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Abstract

Antimicrobial resistance happens when microorganisms mutates in manners that render the

drugs like antibacterial, antiviral, antiparasitic and antifungal, ineffective. The normal muta-

tion process is encouraged by the improper use of antibiotics. Mutations leading to quino-

lone resistance occur in a highly conserved region of the quinolone resistance-determining

region (QRDR) of DNA gyrAse and topoisomerase IV gene. We analyzed antibiotic resistant

genes and single nucleotide polymorphism (SNP) in gyrA and parC genes in QRDR in 120

E. coli isolates (both diarrheagenic and non-pathogenic) recovered from fresh stool samples

collected from children aged less than 5 years from Delhi, India. Antibiotic susceptibility test-

ing was performed according to standard clinical and laboratory standards institute (CLSI)

guidelines. Phylogenetic analysis showed the clonal diversity and phylogenetic relationships

among the E. coli isolates. The SNP analysis depicted mutations in gyrA and parC genes in

QRDR. The sul1 gene, responsible for sulfonamide resistance, was present in almost half

(47.5%) of the isolates across the diseased and healthy samples. The presence of antibiotic

resistance genes in E. coli isolates from healthy children indicate the development, dissemi-

nation and carriage of antibiotic resistance in their gut. Our observations suggest the imple-

mentation of active surveillance and stewardship programs to promote appropriate

antibiotic use and minimizing further danger.

Introduction

Childhood diarrhoea, a major cause of child mortality globally, affects an estimated 2.2 million

children in developing countries alone [1]. Antimicrobial drugs have played an important role

in reducing death toll caused by infectious diseases. However, infections caused by multidrug-

resistant (MDR) organisms have emerged as a huge threat to the community and hospitalized

patients. In this regard the emergence of MDR E. coli isolates from human, animal and envi-

ronmental sources have posed a major concern worldwide [2, 3].
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Study of antimicrobial resistance and regional variation is vital for the development and

implementation of interventional strategies. E. coli, though a commensal, has acquired resis-

tance to various groups of antimicrobials at a rapid rate in diverse geographical areas, empha-

sizing the need of antimicrobial resistance (AMR) surveillance, especially in low resource

settings where the cost of patient management escalates once hospitalized and colonized by

drug resistant microbes. Early studies suggest that E. coli isolates recovered from the stools of

healthy children have significantly higher rates of multi-drug resistances in China in compari-

son to the developed countries [4]. Similar observation in rest of Asia and South America, thus

accentuate the threat of widespread drug resistance and the urgent need of implementation of

future preventive measures and planning strict policy of antibiotic usage [5]. Moreover, co-

evolution of virulence factors with antibiotic resistance genes have eventually contributed to

the adaptive potential of these resistant microbes and long-term survival [6, 7].

Interestingly, existence of antibiotic resistance has started from the era of penicillin discov-

ery, prompting the start of a national surveillance program namely ‘Resistance Map’ (www.

resistancemap.org) demonstrating the occurrence of resistance two decades back involving

India and China as the main contributors [8–10]; {Figure A to D in S1 Fig}. In India, very high

resistance was reported against ampicillin and nalidixic acid along with an increased resistance

to third generation cephalosporins, fluoroquinolone and carbapenems in E. coli [11].

Mobile genetic elements like integrons contain many antibiotic resistance determinants in

E. coli. Integrons can also be defined as the systems for site-specific recombination found in

transposons, plasmids and chromosomes [12]. Gene cassettes with multiple antibiotic resis-

tance genes in the form of clusters can be found in integrons which contribute majorly to the

development of multiple antibiotic resistances [13].

The rapid spread of β-lactamases resistance, led by mobile genetic elements, amongst sus-

ceptible bacteria and acquisition of plasmid-mediated β-lactamases such as extended-spectrum

β-lactamases–ESBL (TEM, SHV, CTX-M and OXA), and class C plasmid-mediated AmpC β-

lactamases–ABL (ACT, CMY and DHA) amongst E. coli are well documented [14–16].

Metallo-β-lactamases—MBL (VIM, IMP and the recent NDM), have further led to limitations

in the treatment options [17]. ESBL producers are no longer associated with hospital infections

only rather community acquired isolates are now adding to burden of drug resistance [18].

Phenotypic methods have poor detection performance; consequently rampant misidentifica-

tion of the drug resistant genes have led to the current disastrous therapeutic failure in life

threatening infections [19, 20].

Genetic elements involving sul1, sul2 and sul3 genes [21–26] and tetA (A), tetB (B), tetC
(A), tetD (A), tetE (A) and tetG (A) genes are other important targets conferring resistance to

Sulphonamides and Tetracyclines respectively [27, 28]; and mutations in the quinolone resis-

tance-determining region (QRDR) of gyrA or gyrB subunits of DNA gyrAse and parC genes or

parE subunits of topoisomerase IV for fluoroquinolones resistance have also been described in

several infections leading to treatment collapse [29–39]. Further, alterations in drug targets

causing decreased cellular accumulation of quinolones and accompanied major multidrug

efflux pump, AcrAB, may be contributing further to fluoroquinolone resistance [40–46].

The E. coli populations categorized into eight major phylogenetic groups namely A, B1, B2,

C, D, E, F (belonging to E. coli sensustricto) and clade I (belonging to Escherichia clade) [47]

have a vast genetic substructure within the species.

In view of the recent progression of antibiotic resistance in children under five, not only in

clinical but also in community settings; we carried out this study to find the prevalence of dif-

ferent antibiotic resistance genes, to analyze point mutation in QRDR of fluoroquinolones and

to detect the distribution of these resistance genes in different phylogroups.

Antibiotic resistance in E. coli isolates
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Materials and methods

Study design

During the study period (July 2013 to July 2015), a total of 120 stool samples were collected

from children up to five years of age. Each group included 40 subjects and were categorized as

diarrhoeal (O), non-diarrhoeal (I) and healthy (C). The subjects were provided with relevant

information about the study and were included with written informed consent from their

parents/guardians. The study was approved by the Institutional Ethics Committee for Human

Research (IEC-HR) of the University College of Medical Sciences (University of Delhi), Delhi

and was carried out in accordance with its recommendations.

Sample collection and processing

Conventional biochemical tests were used to identify the recovered E. coli [48] before perform-

ing the PCR for the 16SrRNA gene, which was also used as an internal quality control [49].

Antibiotic resistance was determined by the agar diffusion method (Kirby-Bauer method)

using 16 antibiotics (HiMedia Laboratories, Mumbai, India) under four different classes

namely aminoglycosides, fluoroquinolones, β-lactams and quinolones. The E. coli isolates

were classified as sensitive or resistant according to CLSI guidelines at 24 hours of incubation

at 37˚C [48, 50, 51].

DNA extraction, primers and analysis

DNA was extracted using the commercial kit (Real Biotech Corporation, Taiwan) and conven-

tional PCR was performed for identification of genes associated with antibiotic resistance, sin-

gle nucleotide polymorphism (SNP) and phylogenetic groups. Primers used are described in

Table 1 [22,35,36,49,52–58].

All the isolates were screened for phylogenetic groups A, B1, B2, C, D, E, F and Clade I

using quadruplex multiplex PCR as described by Clermont et al. [47]. The presence of chuA
gene represents groups B2 and D and absence represents groups A and B1. Group B2 and

group D are being differentiated by yjaA gene.

Sequences of PCR product analyzed, commercially by Helix Biosciences (Bangalore, India),

were matched with nucleotide sequences available at GenBank using the BLAST program to

identify the most similar sequences [59]. Few of the sequences identified from the current

study were submitted to the GenBank database and accession numbers obtained. Multiple

alignments of sequenced nucleotides were carried out using Clustal W2 (version 2.0.10).

Neighbor-joining method was used to construct tree in MEGA 6.0 [60, 61].

Statistical analysis

Statistical analysis was done using Sigma Stat Statistics Software (SPSS) package. The Chi-

square test and Fisher’s exact test were used to determine the statistical significance of data.

The p-value < 0.05 was considered significant.

Results

Isolation of antibiotic resistant genes and SNP

Owing to the scarcity of detailed studies on the prevalence of antimicrobial resistance patterns

in paediatric age group in India, screening of diarrheagenic E. coli for the presence of virulence

genes and drug resistance genes was performed in our previous study [48]. Multiplex PCR for

antibiotic resistance genes showed presence of tetA, sul1 and AacC1 as shown in Fig 1, and
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tetB and tetC as shown in Fig 2. PCR for SNP targeting QRDR of fluoroquinolones (gyrA and

parC) was also performed (Figs 3 and 4).

Detection of genes conferring resistance to β-lactamases, tetracycline,

gentamicin, and sulphonamide

The distribution of various antibiotic resistance genes in three subject groups analyzed by mul-

tiplex PCR is shown in Table 2. High frequency of resistance was detected against ampicillin,

sulfonamides and tetracycline. Briefly, Significant antibiotic resistance gene frequency was

detected in case of CMY (15%), aacC1 (19.16%) and gyrA + parC (2.5%). Sul1 gene was found

Table 1. Details of the primers used.

Multiplex PCR Gene Primer sequence (5’–3’) PCR product (bp) Annealing temperature

(˚C)

Reference

Aminoglycoside adenylyl

transferases

AadA (aadA1 or
aadA2)

GCTCTTCAGCAATATCACGG
GCAGCGCAATGACATTCTTG

282 60 [52]

SNP Detection

DNA gyrase GyrA CTCCTCCCAGACCAAAGACA
TCACGACCGATACCACAGCC-

447 60 [35, 36]

DNA topoisomerase IV ParC AAACCTGTTCAGCGCCGCATT
GTGGTGCCGTTAAGCAAA

395 54 [35, 36]

Antibiotic Resistance Genes

Tetracycline TetA-F
TetA-R

GTAATTCTGAGCACTGTCGC
CTGCCTGGACAACATTGCTT

937 62 [53]

Sulphonamides Sul1-F
Sul2-R

TGGTGACGGTGTTCGGCATTC
GCGAGGGTTTCCGAGAAGGTG

789 63 [22]

Gentamicin AacC1-F
AacC1-R

ACCTACTCCCAACATCAGCC
ATATAGATCTCACTACGCGC

169 60 [54]

Tetracycline TetB-F
TetB-R

CTCAGTATTCCAAGCCTTTG
CTAAGCACTTGTCTCCTGTT

416 [54]

Tetracycline TetC-F
TetC-R

TCTAACAATGCGCTCATCGT
GGTTGAAGGCTCTCAAGGGC

570 [54]

ESBL TEM AGTGCTGCCATAACCATGAGG
CTGACTCCCCGTCGTGTAGATA

431 [55]

SHV GATGAACGCTTTCCCATGATG
CGCTGTTATCGCTCATGGTAA

214

OXA ATTATCTACAGCAGCGCCAGTG
TGCATCCACGTCTTTGGTG

296

CTX-M GACAAAGAGAGTGCAACGGATG
TCAGTGCGATCCAGACGAAA

501

MBL blaNDM-1 ATTAGCCGCTGCATTGAT
CATGTCGAGATAGGAAGTG

154 55 [56]

blaIMP TTGACACTCCATTTACAG
GATTGAGAATTAAGCCACTCT

139 [57]

blaVIM GATGGTGTTTGGTCGCATA
CGAATGCGCAGCACCAG

390

ABL CMY GCTGCTCAAGGAGCACAGGAT
CACATTGACATAGGTGTGGTGC

520 60 [58]

DHA AACTTTCACAGGTGTGCTGGGT
CCGTACGCATACTGGCTTTGC

405

ACT-1 TCGGTAAAG CCGATGTTG CGG
CTT CCA CTG CGG CTG CCA

GTT

302

Reference gene 16SrRNA CCCCCTGGACGAAGACTGAC
ACCGCTGGCAACAAAGGATA

401 [49]

https://doi.org/10.1371/journal.pone.0213850.t001
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prevalent 57 (47.5%) followed by TEM, SHV, tetA and aacC1 (Table 2). Tetracycline resistance

gene tetA and class 1 integrons usually share the same conjugative plasmid [62]. The preva-

lence of sul1 gene in our integron-positive healthy isolates was 47.5% higher than earlier pub-

lished report [63] suggesting that commensal strains could also harbor these resistance

determinants. A significant association between resistance to aminoglycosides tested (genta-

micin) and the presence of integron indicate the presence of aminoglycoside resistance genes

within integron structures, including aadA and aacA1 [64].

SNPs in gyrA (A660-T660) and parC (C330-T330) were detected in 11.66% and 2.5% iso-

lates, respectively. Among all Nalidixic acid and Ciprofloxacin resistant isolates, 29.78% iso-

lates showed point mutation for gyrA gene, while 27.27% isolates showed point mutation for

parC and 5.17% isolates showed mutation for both gyrA and parC. However, no mutation was

detected in QRDR of gyrA and parC in 28/48 (58.33%) and 5/11 (45.45%) isolates, respectively;

although these isolates were found resistant against Nalidixic acid and Ciprofloxacin, pheno-

typically {S1 and S2 Tables}.

A multiple logistic regression model was prepared to detect certain independent predictors

of antibiotic resistance in three groups (Table 3). It was observed that all independent predic-

tors of antibiotic-resistant genes except sul1 showed strong association with development of

Fig 1. Multiplex PCR for antibiotic resistance genes (tetA, sul1 and AacC1) on 1.5% agarose gel. Lane 1: molecular weight marker (100

bp), lane 2: tetA (937 bp), lane 3: sul1 (789 bp), lane 4–5: AacC1 (169 bp), lane 6–7: tetA + sul1 + AacC1.

https://doi.org/10.1371/journal.pone.0213850.g001
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antibiotic resistance (p-value< 0.05). Coefficient of adjusted odds ratio was 0.819 times higher

in sul1 as compared to other genes for which it was in the range of 0.004–0.477.

16SrRNA sequencing

Few positive isolates were sequenced and submitted to NCBI (accession numbers: gyrA
KY753823 and parC KY753821). Alignment of the gyrA (DNA GyrAse) gene sequence confer-

ring resistance to Nalidixic acid and alignment of the parC (DNA topoisomerase) gene

sequence conferring resistance to Ciprofloxacin is shown in Figs 5 and 6 [55–57,65,66]. The

16SrRNA was amplified using universal primers and the nucleotide sequences of the 16SrRNA

of all the isolates were submitted to NCBI and following accession numbers were obtained:

KY775448, KY775449, KY786039, KY786040, KY786041, KY786042, KY786043, KY786044,

KY786045, KY786046, and KY786047.

Fig 2. PCR for antibiotic resistance genes (tetB and tetC) on 1.5% agarose gel. Lane 1–3: tetB (416 bp), lane 4–5: tetB + tetC (570 bp), lane 6: molecular weight

marker (100 bp), lane 7: tetC, lane 8–10: negative isolates, lane 11–12: tetC and lane 13–14: tetB.

https://doi.org/10.1371/journal.pone.0213850.g002

Fig 3. PCR for single nucleotide polymorphism (SNP) of fluoroquinolones (gyrA and parC) on 1.5% agarose gel.

Lane: 1, 3–5, 7–8; parC (395 bp), lane 2 and 6: gyrA (447 bp) and lane 9: molecular weight marker (100 bp).

https://doi.org/10.1371/journal.pone.0213850.g003
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Phylogenetic analysis

Eleven isolates from the current study were used to construct a phylogenetic tree along with

other sequences from database for 16SrRNA as described in detail previously by Shashi and

Kumar [67] (Fig 7). Significant diversity was evident among these isolates. The phylogenetic

tree showed that all the isolates could be grouped into seven phylogroups on the basis of

approximately 98% similarity among them (Fig 7). Briefly, the prevalence of phylogenetic

group B2 was 36.66%, followed by groups B1, A, F, D, E and C in our study (Table 4). Similar

pattern was observed in the healthy isolates with the prevalence of group B2, followed by B1, F

and A. All the isolates were assigned a phylogroup except 11 isolates which remained unclassi-

fied. None of the isolates recovered from diarrheagenic cases or healthy controls belonged to

phylogroup Clade I.

Discussion

Antibiotic resistance in bacteria is not only a serious global health problem worldwide but also

it renders most of the antibiotics ineffective. The threat is compounded with the continuous

spread of drug resistance and enhanced survival potential of such bacterial strains [68, 69].

Since, changes at the gene level like compensatory or suppressor mutations may favor the sur-

vival of resistant microbe, the selection of the most virulent and resistant pathogens depends

Fig 4. Multiplex PCR for single nucleotide polymorphism (SNP) of fluoroquinolones (gyrA and parC) on 1.5% agarose gels.

Lane 1: gyrA (447 bp), lane 2: parC (395 bp), lane 3: gyrA + parC, lane 4: negative control, lane 5: gyrA + parC, lane 6: negative

control, and lane 7: molecular weight marker (100 bp).

https://doi.org/10.1371/journal.pone.0213850.g004
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upon the antimicrobial selective pressure [69, 70]. We attempted to analyze the acquisition of

point mutations in gyrA and parC genes in QRDR; tetracycline, sulphonamide and gentamicin

resistance genes in isolates of E. coli. Tetracycline resistance gene tetA and class 1 integrons are

normally present on the same conjugative plasmid [63], but the acquisition of gentamicin

resistance genes is unclear. The prevalence of sul1 gene in isolates recovered from healthy sub-

jects samples was 47.5% higher when compared with an early report, suggesting that the com-

mensal strains may also transfer these resistance determinants to neighboring susceptible

commensals [64].

Enzymes DNA gyrase, encoded by gyrA and gyrB, and DNA topoisomerase, encoded by

parC and parE, are important for bacterial replication and thus primary targets of quinolones.

Mutation in the parC gene confers resistance to the secondary class of fluoroquinolones. We

observed less prevalence of parCmutation in fluoroquinolones/ciprofloxacin resistant isolates

in our population, in contrast to earlier reports [42, 71–74].

An SNP prevalence of 11.66% and 2.5% isolates was detected in gyrA and parC gene respec-

tively, corroborating the findings of previous studies [33, 42, 70, 75–77]. Interestingly, most of

the ESBL-producing isolates in our study were resistant to ciprofloxacin having mutations in

gyrA/parC genes demonstrating underlying causes of fluoroquinolone resistance [78–80].

It is well-known that E. coli is no longer restricted to the hospital environment [81]. The β-

lactamase genes harboring MDR strains are found in healthy children raising an underlying

threat of widespread circulation of resistant strains in the community [82, 83]. The genes

located on transmissible plasmid along with other antibiotic resistance genes enables an easy

dissemination in the environment and amongst hospitalized patients [84]. The VIM encoding

integron structure acquired during the hospital stay may also colonize in patients and retain as

reservoirs [85]. The emergence of the CMY gene has also been reported in E. coli along with

other diverse genera of the Enterobacteriaceae [86]. Several other factors like overcrowding,

Table 2. Distribution of various antibiotic resistance genes in three groups.

Genes Group-1

n (%)

Group-2

n (%)

Group-3

n (%)

Total

n (%)

p-value

TEM 19(47.5) 14(35) 16(40) 49 (40.83) 0.519

SHV 14(35) 14(35) 11(27.5) 39 (32.5) 0.710

CTX-M 7(17.5) 8(20) 8(20) 23(19.16) 0.947

OXA 9 (22.5) 7 (17.5) 7 (17.5) 23 (19.16) 0.806

NDM-1 11 (27.5) 5 (12.5) 6 (15) 22(18.33) 0.178

IMP 12 (32.5) 5 (12.5) 6 (15) 23(19.16) 0.098

VIM 8 (20) 7 (17.5) 7 (17.5) 22(18.33) 0.945

ACT 6 (15) 8 (20) 6 (15) 20 (16.66) 0.786

DHA 4 (10) 2 (5) 3 (7.5) 9 (7.5) 0.697

CMY 11 (27.5) 4 (10) 3 (7.5) 18 (15) 0.024�

sul1 22 (55) 16 (40) 19 (47.5) 57 (47.5) 0.405

tetA 13 (32.5) 6 (15) 5 (12.5) 24 (20) 0.051

aacC1 12 (30) 9 (22.5) 2 (5) 23 (19.16) 0.014�

tetB 5 (12.5) 4 (10) 3 (7.5) 12 (10) 0.757

tetC 6 (20) 5 (12.5) 1 (2.5) 12 (10) 0.143

gyrA 6 (15) 4 (10) 4 (10) 14 (11.66) 0.723

parC 2 (5) 1 (2.5) 0 3 (2.5) 0.358

gyrA + parC 3 (7.5) 0 0 3 (2.5) 0.046�

�significant p-value. Gene frequencies are present as absolute numbers with percentage in parentheses

https://doi.org/10.1371/journal.pone.0213850.t002
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Table 3. Multiple logistic regression models exploring certain independent predictors of antibiotic resistance.

Predictors of antibiotic resistance genes n = 120 p-value Adjusted Odds ratio 95% CI

(Lower)

95% CI

(Upper)

Sul1

Present 57 0.438 0.819 0.492 1.362

Absent 63 1

TetA

Present 24 0.000� 0.063 0.033 0.118

Absent 96 1

TetB

Present 12 0.000� 0.60 0.24 1.48

Absent 108 1

TetC

Present 12 0.000� 0.012 0.005 0.028

Absent 108 1

aaCa

Present 23 0.000� 0.057 0.029 0.107

Absent 97 1

TEM

Present 49 0.004� 0.477 0.284 0.798

Absent 71 1

SHV

Present 39 0.000� 0.227 0.131 0.389

Absent 81 1

CTX

Present 23 0.000� 0.057 0.029 0.107

Absent 97 1

OXA

Present 23 0.000� 0.057 0.029 0.107

Absent 97 1

NDM-1

Present 22 0.000� 0.031 0.015 0.063

Absent 98 1

IMP

Present 23 0.000� 0.031 0.015 0.063

Absent 97 1

VIM

Present 22 0.000� 0.027 0.013 0.056

Absent 98 1

ACT

Present 20 0.000� 0.021 0.009 0.044

Absent 100 1

CMY

Present 18 0.000� 0.021 0.009 0.044

Absent 102 1

DHA

Present 9 0.000� 0.004 0.001 0.011

Absent 111 1

�statistically significant

Note: The y variable is antibiotic resistance whereas the variables mentioned as predictors are the independent (x) variables in the multiple logistic regression models.

https://doi.org/10.1371/journal.pone.0213850.t003
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availability of antibiotics, low level of hygiene and weak hospital antibiotic policies are also

responsible for their extensive clonal dissemination [87].

All antibiotic resistant genes, except sulphonamide, appear as important predictors of drug

resistance in paediatric population. Low frequency of occurrence of genes of tetracycline, ami-

noglycosides and other β-lactamases genes perform well as indicators of emerging resistance

in children, unlike the sulphonamide resistance which was uniform in all the study groups.

Majority of the ESBLs found in E. coli are derivatives of TEM or SHV enzymes while CTX-M
and OXA-type beta-lactamase occur less frequently [88, 89].

The ABLs (AmpC β-lactamases) is one of the prevalent mechanisms of β-lactam resistance

after ESBLs in E. coli and emerged as an important health problem in the recent years [90, 91].

There are various factors which are associated with development of quinolone resistance,

including chromosomal mutations, acquisition of plasmid-mediated genes and decreased

uptake of the antimicrobials [92]. We observed occurrence of multiple transferrable resistance

genes in E coli. This bacteria being an essential gut microflora, may facilitate the promulgation

of resistance determinants to other microbiome and its prolonged survival helps create a huge

reservoir of drug resistant microbes [93].

The E. coli phylogroups have different ecological niches, biological characteristics and abil-

ity to cause disease. Early reports suggested a link between phylogeny and virulence determi-

nants [94], that are often carried by strains of phylogenetic groups B2 and D [95, 96]. Due to

the small number of subjects, the phylogenetic analysis of the isolates did not show any signifi-

cant difference between the phylogroups. Variations in environmental conditions and host

genetic factors may be the responsible for the contrasting findings from other reports [97, 98].

Our results showed the preponderance of phylogenetic group B2 (36.66%) similar to previous

reports [97, 98]. Groups B1, A, F, D, E and C were found to have 21.66%, 15.83%, 5.83%, 5%,

Fig 5. Sequence alignment of the gyrA (DNA gyrase) gene sequence (5) that confers resistance to quinolones

(Nalidixic acid). Quinolone resistance determining regions (QRDR) were amplified by PCR and sequenced using the

primers [56, 57]. The substitution was seen at position 83 (confers high-level resistance) and 87 (confers low-level

resistance) as described by [55, 63]. This amino substitution does not alter the stereochemical structure greatly and is

therefore unlikely to confer resistance to quinolones on its own. The gyrA reference sequence (X06373.1) was obtained

from the NCBI database and accession number KY753823 was generated from the study.

https://doi.org/10.1371/journal.pone.0213850.g005

Fig 6. Sequence alignment of the parC (DNA topoisomerase) gene sequence (5) that confers resistance to

quinolones (Ciprofloxacin). Quinolone resistance determining regions (QRDR) were amplified by PCR and

sequenced using the primers [55, 56]. The substitution was seen at position 80 (responsible for quinolone resistance)

and 84 (increase affinity to ciprofloxacin by producing positively charged amino acid) as described by [55, 63]. This

amino substitution does not alter the stereochemical structure greatly and is therefore unlikely to confer resistance to

quinolones on its own. The parC reference sequence (CP018995.1) was obtained from the NCBI database and

accession number KY753821 was generated from the study.

https://doi.org/10.1371/journal.pone.0213850.g006
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3.33% and 2.5% isolates, respectively. We also found commensal phylogroups A and B1 in

agreement with previous studies showing that diarrheagenic E. coli isolates are included in

phylogroups A, B1, and D [99, 100]. A total of 11 isolates (9.16%) remained unidentified as

they were negative for all the genes by quadruplex PCR. The ecological distribution of phyloge-

netic groups of human E. coli isolates are thus variable and dynamic, influenced by factors

Fig 7. Phylogenetic analysis based on the sequences of 16SrRNA gene sequence of 11 diarrheagenic E. coli (DEC) isolates and 70 sequences retrieved from NCBI.

The accession number of each strain is mentioned in the tree. Eleven isolates identified by this study are highlighted in red.

https://doi.org/10.1371/journal.pone.0213850.g007
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such as host genetic makeup, dietary conditions, use of medications, and geographical circum-

stances often useful in describing the profile of the particular community [82, 83].

We could also reveal 5% isolates associated with phylogroup D that is linked with the spread

of AmpC- mediated antibiotic resistance (especially CMY-2 type) [101–104]. Further, this

group is also involved in the spread of CTX-M genes [105–107]. The existence of more than

40% of our isolates under phylogroups B2 and D is worth noting as these are associated with

ESBLs and AmpCs expressing E. coli strains linked with higher virulence characteristics as

described in early studies on phylogroups A and B1 [103, 108, 109]. Although, little is known

about the association of MBL resistance with phylogroups in E. coli, phylogroups B1 and D are

thought to be associated with NDM-1 type [110–114]. The study highlights that children har-

bor pathogenic as well as commensal strains of E. coli in alarming abundance and their co-

existence in similar niches enable them to maintain a continuous circulation of gene transfer.

This observation draws attention to an urgent need for preventing future catastrophe. Bacterial

populations in the human gut are complex and share a similar ecology, giving them abundant

opportunity for the transfer of genetic material [115].

The current scientific advances have created a wide area of interest amongst scientists to

understand the spread of antibiotic resistance genes, and the field of metagenomics have

enabled them to create a database of gut commensal resistome from healthy individuals from

different countries. Documented evidences state that countries with relatively reserved policies

of antibiotic use in humans and animals (like Denmark) have observed lower levels of antibi-

otic resistance genes in human gut microbiota than in people from countries where antibiotic

use is considerably higher (like Spain and China) [116]. Therefore, it is high time to raise

awareness amongst health care providers and develop country wise national policies for ratio-

nale use of antibiotics in humans especially amongst the vulnerable pediatric population to

combat the menace of drug resistance [116, 117].

Conclusion

The spread of antimicrobial resistance has emerged as an important public health problem

especially in resource limited countries where lack of strict adherence to antibiotic policy has

created a challenge for the clinicians to treat serious infections essentially in prolonged hospi-

talized patients. Our phylogenetic analysis identified 40% of the isolates grouped as B2 and D

which mostly harbor ESBL and ABL expressing E. coli strains. Mankind has partly been

responsible for creating such an environment for the microbial world to develop

Table 4. Distribution of various phylogenetic groups in three study populations.

Phylogroup Group-1

n (%)

Group-2

n (%)

Group-3

n (%)

Total

n (%)

p-value

A 7 (17.5) 5 (12.5) 7 (17.5) 19 (15.83) 0.778

B1 9 (22.5) 6 (15) 11 (27.5) 26 (21.66) 0.393

B2 17 (4/2.5) 15 (37.5) 12 (30) 44 (36.66) 0.505

C 1 (2.5) 1 (2.5) 1 (2.5) 3 (2.5) 1.000

D 3 (7.5) 1 (2.5) 2 (5) 6 (5) 0.590

E 1 (2.5) 1 (2.5) 2 (5) 4 (3.33) 0.772

F 3 (7.5) 3 (7.5) 2 (5) 8 (6.66) 0.874

Clade 1 0 0 0 0 N.A

Unclassified 4 (10) 4 (10) 3 (7.5) 11 (9.16) 0.904

Gene frequencies are present as absolute numbers with percentage in parentheses

https://doi.org/10.1371/journal.pone.0213850.t004
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armamentarium for challenging the antimicrobial agents. Gut flora is the first line of defense,

and harboring drug-resistant pathogens will be detrimental not only to that individual but will

be a threat to the community. Antibiotic resistance has extended from hospital to community

settings as well, suggesting that healthy children may also contribute to the development of

MDR in E. coli. Our observation in pediatric population is a grim reality to the development,

dissemination and carriage of antibiotic resistant bugs not only in the gut of diarrhoeal chil-

dren but also in healthy children of our community. Active AMR surveillance and stewardship

programs needs to be implemented in all hospitals to minimize further danger.
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