T1 data for ADC, 

NACC, ADNI1, and ADNI2/GO datasets. Blue color indicates the best performance in terms of SI.

Dataset ADC NACC ADNI1 ADNI2/GO

Measure ICC TPR PPV ICC TPR PPV ICC TPR PPV ICC TPR PPV

Naïve Bayes 0.24 0.20 0.67 0.01 0.28 0.56 0.30 0.37 0.74 0.06 0.33 0.74

Logistic Regression 0.08 0.27 0.09 0.00 0.20 0.07 0.22 0.61 0.34 0.17 0.65 0.25

LDA 0.32 0.22 0.64 0.07 0.29 0.54 0.45 0.42 0.68 0.19 0.39 0.68

QDA 0.40 0.15 0.67 0.52 0.25 0.56 0.38 0.40 0.74 0.17 0.37 0.73

KNN 0.36 0.49 0.22 0.14 0.61 0.25 0.55 0.63 0.50 0.54 0.61 0.43

Decision Trees 0.55 0.24 0.37 0.36 0.30 0.38 0.63 0.41 0.54 0.62 0.40 0.51

Random Forests 0.56 0.45 0.31 0.54 0.55 0.36 0.60 0.59 0.56 0.65 0.57 0.50

Bagging 0.01 0.59 0.02 0.23 0.58 0.05 0.23 0.73 0.21 0.16 0.71 0.15

SVM 0.03 0.49 0.13 0.10 0.54 0.22 0.20 0.59 0.41 0.14 0.56 0.43

AdaBoost 0.25 0.49 0.21 0.10 0.61 0.30 0.52 0.60 0.56 0.51 0.59 0.51
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Table 12-

Mean ± standard deviation of WMH loads in small (<5cm3), medium (5–20cm3), and large (>20cm3) groups. 

Statistically significant differences from manual segmentations after corrections for multiple comparisons 

using false discovery rate (FDR) correction are indicated with *

Sequences T1-FLAIR T1–T2-PD

Method Small Medium Large Small Medium Large

Manual 1.85±1.39 12.07±4.58 40.02±23.33 1.47±1.14 10.81±4.27 47.62±25.74

Naïve Bayes 18.65±12.52* 33.45±16.79* 68.31±37.88* 91.29±98.89* 89.85±33.56* 148.31±48.49*

Logistic Regression 2.53±2.59* 9.83±4.98* 34.03±25.35* 2.18±5.68 4.44±8.32* 32.80±27.80*

LDA 3.97±3.09* 12.48±5.76 39.49±30.83 22.44±8.16* 28.72±12.14* 53.47±19.22

QDA 17.26±11.21* 32.53±16.05* 73.04±42.40* 121.10±89.30* 129.28±43.98* 205.15±69.82*

KNN 2.42±2.46* 11.00±5.81 41.53±30.49 4.74±21.28 8.74±8.53 45.50±25.54

Decision Trees 3.44±3.24* 12.64±6.35 41.63±25.35 5.10±4.41* 14.03±9.86* 54.30±26.60*

Random Forests 2.62±2.61* 11.47±5.87 40.79±25.37 2.58±3.29 11.51±9.72 51.57±27.38

Bagging 1.46±2.41 7.13±6.23* 28.13±21.69* 3.12±14.95 5.16±7.17* 32.86±20.56*

SVM 2.76±3.23* 11.05±5.90 41.17±30.55 5.49±8.53* 11.98±14.87 49.28±29.49

AdaBoost 2.85±2.78* 11.93±5.97 41.08±25.60 3.42±4.05* 11.94±10.25 52.47±29.93
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Table 13 -

Comparison between training and segmentation times (s) between different classifiers

Classifier Training Time (s) Segmentation Time (s)

Naïve Bayes 12.45 0.38

Logistic Regression 333.38 0.11

LDA 66.31 0.52

QDA 100.56 0.45

KNN 7718.98 3021.88

Decision Trees 1225.63 0.53

Random Forests 22620.11 7.29

Bagging 8992.54 981.55

SVM 14581.04 0.26

AdaBoost 100766.02 71.16
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Table 14 -

Comparison of SI (Dice Kappa) for different lesion loads in various studies. (S: small load, M: medium load, 

L: large load).

Method Technique Number (S-M-L%)
Dice (SI)

S M L Total

Proposed pipeline Random Forests
70 (36–23–11)
32 (6–11–12)
46 (16–11–18)

0.55
0.57
0.53

0.75
0.73
0.79

0.84
0.84
0.86

0.66
0.72
0.72

Dadar (Dadar et al., 2017) Linear regression + thresholding
80 (58–31–11)
40 (25–14–1)
10 (2–4–4)

0.49
0.48
0.36

0.74
0.64
0.58

0.87
0.74
0.74

0.62
0.51
0.64

Admiraal (Admiraal–Behloul et al., 2005) Fuzzy inference 100 (40–35–25) 0.70 0.75 0.82 0.75

Anbeek (Anbeek et al., 2004) K-nearest neighbors 20 (40–35–25) 0.50 0.75 0.85 0.61

Beare (Beare et al., 2009) AdaBoost 30 0.50 0.65 0.58

Boer (De Boer et al., 2009) K-nearest neighbors 20 0.72 0.72

Steenwijk (Steenwijk et al., 2013) K-nearest neighbors 20 (15–45–40)
18 (40–33–17)

0.78
0.65

0.85
0.72

0.91
0.81

0.84
0.75

Khayati (Khayati et al., 2008) Adaptive Mixture Model 20 (35–50–15) 0.72 0.75 0.80 0.75

Sajja (Sajja et al., 2006) Parzen Window 23 (35–65) 0.67 0.84 0.78

Schmidt (Schmidt et al., 2012) Markov random field 53 0.66 0.79 0.85 0.75

Sheei (Shiee et al., 2010) Fuzzy segmentation 10 0.63 0.63

Ong (Ong et al., 2012) Adaptive trimmed mean 38 0.36 0.56 0.71 0.47

Ithapu (Ithapu et al., 2014) Random Forests Support Vector 
Machine 38 0.67

0.54
0.67
0.54

Herskovits (Herskovits et al., 2008) Bayesian classification 42 0.60 0.60

Dyrby (Dyrby et al., 2008) Neural networks 362 0.45 0.62 0.65 0.56

Erus (Erus et al., 2014) Abnormality detection + principal 
component analysis

33
47

0.54
0.66

0.54
0.66

Ghafoorian (Ghafoorian et al., 2016b) Convolutional neural networks 46 0.79 0.79

Simões (Simões et al., 2013) Gaussian Mixture Model 28 (14–9–5) 0.51 0.70 0.84 0.62

Yoo (Yoo et al., 2014) Variable thresholding 32 (7–10–15) 0.59 0.73 0.86 0.76

Griffanti (Griffanti et al., 2016) K-nearest neighbors 21
109

0.70
0.41

0.69
0.58

0.80
0.68

0.76
0.52
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