Skip to main content
. Author manuscript; available in PMC: 2019 Apr 17.
Published in final edited form as: Neuroimage. 2017 Jul 3;157:233–249. doi: 10.1016/j.neuroimage.2017.06.009

Table 5 -.

Comparison between mean Dice Kappa, detection/outline error rate (DER/OER), intra-class correlation (ICC), true positive rate (TPR), and positive prediction value (PPV) values of different classifiers for segmentation of WMHs using T1w, T2w, PD and FLAIR data in the ADC dataset. Blue color indicates the best performance in terms of SI.

Dataset SI DER OER ICC TPR PPV
Naïve Bayes 0.32±0.27 0.53±0.34 0.82±0.21 0.27 0.23 0.96
Logistic Regression 0.57±0.22 0.32±0.36 0.54±0.14 0.97 0.65 0.57
LDA 0.56±0.23 0.41±0.38 0.46±0.20 0.88 0.48 0.83
QDA 0.36±0.26 0.55±0.36 0.74±0.17 0.44 0.26 0.96
KNN 0.66±0.17 0.18±0.18 0.52±0.18 0.99 0.73 0.65
Decision Trees 0.57±0.18 0.27±0.28 0.58±0.18 0.96 0.58 0.62
Random Forests 0.66±0.17 0.16±0.15 0.53±0.19 0.99 0.73 0.64
Bagging 0.63±0.19 0.21±0.26 0.57±0.03 0.99 0.75 0.58
SVM 0.57±0.24 0.32±0.42 0.54±0.11 0.98 0.66 0.60
AdaBoost 0.63±0.20 0.21±0.24 0.53±0.10 0.98 0.70 0.65