Skip to main content
. Author manuscript; available in PMC: 2019 Apr 17.
Published in final edited form as: Neuroimage. 2017 Jul 3;157:233–249. doi: 10.1016/j.neuroimage.2017.06.009

Table 11 -.

Comparison between intra-class correlation (ICC), true positive rate (TPR), and positive prediction value (PPV) values of different classifiers for segmentation of WMHs in different datasets using T1 data for ADC, NACC, ADNI1, and ADNI2/GO datasets. Blue color indicates the best performance in terms of SI.

Dataset ADC NACC ADNI1 ADNI2/GO
Measure ICC TPR PPV ICC TPR PPV ICC TPR PPV ICC TPR PPV
Naïve Bayes 0.24 0.20 0.67 0.01 0.28 0.56 0.30 0.37 0.74 0.06 0.33 0.74
Logistic Regression 0.08 0.27 0.09 0.00 0.20 0.07 0.22 0.61 0.34 0.17 0.65 0.25
LDA 0.32 0.22 0.64 0.07 0.29 0.54 0.45 0.42 0.68 0.19 0.39 0.68
QDA 0.40 0.15 0.67 0.52 0.25 0.56 0.38 0.40 0.74 0.17 0.37 0.73
KNN 0.36 0.49 0.22 0.14 0.61 0.25 0.55 0.63 0.50 0.54 0.61 0.43
Decision Trees 0.55 0.24 0.37 0.36 0.30 0.38 0.63 0.41 0.54 0.62 0.40 0.51
Random Forests 0.56 0.45 0.31 0.54 0.55 0.36 0.60 0.59 0.56 0.65 0.57 0.50
Bagging 0.01 0.59 0.02 0.23 0.58 0.05 0.23 0.73 0.21 0.16 0.71 0.15
SVM 0.03 0.49 0.13 0.10 0.54 0.22 0.20 0.59 0.41 0.14 0.56 0.43
AdaBoost 0.25 0.49 0.21 0.10 0.61 0.30 0.52 0.60 0.56 0.51 0.59 0.51