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Abstract
Designer nucleases are versatile tools for genome modification and therapy development and have gained widespread acces-
sibility with the advent of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 
(Cas) technology. Prokaryotic RNA-guided nucleases of CRISPR/Cas type, since first being adopted as editing tools in 
eukaryotic cells, have experienced rapid uptake and development. Diverse modes of delivery by viral and non-viral vectors 
and ongoing discovery and engineering of new CRISPR/Cas-type tools with alternative target site requirements, cleavage 
patterns and DNA- or RNA-specific action continue to expand the versatility of this family of nucleases. CRISPR/Cas-based 
molecules may also act without double-strand breaks as DNA base editors or even without single-stranded cleavage, be it 
as epigenetic regulators, transcription factors or RNA base editors, with further scope for discovery and development. For 
many potential therapeutic applications of CRISPR/Cas-type molecules and their derivatives, efficiencies still need to be 
improved and safety issues addressed, including those of preexisting immunity against Cas molecules, off-target activity 
and recombination and sequence alterations relating to double-strand-break events. This review gives a concise overview of 
current CRISPR/Cas tools, applications, concerns and trends.
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Key Points 

CRISPR/Cas technology is widely applied for targeted 
genome modification, with ongoing discovery of new 
enzymes and improvements to specificity, delivery and 
efficiency.

Ingenious reengineering and reemployment of the basic 
ribonucleoprotein particles has already created versatile 
genome disruptors, transcriptional regulators, epigenetic 
modifiers and base editors.

Therapeutic approaches based on CRISPR/Cas technol-
ogy have raised safety concerns in recent studies, indi-
cating inherent risks, which require full characterization, 
and avoidable risks, which may be addressed by ongoing 
refinement of tools and protocols.

CRISPR/Cas has proven a disruptive innovation that has 
changed the conduct of functional studies, conception of 
disease models and creation of new therapies.
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1 � The Context of Gene Therapy

Gene therapy, the introduction of genetic material for the 
cure or prevention of disease, has been 39 years in the mak-
ing since its contentious beginnings [1]. Gene therapy by 
gene addition, providing an additional, functional copy of 
a disease-causing defective endogene, has already led to 
remarkable success for several genetic diseases, including 
gaining orphan drug approval [2]. Non-viral vectors are usu-
ally inefficient as delivery vehicles for gene addition [3], 
whereas integrating viral vectors impose size restrictions 
that are unsuitable for many potentially therapeutic genes, a 
challenge that can be addressed by combinatorial approaches 
but at the price of reduced efficiency [4–6]. Even in the case 
of smaller target genes, the size limit of the expression cas-
sette typically remains an obstacle to adding intronic and 
regulatory sequences required for suitably regulated or 
high-level gene expression. For example, efficient lentiviral 
delivery of β-globin with an open reading frame (ORF) of 
only 441 base pairs is consistently based on size-reduced 
cassettes that only achieve subphysiological β-globin expres-
sion and frequently result in only partially therapeutic treat-
ments for more severe forms of the disease [7], as reviewed 
in this issue by Ghiaccio et al. [8]. Delivery of short-hairpin 
RNAs as therapeutic cargo for posttranscriptional regulation 
overcomes the problem of size but is only of therapeutic 
interest in specific cases [9, 10] and, like all integrational 
approaches, still has the inherent risk of insertional mutagen-
esis [11]. A potentially safer option would be the application 
of synthetic nucleotides for modulation of gene expression 
or RNA processing [12], but despite its promise and decades 
of development, the approach continues to suffer problems 
with efficiency, systemic delivery, toxicity and the need for 
chronic application [13–15]. Finally, gene addition by non-
integrating vectors even in its most advanced forms is still 
marred by low efficiency and durability or by adverse events 
upon repeat application [16–18]. What is more, therapeutic 
application of each of these approaches has taken years of 
insight into individual disease and expression mechanisms, 
and none is universally applicable to loss of function and 
toxic gain-of-function mutations. Such delays and restric-
tions in new therapy development for genetic diseases could 
be avoided if efficient straightforward correction of causative 
mutations were possible.

2 � Gene Editing 101

Progress in gene editing technology was thus of poten-
tially critical importance for the gene therapy field. A 
key factor that would encourage accelerated adoption of 
the technology to genetic diseases and rare diseases in 

particular was the establishment of more versatile edit-
ing tools, with increasing simplicity of target redesign 
from meganucleases [19] over zinc finger (ZF) [20] and 
transcription activator-like effector (TALE) nucleases [21, 
22] to clustered regularly interspaced short palindromic 
repeats (CRISPR)/CRISPR-associated (Cas)-type RNA-
guided nucleases (RGNs) [23–25] (Fig. 1). A property 
common to all these genome-editing technologies is the 
introduction of double-strand breaks (DSBs) at the site of 
interest in the genome as a trigger of targeted modification. 
In interphase, the DSB is usually quickly mended by the 
classical non-homologous end joining (NHEJ) pathway in 
the absence of a repair template [26], faithfully retaining 
the original DSB-flanking sequences in the assumed vast 
majority of ligation events [27]. However, in the continued 
presence of designer nucleases, the target is recleaved until 

Fig. 1   The three most popular platforms of designer nucleases. Con-
ventional gene editing is based on designer nucleases, of which ZF 
nucleases, TALE nucleases and CRISPR/Cas9 nucleases are the most 
popular. Most readily designed for new targets with suitable proto-
spacer adjacent motif (PAM) sequences are CRISPR/Cas-type RGNs. 
All three classes of nucleases introduce a DSB as a basis for genome 
modification. ZF and TALE nucleases employ dimeric protein mod-
ules containing obligate dimeric FokI nucleases that introduce a stag-
gered cut, whereas CRISPR/Cas9 is most frequently employed as a 
ribonucleoprotein complex made up of a single guide RNA (sgRNA) 
and a double-nickase protein component (Cas9). Most RGNs of 
CRISPR/Cas type introduce blunt-ended DSBs. For any nuclease 
platform, repair of the DSB by non-homologous end-joining (NHEJ) 
may achieve insertions and/or deletions (indels) or homology-
independent targeted insertions (HITI) at high efficiency. Repair by 
homology-directed repair (HDR) in the presence of a suitable donor 
DNA may be used to correct or precisely insert a sequence of interest 
at the target site. dsDNA double-stranded DNA
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no longer suitable for recognition, which leads to highly 
efficient introduction of insertions and/or deletions (indels) 
at the DSB site as recognizable events, making NHEJ ideal 
for disruption of endogenous sequences. A major alter-
native pathway for DSB repair and the one suitable for 
most therapeutic applications is homology-directed repair 
(HDR), which can be used to introduce precise changes at 
the target site. However, HDR is much slower than NHEJ, 
normally restricted to late S and G2 phases in a cell-type- 
and locus-dependent fashion [28, 29] and appears to be 
underrepresented in long-term repopulating hematopoietic 
stem cells (LT-HSCs) [30–33], a cell population of par-
ticular interest for curative treatment of genetic diseases 
such as rare anemias, immunological disorders and lysoso-
mal storage disorders [34]. While work continues to shift 
the balance toward HDR (i.e., by ongoing refinement of 
NHEJ inhibitors, HDR enhancers, cell-cycle regulators, 
design of donor DNA templates and cell cycle-specific 
Cas9 expression) [30, 35–40] or to find ways of enriching 
suitably modified cells [41] to achieve therapeutically rel-
evant efficiencies for DSB-mediated precision editing, the 
CRISPR/Cas system has emerged as the editing platform 
of choice and already as the basis for a new generation of 
editing and regulatory molecules.

3 � CRISPR/Cas Versatility

RGNs (Fig. 2a), initially identified as a prokaryotic adap-
tive immune system, were the first programmable nuclease 
system to act as ribonucleoprotein particles (RNPs) and to 
employ simple Watson–Crick base pairing for target recog-
nition. The corresponding ease of redesigning target speci-
ficity at long last allowed speedy and widespread adoption of 
genome-editing technology for new targets. Demonstration 
of effective redesign, characterization of two independent 
strand-specific nickase domains and modification for easier 
exploitation as genome-editing tools [42, 43] then allowed 
successful application of CRISPR/Cas9 to mammalian 
cells [24, 25]. Its versatility and ease of target design, con-
struction and delivery suggested early on that the CRISPR/
Cas system may bring about a landmark shift in gene ther-
apy development [44], despite apparent limitations. For 
instance, the originally employed Streptococcus pyogenes 
Cas9 (SpCas9) restricted the choice of target sequence by 
sequence requirement of a DSB-proximal NGG protospacer 
adjacent motif (PAM) trinucleotide. However, this could be 
overcome by turning to naturally occurring CRISPR-asso-
ciated enzymes from other species or by reengineering or 
evolving Cas9 to achieve alternative or relaxed RGN spe-
cificities [45–49]. Of note here are Staphylococcus aureus 
Cas9, which is particularly small and therefore most suited 

for adeno-associated virus (AAV)-mediated delivery [50, 
51], and the Cas12a (aka Cpf1, CRISPR from Prevotella 
and Francisella) RGN system. Cpf1 nuclease uses a shorter 
RNA component more suitable for direct synthesis than that 
of other CRISPR/Cas systems and creates staggered DSBs 
18 base pairs from the TTTV PAM tetranucleotide, with 
5ʹ overhangs of 4–5 nucleotides [52–54]. These overhangs 
may favor directional and HDR-mediated events compared 
with Cas9-induced DSBs, which typically have blunt ends 
or single-nucleotide 5ʹ overhangs [55]. Incidentally, the 
presence of blunt- and sticky-end cutting enzymes in the 
adaptive CRISPR/Cas system parallels the presence of both 
types of enzymes in the “innate” prokaryotic defense system 
of restriction enzymes, which likewise uses DSB induction 
to fend off intruders and which provides valuable lessons in 
the dynamics of related repair events [56]. As data accumu-
late for large-scale application of RGNs across cell types, 
on-target events surrounding the DSB will become more 
predictable [57], facilitating designs for particular outcomes, 
such as frame-shift mutations, at the design stage [58]. As 
a problem common to all RGNs and designer nucleases, 
the relatively short recognition sequence, which for RGNs 
are encoded by the single guide RNA (sgRNA) component 
of the RNP, mediates on-target cleavage but also off-target 
cleavage of sequence-similar sites [59]. In this context, 
employment of mutated Cas9 nickases or heterologous nick-
ases for dimeric target recognition [60, 61] of truncated sgR-
NAs [62] and of modified high-fidelity Cas9 molecules with 
minimal unspecific protein-DNA interactions [63, 64] all 
led to decreasing off-target activity and maintenance of on-
target activity. In this vein, programmable Cas9 molecules, 
such as the recently engineered single-molecule protease-
sensing Cas9s [65], may not only expand the possible uses 
of RGNs but may help reduce any residual off-target activity 
and its impact. Generally, off-target cleavage is exacerbated 
by prolonged expression of the designer nuclease and can 
thus be addressed by highly transient expression of RGNs 
[66], which will also depend on the delivery method. For 
instance, RNP-based delivery of CRISPR/Cas allows RNP 
detection for up to 48 h [66], where delivery as RNAs allows 
RNA detection for up to 24 h [67] and ongoing RNP action 
for up to 96 h [68], although this will vary with each specific 
application. By contrast, plasmid DNA in cells and tissue 
is highly stable, persists in vivo for several months [69–71] 
and, moreover, poses the risk of illegitimate integration in 
the genome [72–74]. The same is true for AAV vectors, 
which are highly efficient for in vivo delivery but persist as 
episomes for months [17]. For clinical application, delivery 
of the RGN components themselves (rather than of possi-
ble donor templates) as RNPs or RNAs is therefore highly 
preferable to delivery as naked DNA or as persistent viral 
vectors.
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4 � CRISPR/Cas Beyond the Double‑Strand 
Break

CRISPR/Cas molecules form the basis for new classes of 
sequence-targeted DNA modifiers by modular combina-
tion of their RNP components with additional functional 
domains. These molecules currently include designer 
base editors (BEs) [75–81], epigenome modifiers [82–86] 
and transcriptional regulators [87]. BEs (Fig. 2b) exploit 
CRISPR/Cas9-mediated target recognition and Cas9 fusion 

with nucleotide-specific chemical modifiers plus auxiliary 
components to achieve chemical conversion of DNA bases. 
To date, conversion of cytosine to uracil (read as thymine; by 
cytidine deaminase) [76, 78–80] and of adenine to inosine 
(read as guanine; by artificially evolved adenine deaminase) 
[81] has been demonstrated. Triggered by nickase activity 
of a mutated Cas9 and made more efficient by inhibiting 
base excision repair of the altered base, the conversion is 
then copied over to the opposite strand to create a double-
stranded sequence change without DSB and thereby with 

Fig. 2   CRISPR/Cas9-based tools for therapy development. CRISPR/
Cas ribonucleoprotein complexes already offer up an array of molec-
ular tools, which all exploit sequence-specific recognition of DNA 
or RNA molecules by the sgRNA component of the complex. The 
following are important categories of CRISPR/Cas-based tools. a 
RNA-guided nucleases introduce a DSB to trigger repair by NHEJ 
or HDR. NHEJ introduces indels or can be exploited for homol-
ogy-independent targeted integration of donor sequences, whereas 
HDR allows precise repair and homology-based insertion of donor 
sequences. b Designer base editors (BEs) exploit chemical conver-
sion of DNA bases to introduce permanent sequence changes without 
DSB. Shown is the conversion of C to U, the correction of the com-
plementary base from G to A triggered by the Cas9 nickase activity, 
and the eventual establishment of a T-A base pair after DNA replica-
tion. c Epigenome regulators incorporate or recruit DNA or histone-
modifying enzymes, such as the DNMT3 DNA methyltransferase or 
the TET1 DNA demethylase, which add or remove a methyl group 
(Me) from proximal CpG sequences. d Transcriptional regulators 
incorporate or recruit transcriptional activators or repressor for non-
permanent modulation of target gene expression. e Posttranscrip-
tional regulators, such as Cas13, CasRx and derivatives, are mostly 
based on the Cas13 family of RNA-guided RNases and perform tar-
geted RNA cleavage without sequence restriction to cognate PAM 
sites. f Deactivated CasRx may bind to cis-regulatory elements of 
pre-messenger RNA (pre-mRNA) and effect alternative splicing. g 
RNA BEs, in analogy to DNA BEs, contain a Cas13 fusion with an 
ADAR2 domain, which performs adenosine-to-inosine conversion. 
This A > I conversion is read as an A > G base change during trans-

lation and may be exploited to achieve codon changes or the removal 
of premature stop codons in the open reading frame of mRNAs. In 
contrast to DNA-targeting Cas molecules, RNA-targeting Cas mole-
cules are not restricted to target sequences with a corresponding PAM 
sequence. For clarity, Cpf1, with its staggered DSB, RNA BEs and a 
plethora of additional tools, such as many additional transcriptional 
regulators and epigenome regulators [45] and different flavors of 
paired nickases (two-component RGNs), are not shown. Exclamation 
mark activation of expression; Red cross deactivation of expression; 
STOP sign translation termination (nonsense) codon, dCas9 deac-
tivated Cas9 without endonuclease activity, dsDNA double-stranded 
DNA, catalytic domains for functional expansion of the RGN com-
plex: CyD cytidine deaminase domain for C  >  U conversion in the 
ssDNA loopout, currently with precision of ≤ 2 bp, UGI uracil DNA 
glycosylase inhibitor domain to prevent base excision repair and 
removal of base edit, DNMT3a catalytic domain of DNA methyltrans-
ferase 3 alpha for DNA methylation and potentially persistent repres-
sion of gene expression for affected promoters [82], TET1 catalytic 
domain of Ten-Eleven Translocation dioxygenase 1 (TET) for DNA 
demethylation and potentially persistent transcriptional activation 
of affected promoters [84], VPR VP64 (four tandem repeats of her-
pes simplex virus VP16) linked to p65 (the transactivation domain 
of nuclear factor [NF]-κB) and Rta (the Epstein-Barr virus tran-
scriptional activation domain) for broad and potent transcriptional 
activation of affected promoters [174], KRAB catalytic domain of 
Krüppel-associated box epigenetic repressor [175], ADAR2 adenosine 
deaminase acting on RNA 2 [101]
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minimal chance of recombination events and at potentially 
high efficiency [75]. For functional analyses without DSB 
induction, cytidine-deaminase-based BEs alone would be 
able to produce functional knockouts by introduction of 
stop codons in 98.6% of known protein-coding genes in the 
human genome [88]. Recently, a novel Cpf1-based cytidine 
deaminase BE was developed, which expands the target-
ing range for base editing from the G/C-rich PAM of Cas9 
to the T/A-rich PAM of Cpf1, at low frequency of indel 
formation, non-C-to-T substitutions and off-target editing 
[89]. BEs therefore have great therapeutic potential for the 
correction of single-base mutations, especially in the case 
of adenine-deaminase BEs that have the capacity to correct 
G > A mutations, which account for approximately half of 
all known pathogenic single nucleotide polymorphisms [81]. 
However, BEs are restricted to catalyzing base transitions, 
i.e., to the conversion of a purine to another purine or of a 
pyrimidine to another pyrimidine. This inability to catalyze 
base transversions, i.e., substitutions of purines with pyri-
midines and vice versa, combined with PAM restrictions 
and a limited editing window, therefore constrains their 
use to only a fraction of all pathogenic single-nucleotide 
mutations. Epigenome modifiers (Fig. 2c) can modify the 
accessibility of target DNA and contain fusions of nuclease-
deactivated Cas9 (dCas9) with functional enzyme domains 
or with a binding domain recruiting such enzymes, includ-
ing histone methylases [82, 83], histone acetyltransferases 
[82, 83, 86], DNA methylases [82] and DNA demethylases 
[84]. In transcriptional regulators (Fig. 2d), the dCas9 or 
sgRNA component of RGNs is fused to transcriptional acti-
vator or repressor domains [45] and can be used to regu-
late gene expression of specific target genes or even gene 
networks [90, 91]. Application of CRISPR/dCas9 alone 
can also lead to repression of gene transcription by interfer-
ing with the successful formation of the RNA polymerase 
complex machinery at the initiation step or by disrupting 
the elongation stage, both via steric hindrance [85, 92]. 
Modification of protein or RNA components of the RGN 
allows regulated modulation of transcription [93, 94] and 
even differential ligand-induced regulation of multiple genes 
[94]. Sufficiently small artificial transcriptional regulators 
of this type can be delivered by AAV vectors, which has 
achieved activity in target cells for over 5 months [95]. 
However, action of CRISPR/Cas RNPs is not restricted to 
DNA. Analyses of CRISPR/Cas molecules as a prokaryotic 
defense system had already indicated targeted RNA cleav-
age by certain Cas molecules [96] 5 years before CRISPR/
Cas9 was also harnessed for targeted cleavage of eukaryotic 
messenger RNA (mRNA) in 2014 by provision of mRNA-
complementary PAM-containing oligonucleotides [97]. Dis-
covery and application of new RNA-targeting CRISPR/Cas 
molecules continues [98–100] and has recently led to the 
discovery of the RNA-editing Cas13 family [99–101] and 

the engineering of CasRx, which shows potent and specific 
RNA cleavage in human cells and, at a small size of 930 
amino acids, is suitable for delivery by AAV vectors [102] 
to primary cells and for in vivo delivery (Fig. 2e). In addition 
to the knockdown activity of RNA-binding Cas complex, 
utilization of a catalytically inactivated CasRx guided by 
single or multiple guide RNA (gRNA) has the capacity to 
regulate pre-mRNA splicing (i.e., exon excision) and act as 
splice effectors (Fig. 2f) [102]. Moreover, and in analogy to 
designer DNA BEs, modification of Cas13-type molecules 
can be exploited to edit RNA and convert adenosine to ino-
sine (read as guanosine), for instance to repair premature 
stop codons, without PAM sequence constraints on the target 
sequence [101] (Fig. 2g).

5 � Brief Instructions for the Toolkit

The current momentum of novel discovery and develop-
ments of and around CRISPR/Cas suggests that the tools 
we have in hand after barely 6 years of research into tai-
lored RGNs are all but the tip of the iceberg. However, 
these tools already provide a veritable arsenal of possible 
treatment strategies for genetic diseases. Based on HDR 
with short donor templates or by base editing, we can fix 
causative point mutations, activate positive disease modifiers 
of disease severity and introduce stop codons into gain-of-
function toxic ORFs or into negative modifiers. Based on 
HDR in combination with gene addition, we can minimize 
insertional mutagenesis by targeting large expression cas-
settes into inert genomic loci, such as the paradigmatic safe-
harbor AAVS1 locus inside the PPP1R12C gene in the case 
of hematopoietic stem and progenitor cells. Alternatively, we 
can target gene fragments or complementary DNA (cDNA) 
into endogenous loci to replace defective sequences and 
achieve physiological expression from the resulting chimeric 
expression cassette. Based on NHEJ, we can disrupt toxic 
mutated genes or regulatory sequences of disease modifiers 
or, using pairs of RGNs, excise and rearrange parts of the 
genome. Based on epigenetic and transcriptional regulators, 
we can boost or dampen expression, respectively, of posi-
tive and negative disease modifiers or directly counteract the 
effect of causative mutations in regulatory regions. For tran-
scriptional regulators, this can already be done in a regulated 
and multiplexed fashion for several regulatory targets [94]. 
Finally, the recent addition to the CRISPR/Cas-based toolkit 
of posttranscriptional regulators that perform targeted RNA 
cleavage allows the removal of toxic RNAs or accelerated 
turnover of normal RNAs to alter the transcriptome and cell 
state [83].

Approaches acting at the level of genomic DNA intro-
duce permanent changes and are best performed using one-
off transient RGN applications to limit off-target effects. 
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Conversely, transcriptional and posttranscriptional modifiers 
need to act continuously and thus require one-off perma-
nent RGN delivery or repeated transient application over 
time. For epigenetic modifiers, long-term maintenance and 
thus the need for reapplication of epigenetic reprogramming 
depend on the nature and locus of the modification [85]. 
Delivery of CRISPR/Cas components may be performed 
by a plethora of methods [68, 103], viral delivery (as AAV 
or lentivirus [LV]) and electroporation (as RNP or RNAs) 
being amongst the most widely applicable. Transient deliv-
ery may be achieved by electroporation of RNPs or RNAs 
or by transduction with integration-defective viral vectors, 
whereas permanent delivery would rely on integrating LVs 
or, at lower efficiency but also lower risk of insertional 
mutagenesis, by employing an additional designer nuclease 
for integration into AAVS1 or other suitable loci of choice. 
Either methodology may be employed for ex vivo and in vivo 
delivery of the CRISPR/Cas complex, with a preference of 
DNA-free delivery by electroporation for ex vivo approaches 
for reasons of biosafety, and of AAV-mediated delivery for 
in vivo approaches for reasons of efficiency in a range of 
tissues [18]. Where donor templates or tags for integration 
at DSBs are required, those may be delivered as either AAV 
vectors or as naked nucleic acids or analogs, depending on 
insert size and type of application [18, 103–105].

6 � A Lever to Move the Medical World

Based on these CRISPR/Cas-based technologies, therapy 
development for many human diseases, including infectious 
diseases, cancers and monogenically inherited diseases, is 
underway. As regards human infectious diseases, one of the 
most intensely researched viral diseases is HIV, for which 
several CRISPR/Cas-based therapeutic approaches are 
being evaluated. These include antiviral action by elimina-
tion of the C-C chemokine receptor type 5 (CCR5) HIV 
co-receptor [106] and excision of the HIV provirus from 
latently infected cluster of differentiation (CD)-4+ T cells 
for complete elimination of the virus [107]. Besides disrup-
tion of integrated proviruses as antiviral therapy, CRISPR/
Cas can also eliminate episomal viral DNA species, such as 
the covalently closed circular DNA responsible for relapse 
after withdrawal of antiviral treatments in hepatitis B and C 
infections [108, 109]. In cancers, CRISPR/Cas therapeutic 
application has two main angles. On the one hand, CRISPR/
Cas has been used to accelerate development of chimeric 
antigen receptor (CAR) T cells [110], enhance their action or 
enhance the action of naturally occurring T cells [111] as an 
auxiliary factor to therapy. On the other hand, CRISPR/Cas 
may be used as direct and possibly the primary therapeutic 
agents, as proposed for noncoding RNAs [112] or as shown 
with pro-apoptotic effect for cancer cells by knockout of the 

programmed cell death protein 1 (PD-1) [113]. The latter 
approach is at the basis of at least seven current clinical tri-
als (ClinicalTrials.gov ID NCT02793856, NCT02863913, 
NCT02867332,  NCT02867345,  NCT03044743, 
NCT03081715, NCT03342547) for various types of cancer 
and of an additional trial based on PD-1 knockout in com-
bination with gene-edited CAR T-cells (NCT03545815). As 
regards monogenically inherited disease and reviewed else-
where in this issue [114], ease of CRISPR/Cas design favors 
therapy development for an abundance of rare diseases, most 
of which are currently without a cure. The CRISPR/Cas 
strategies employed for rare diseases are highly varied and, 
depending on the disease mechanism and type of causative 
mutation, may include disruption, precision editing, targeted 
integration of expression cassettes or of gene fragments, and 
transcriptional and posttranscriptional regulation. Despite 
the experimental nature of therapies based on the nascent 
CRISPR/Cas technology, three clinical trials aiming to treat 
patients with rare diseases are already registered, all three 
with a focus on β-hemoglobinopathies (NCT03655678, 
NCT03728322 and NCT03745287).

Towards future therapies, through the ease of creating 
large sgRNA libraries and corresponding viral vectors or 
RNP complexes, CRISPR/Cas technology also greatly facili-
tates functional genetic screens for forward or reverse genet-
ics [115]. Compared with screens based on knockdown by 
RNA interference (RNAi), CRISPR/Cas screens have much 
greater versatility, in that CRISPR/Cas-based transcriptional 
inactivation screens mimic RNAi-based screens [116], 
whereas knockout screens allow more reproducible, com-
plete inactivation of targets in coding as well as non-coding 
parts of the genome [117, 118], and whereas gain-of-func-
tion screens additionally allow assaying for the effects of 
transcriptional activation [118]. In the context of viral infec-
tions, genome-wide screens using CRISPR/Cas have thus 
already achieved identification of additional host-dispensa-
ble critical host factor for HIV for future therapy [119], of 
antiviral host defense mechanisms against flaviviruses [120] 
and of critical host factors for additional viruses, such as 
Dengue, hepatitis C, West Nile and Zika viruses [121], with 
a clinical trial for the identification of norovirus-critical host 
factors underway (NCT03342547). As examples for cancer 
research, CRISPR/Cas is employed to validate shortlisted 
drug-resistance candidates [122, 123], knockout screens 
have already identified therapeutic targets for BRCA-,  
KRAS- and MYCN-linked cancers and large B-cell lympho-
mas [124–128], and a transcriptional activation screen has 
revealed genes conferring resistance to cancer treatment by 
BRAF inhibitors [129]. Because high-throughput screens 
depend on readily scorable phenotypes, such as viral infec-
tion, cell death or cell proliferation, screening for nonma-
lignant genetic diseases with phenotypes that mostly only 
appear at the organismal level is more difficult. Nevertheless, 
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here CRISPR/Cas screens have already revealed novel genes 
with therapeutic relevance in β-hemoglobinopathies [128], 
Parkinson’s disease [130], thromboembolisms [131] and 
inflammatory responses [132] and have shortlisted genes 
required for processes as diverse as neuronal fate [133], 
energy metabolism [134] and ferritinophagy [135], giving 
pointers to novel disease-related pathways and candidate 
genes.

CRISPR/Cas-type molecules thus have great potential 
both as therapeutic tools and for the identification of future 
therapeutic targets. Combined with the wider importance of 
CRISPR/Cas technology for therapy development, where it 
also contributes to several-fold accelerated development of 
disease models by facilitating the creation of isogenic cell-
line [136–138] and animal [138–146] models, CRISPR/Cas 
technology has already become an essential and ubiquitous 
component of biomedical research for infectious, malignant 
and nonmalignant diseases.

7 � Room for Improvement

As versatile and powerful as CRISPR/Cas technology may 
already be, many aspects of the technology still need to be 
improved, understood, or both, for therapeutic application. 
Whereas for research applications, suboptimal aspects of 
CRISPR/Cas technology will become an inconvenience 
or a significant cost factor, for therapy these same aspects 
will prevent regulatory approval for clinical application or 
may turn a trial into a tragedy. The issues that remain to be 
addressed may be divided into aspects of safety, efficiency 
and utility, with some overlap between the categories.

7.1 � Safety

A key safety concern is that of off-target activity, which is 
still hard to predict, despite large-scale analysis efforts, and 
is in part brought about by issues of cell-type- and develop-
ment-specific genome accessibility, which cannot be fully 
controlled [147]. The problem of potential off-target activity 
also affects BEs, which moreover have an editing window 
of 2–5 nucleotides that limits their use for precision edit-
ing of certain target sequences [78, 148]. While off-target 
activity at least may be reduced by high-fidelity variants 
or, for DSB-based approaches, by paired CRISPR/Cas nick-
ases or CRISPR/FokI dimeric nucleases, approval for clini-
cal trials will be difficult to obtain without comprehensive 
experimental analysis of potential off-target effects, so as to 
minimize the residual risk to patients [149]. Another safety 
concern is that of pre-existing immunity against Cas mol-
ecules in humans [39, 150, 151]. While this issue may be 
of minor importance for most ex vivo approaches and may 
be overcome for in vivo approaches by alternative enzymes 

or transient immunosuppression [39], it nevertheless casts a 
shadow of doubt over in vivo applications of CRISPR/Cas, 
which are already at risk of adverse reactions or lowered 
efficiency by pre-existing immunity to AAV and other deliv-
ery vectors [152–154]. Two additional and significant safety 
concerns are directly linked to the induction of DSBs for 
genome editing by RGNs and could altogether be prevented 
by approaches that act independent of DSBs, such as base 
editing and transcriptional or posttranscriptional regulation. 
First, effective DSB induction may lead to P53-dependent 
apoptosis, and recent independent studies have pointed 
out that selecting for DSB-dependent editing events may 
thus select for P53-deficient cells and cell populations with 
elevated cancer risk [155–157]. Such enrichment may be 
prevented by suppressing P53 activity at the time of editing, 
and it remains to be shown whether the observations for both 
studies can be reproduced in clinically relevant cell types. As 
a second safety concern linked to DSB-dependent editing, 
even single DSB events have been demonstrated to induce 
unpredictable indel and interchromosomal recombination 
events [158]. While future research will show how far such 
events can be minimized by encouraging speedy and faithful 
DSB repair, they appear to be inherent to RGN activity and 
therefore represent a safety risk tied up with their applica-
tion. Further safety concerns exist regarding the long-term 
safety of editing events. One such concern arises from the 
long persistence of AAV vectors in target tissue. A favorite 
vehicle for in vivo delivery of HDR donor templates, AAV 
vectors show long-term persistence of circular episomal con-
catemers and the occurrence of illegitimate recombination 
and rare random integration events [17, 159], which may 
represent a significant lifetime risk of insertional mutagen-
esis for treated patients. Another concern is common to all 
gene therapy approaches based on permanent modification 
of stem cells and relates to the natural turnover of stem cells 
actively contributing to tissue reconstitution. Exemplary 
work on HSCs and multipotent progenitor cells demonstrates 
that treated cells experience waves of quiescence and active 
contribution to repopulation [160, 161]. Disconcertingly, 
this implies that events of insertional mutagenesis or off-
target-related genotoxicity in quiescent cells may remain 
hidden for an extended period of time until the affected 
cell may become active and experience pathological clonal 
expansion.

7.2 � Efficiency

The frequency of HDR events is a major concern for many 
applications, particularly owing to bias of HDR events for 
less basic stem cells. This might partly be addressed by 
ex vivo selection of genome-edited cells [162], by refine-
ment of additives for the maintenance of stemness in ex vivo 
procedures and culture [30, 163], by timing DSB induction 
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with suitable phases of the cell cycle, or by improving the 
selection procedure for enrichment of true stem cells [164], 
which would also help lower vector requirements and the 
cost of the procedure. Moreover, Cpf1 appears to have an 
advantage over Cas9 molecules in general for certain HDR-
mediated knock-in or editing events, which might partly 
relate to the staggered DSB introduced by Cpf1, akin to that 
produced by TALENs [165, 166]. Additionally, the nature 
and symmetry of the HDR donor template affect HDR effi-
ciency [166, 167]. Therefore, many factors allow optimiza-
tion of HDR efficiency, from cell isolation, selection and 
culture to choice of RGN and donor sequence and type.

7.3 � Utility

Several aspects of Cas9 are points of practical limitation for 
their employment. For one, Cas9 molecules are fairly large 
and difficult to deliver by AAV for systemic application, a 
problem that is aggravated for Cas9 fusion proteins, such as 
BEs, that include additional functional domains. Although 
this may be addressed by split delivery [168], the search 
continues for smaller Cas-type molecules that would more 
readily accommodate additional domains and efficient deliv-
ery. As a second point, PAM site requirement is an evolu-
tionary necessity of the bacterial adaptive immune system 
and prevents self-cleavage of the host, so that the search 
for additional Cas variants with alternative PAM sites con-
tinues to extend the choice of target sites. However, true 
freedom to select the target site of DNA-targeting CRISPR/
Cas molecules, albeit at higher likelihood of off-target hits 
for single-molecule CRISPR/Cas approaches, would only 
be warranted by protein engineering and removal of PAM 
restriction altogether, as it already applies for RNA-targeting 
CRISPR/Cas molecules.

8 � Of Disruptive Technologies

In any field of science, new discovery critically depends 
upon new technological advances and then, in turn, engen-
ders new technological advances. Sometimes the resulting 
developments are so profound or their practical implications 
so wide-ranging that they cause a break with previous indus-
try and scientific practice. A key example of such disrup-
tive technologies in molecular biology is the polymerase 
chain reaction, with such versatility in its application that 
it had a rapid impact on virtually every aspect of molecular 
biology shortly after its publication in 1986 [169]. It then 
seemed that the discovery of RNAi as an antiviral defense 
and developmental regulatory system may also find wide-
ranging biotechnological application [170]. However, more 
than 20 years after its first conceptualization [171], RNAi 
has simply turned into one of several arrows in our quiver 

for reverse genetics and functional analyses and only gradu-
ally is its potential for therapy coming to fruition [172, 173]. 
Given the RNAi experience, it was therefore hard to gauge 
early on whether the adoption of a prokaryotic antiviral 
defense system for genome engineering [25] truly heralded 
a new revolution in molecular biology or merely a further 
addition of tools for research and therapy development. 
However, and as we have summarized here, in the 6 years 
since its original application to mammalian cells, CRISPR/
Cas technology has been adopted so widely and has been 
modified, functionally extended and adapted for so many 
purposes, that its utility to molecular biology and genetics 
has taken on a new quality altogether. In more senses than 
one, therefore, and going well beyond its application for 
design and delivery of effective therapeutic tools, CRISPR/
Cas technology might prove a truly disruptive technology 
for many aspects of biomedicine and fundamental research.
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