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Abstract

Manifold-based models have been recently exploited for accelerating dynamic magnetic resonance 

imaging (dMRI). While manifold-based models have shown to be more efficient than conventional 

low-rank approaches, joint low-rank and sparsity-aware modeling still appears to be very efficient 

due to the inherent sparsity within dMR images. In this paper, we propose a joint manifold-

learning and sparsity-aware framework for dMRI. The proposed method establishes a link between 

the recently developed manifold models and conventional sparsity-aware models. Dynamic MR 

images are modeled as points located on or close to a smooth manifold, and a novel data-driven 

manifold-learning approach, which preserves affine relation among images, is used to learn the 

low-dimensional embedding of the dynamic images. The temporal basis learnt from such an 

approach efficiently captures the inherent periodicity of dynamic images and hence sparsity along 

temporal direction is enforced during reconstruction. The proposed framework is validated by 

extensive numerical tests on phantom and in-vivo data sets.

Keywords

Dynamic image reconstruction; manifold learning; manifold regularization; cardiac MRI

I. INTRODUCTION

Key challenges in obtaining high spatio-temporal resolution images in dynamic magnetic 

resonance imaging (dMRI) are long data acquisition time, patient discomfort and inherent 

physical limitations in data acquisition [1], [2]. Sub-Nyquist sampling techniques, called 

compressed sensing (CS) [3]–[5] and low-rank (LR) based frameworks [6]–[9] have shown 

great potential to accelerate data acquisition process in MRI. These methods enforce signal 

prior information, such as low-rankness and/or sparseness, by using the techniques such as 

the conventional principal component analysis (PCA), singular value decomposition (SVD) 

to learn data correlations, and/or Fourier sparse priors.

Recently, manifold-learning models have shown to be superior to conventional PCA-based 

low-rank models [10], [11]. Few kernel-based frameworks [12], [13] and manifold based 

frameworks [14]–[17] have been explored in reconstructing dMRI from highly 

undersampled k-space data. While these methods have shown considerable improvement 

over conventional low-rank based models, they overlook the sparsity which arises naturally 
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along the dMRI temporal direction. Joint low-rank and sparsity-aware models [4], [7], [8] 

have already shown significant improvement over schemes that rely only on low-rank or 

sparsity properties. Motivated by recent developments in manifold learning, this paper 

advocates a generalized joint manifold-learning and sparsity-cognizant framework for highly 

accelerated dMRI. The proposed method builds a bridge between manifold-learning 

methods [16], [17] and models which capitalize on sparsity arguments [7], [8].

The rest of the paper is organized as follows. Section II describes the basic principles behind 

dMRI with undersampled data, Section III presents the proposed method, and section IV 

validates the advocated approach using extensive numerical tests on data. Finally, section V 

concludes the paper.

II. BACKGROUND

Let, the N × Nfr Casorati matrix X = x1, x2, ...xNfr
 be the dynamic image series, where N = 

Number of phase encoding lines (Np) × Number of frequency encoding lines (Nf) and each 

column xi of X is the ith image. The data acquisition process in dMRI can be then 

formulated as:

Y = ϕ(x) + V, (1)

where ϕ is a measurement operator that incorporates Fourier undersampling along each 

column of X and V stands for noise. The dynamic image series X is recovered from the 

acquired undersampled k-space data Y by solving following regularized optimization 

problem:

arg minx Y − ϕ x F
2 + λℛ x . (2)

Typically, ℛ( ⋅ ) is the Fourier sparsity-aware loss along temporal direction ℱ(x) 1 or low-

rank priors.

In this paper, we present a novel joint manifold learning and sparse framework, (we termed 

as MLS) for recovering dMR images from highly undersampled k-space data. The proposed 

method can be divided into three steps. Although, dynamic images xi ∈ ℂN, i = 1, 2, ...Nfr are 

high dimensional in the input space, the images live on or close to the smooth otherwise 

unknown manifold, ℳ of dimension M ≪ N. We model dynamic images as points on or 

close to this manifold ℳ. The first step is to learn such a smooth manifold. In the first step 

the manifold geometry is learned by describing neighborhood of each image based on affine 

combination and compute the nonlinear mapping that embeds ℳ into ℂM. Dynamic MR 

images naturally exhibit periodicity along time. In the second step, we establish a 

mechanism to capture such periodicity and enforce sparse representation of dynamic image 

series in the manifold to formalize the joint manifold and sparse framework. Finally in the 
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third step, desired dynamic image series is reconstructed using regularized inverse problem 

framework.

III. PROPOSED FRAMEWORK

A. Manifold learning and embedding

Given an image xi ∈ ℂN, i = 1, ..., Nfr from a dynamic image series, we assume there exists a 

smooth M-dimensional M ≪ N  manifold ℳ ⊂ ℂN such that xi’s lie on or close to ℳ as 

shown in the Fig. 1. Similar to majority of manifold based methods, the most important part 

in manifold learning is to define the neighborhoods of each signal (image) that defines the 

manifold geometry. While, the Euclidean-distance is used in most of the works to define 

neighborhood relations, e.g., [10], here we capitalize on the properties of the tangent spaces 

of a smooth manifold to define neighborhoods. Each image xi can be approximated by the 

affine combination of its neighbors [17], [18]: xi ≈ ∑n = 1
Nfr ωi

nxn, where ωi is a sparse weight 

vector that defines the manifold geometry. Such weight vectors can be computed by solving 

the following ℓ1-constrained least-squares problem:

ωi = argmin
ωi

H1Nfr
= 1, ωi

i = 0
xi − ∑n = 1

Nfr ωi
nxn

2
+ β ωi 1, (3)

where 1Nfr
 is the all-one vector. The constraint ωi

H1Nfr
= 1, where (·)H denotes Hermitian 

transposition, ensures affine neighboring relations, ωi
i = 0 excludes xi from being a neighbor 

of itself, and β ≥ 0 is the parameter to control the number of neighbors. Hence, the manifold 

geometry of dynamic image series is described by an Nfr × Nfr weight matrix W whose 

entries are ωi
n.

Often times, in machine learning applications and dimensionality reduction problems, the 

objective of manifold learning is to find a M dimensional basis Ψ that preserves the 

manifold geometry such that:

argmin
Ψ ∈ ℂ

M × Nfr, ΨΨH = IM,

Ψ1M = 0M

∑i = 1
Nfr ψ i − ∑n = 1

Nfr ωi
nψn

2
, (4)

where Ψ = ψ1ψ2...ψNfr
. Constraint ΨΨH = IM, where IM is an M × M identity matrix, 

excludes the trivial all-zero solution, and Ψ1M = 0 centers the columns of Ψ around 0. The 

desired Ψ is given by the eigen-decomposition of the Nfr × Nfr matrix 𝒦: = I − W I − W H
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such that rows ψm, m = 1, 2,…M of Ψ are the eigenvectors 𝒦 that correspond to the M least 

significant eigenvalues. [10], [18].

Unfortunately, unlike in many machine learning applications such as clustering and 

classification, lack of training data is a big challenge in learning based MRI reconstruction 

frameworks. Full images xi are not available in dMRI reconstruction applications, rather, 

they are the desired unknowns. In dMRI, pseudo random sampling pattern that fully samples 

few low frequency central k-space lines and randomly undersamples outer k-space lines is 

prevailed as shown in Fig.2. Such low frequency signals that are sampled in all temporal 

frames, called “navigators,”. Because of the linearity of Fourier transform, the neighborhood 

relation W in (3) holds for the k-space as well and hence the navigators are used to estimate 

the weight matrix W. It is important to note here that unlike in many dimension reduction 

problems, where the objective is to learn manifold from massive sets of training data and 

find a M low dimensional embedding for a test signal, such massive training data is not 

available in accelerated dMR reconstruction problem. Instead, our objective here is to 

reconstruct the dMR images from highly undersampled k-space data. For such purpose, we 

generalize partial separable model for dMRI [6], [7] and explicitly use Ψ as temporal basis 

of the dynamic image series. Representing the image series Casorati matrix as X = UΨ, 

regularized solution of (2) takes the form:

argminU Y − ϕ UΨ F
2 + λℛ UΨ . (5)

B. Sparsity enforcement

After finding the temporal basis Ψ, the next step is to enforce sparsity in the reconstruction 

framework. Many works [4], [5], [7] have shown that, Fourier basis provides efficient sparse 

representation along temporal direction for dMRI. In [17] we have shown that the temporal 

basis computed using manifold based framework efficiently captures the inherent low order 

harmonics in dMRI. Motivated by the fact that Fourier basis is suitable for sparse 

representation of periodic signals and the temporal basis learned from manifold efficiently 

captures periodicity, the sparsity-enforcing regularizer ℛ ⋅  in (2) is defined as

ℛ UΨ = UΨ f 1, (6)

where Ψ f = ℱ Ψ , ℱ is the Fourier transform operator along temporal direction.

Substituting (6) in (5) we get the sparsity-aware manifold framework for dMRI 

reconstruction as

argminU Y − ϕ UΨ F
2 + λ UΨ f 1 . (7)
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The problem formulation in (7) is similar to the conventional partial separable and sparse 

(PS-sparse) [7] model and low rank and sparse model (SLR) [8]. While these conventional 

frameworks use SVD for low rank temporal basis estimation, we learn the temporal basis 

from the affine relation of images in dMR series.

C. Image reconstruction

The ℓ1-regularized image reconstruction framework, similar to (7), has been widely used in 

many image reconstruction applications [4], [5], [7]. The regularizer term in (7) is non-

differentiable, hence the problem in (7) is difficult to solve. In [19] such a regularizer is 

approximated by the Huber function ℋ r :ℂ ℂ:

ℋ r =
r 2

2δ , if r ≤ δ

r − δ
2, if r ≥ δ .

(8)

and the problem in (7) can be rewritten as

argminU Y − ϕ(UΨ) F
2 + λ∑ j = 1

N ∑k = 1
Nfr ℋ((UΨ f ) j, k

) (9)

For simplicity and fairness in comparison, the problem in (9) is solved using half quadratic 

minimization problem [19] which is also used in [7]. Introducing an auxiliary variable, Z = 

UΨf , (9) can be rewritten as

argminU, Z Y − ϕ(UΨ) F
2 + λ

2δ UΨ f − Z F
2 + λ ρ(Z) 1, (10)

where ρ ⋅ :ℂP × Q ℂD × 1, D = P × Q is a vectorizing operator. Finally, (10) can be solved 

iteratively alternating over U and Z until convergence. Specifically, at (t)th iteration,

Z t = argminZ
1
2δ U t − 1 Ψ f − Z F

2 + ρ(Z) 1, (11)

U t = argminU Y − UΨ F
2 + λ

2δ UΨ f − Zt
F
2 . (12)

Once an optimal U* is obtained at convergence, the desired dynamic image series is 

computed as X = U*Ψ

Nakarmi et al. Page 5

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2019 April 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



IV. RESULTS AND DISCUSSION

The proposed method is verified by extensive testing on phantom and in-vivo data sets. All 

experiments are performed in quad core workstation Intel(R) 3.6 GHz with windows 7, 32 

GB RAM running MATLAB 2014. The performance of the proposed methods is compared 

with the state-of-the-art PS-sparse method [7]. For fairness of comparison both methods 

were solved through same optimization pipeline. The performance is quantified using the 

Reconstruction Error (RE) as in (13). Parameters in all methods were tuned heuristically and 

the results with the least RE are presented.

RE =
XREF − XREC F

XREF F
. (13)

A. Cardiac Cine Phantom

An MRXCAT [20] phantom based on extended cardiac torso (XCAT) was used to generate 

breath-hold cardiac cine data of matrix size (Np × Nf × Nfr) 408 × 408 × 360. It included 

around 15 cardiac cycles and 24 cardiac phases. Undersampling was mimicked using 

retrospective undersampling with Cartesian sampling as shown in Fig. 2. Each frame has 

about 12 acquired phase encoding lines out of which 4 are navigator lines, with net reduction 

factor of about 32.

At first, we studied how well the proposed affine relation based on the manifold-learning 

approach captures the inherent periodicity of the dMR image series. Furthermore, it is 

important that few navigator lines should accurately approximate such a relation. We 

compared the temporal basis calculated using using full data (reference) and using 4 

navigator lines. Fig. 3 shows that the proposed method efficiently captures the periodicity in 

cardiac cycle and cardiac phases.

Two spatial frames representing cardiac region of interest(ROI) from systole and diastole 

cardiac stages are shown in Fig.4. From Fig.4 we can see that PS-sparse tends to 

demonstrate noise-like artifacts and ring like artifact in the myocardial region. Fig.5 shows 

the x-t cross section along dotted line in the reference image. It shows that the PS-sparse 

method have ripple like aliasing artifacts. RE for each method are presented in parenthesis in 

Fig.4. Computational times for PS-sparse and proposed method are 46 and 52 mins, 

respectively.

B. In-vivo cardiac cine data

For in-vivo experiment, we used cardiac MRI (CMR) from a patient with systolic 

dysfunction. The acquisition parameters used were TR/TE = 5.4/4ms, FOV 360 × 340 mm, 

spatial resolution about 1.8 mm. The scanned data was single cardiac cycle and thin plate 

spline spatio temporal deformation [21] was used to generate 5 cycles to mimicking quasi-

periodicity. The data matrix was of size 192 × 156 × 130. Retrospective Cartesian 

undersampling, with 12 acquired lines per frame was used, out which 4 are navigators. From 
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Fig.6 we can see that the proposed method gives cleaner and sharper images whereas in the 

PS-sparse method the myocardial region looks to be blurred. The temporal result in Fig.7 

shows that the PS sparse method smooths out the details. Moreover, the RE values also 

indicate the proposed method outperforms the PS-sparse method. Computational times for 

PS-sparse and proposed method are 16 and 21 mins, respectively.

V. CONCLUSION

In this paper, we presented a novel framework that builds the bridge between the manifold-

learning and sparsity-cognizant model for accelerating dMRI. We proposed a novel data-

driven technique to learn the manifold and hence build the temporal basis for dMR images. 

Within the proposed manifold model, the inherent periodicity of dMR images is exploited to 

enforce sparsity during reconstruction. The proposed joint manifold and sparsity model have 

shown to be superior than conventional low-rank and sparsity-aware model. Extensive study 

of the proposed method on more data sets and applications is desired. Although the proposed 

method presents specific manifold learning approach and uses Fourier transform as 

sparsifying transform it can be easily extended to many other state of the art manifold 

learning and learning based sparse encoding techniques.
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Fig. 1. 
Illustration of a smooth manifold. Three-dimensional data points lying close to the 2-

dimensional smooth manifold surface.
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Fig. 2. 
1-D Cartesian undersampling pattern with navigator lines. Left: phase encoding and 

frequency encoding direction. Right: phase encoding and temporal frame direction.
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Fig. 3. 
Comparison of representative temporal basis.Top to Bottom: 2nd and 3rd temporal basis 

capturing periodicity in cardiac cycle and phases.
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Fig. 4. 
Spatial results for numeric cine phantom. Representative diastole and systole phase. Left to 

Right: Reference, PS-sparse (0.0652), proposed MLS (0.0431). Top to Bottom: diastole 

phase, error maps (x10), systole phase, error Maps (x10).
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Fig. 5. 
Temporal x-t cross section results for numeric cine phantom. Top to bottom: Reference, PS-

sparse, proposed MLS.
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Fig. 6. 
Spatial results from in-vivo cardiac MR to study atrial and ventricular dilation. 

Representative diastole and systole phase. Left to Right: Reference, PS-sparse (0.0587), 

proposed MLS (0.0460). Top to Bottom: diastole phase, error maps (×10), systole phase, 

error maps (×10.)
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Fig. 7. 
Temporal x-t cross section results for cardiac in-vivo MR study. Top to bottom: Reference, 

PS-sparse, proposed MLS.
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