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Abstract

The spinocerebellar ataxias (SCAs) comprise more than 40 autosomal dominant
neurodegenerative disorders that present principally with progressive ataxia. Within the past few
years, studies of pathogenic mechanisms in the SCAs have led to the development of promising
therapeutic strategies, especially for SCAs caused by polyglutamine-coding CAG repeats.
Nucleotide-based gene-silencing approaches that target the first steps in the pathogenic cascade
are one promising approach not only for polyglutamine SCAs but also for the many other SCAs
caused by toxic mutant proteins or RNA. For these and other emerging therapeutic strategies, well-
coordinated preparation is needed for fruitful clinical trials. To accomplish this goal, investigators
from the United States and Europe are now collaborating to share data from their respective SCA
cohorts. Increased knowledge of the natural history of SCAs, including of the premanifest and
early symptomatic stages of disease, will improve the prospects for success in clinical trials of
disease-modifying drugs. In addition, investigators are seeking validated clinical outcome
measures that demonstrate responsiveness to changes in SCA populations. Findings suggest that
MRI and magnetic resonance spectroscopy biomarkers will provide objective biological readouts
of disease activity and progression, but more work is needed to establish disease-specific
biomarkers that track target engagement in therapeutic trials. Together, these efforts suggest that
the development of successful therapies for one or more SCASs is not far away.

The spinocerebellar ataxias (SCASs) are a group of autosomal dominant disorders
characterized by progressive ataxia due to degeneration of the cerebellum and its afferent
and efferent pathways?. The prefix ‘SCA’ with an associated number (which reflects the
order of genetic discovery) is assigned to dominantly inherited ataxias when their genetic
loci are defined. Although the term SCA describes a broad category of disorders in which
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spinocerebellar degeneration occurs — including phenotypically similar recessive disorders
(sometimes called recessive SCAs), mitochondrial disorders and sporadic disorders — here
we focus on the autosomal dominant SCAs. Currently, SCAs numbered from 1 to 46 are
registered in the Online Mendelian Inheritance of Men (OMIM) database at the National
Center for Biotechnology Information (NCBI), although some are vacant (such as SCA9)
and others overlap (for example, SCA15 and SCA16 are both designated to the same
disorder). In general, SCAs fall into two major categories on the basis of their genetic
mutations: SCAs caused by microsatellite repeat expansions (FIG. 1; TABLE 1) and SCAs
caused by point mutations (TABLE 2). When considering disease-causative mechanisms,
SCAs resulting from repeat expansions can be further divided into those caused by
polyglutamine (polyQ)-coding CAG repeat expansions and those caused by non-protein-
coding repeats (TABLE 1). The pathogenic mechanisms of SCAs are complex and differ
substantially among these diverse classes of the mutation2. The clinical features,
management and pathogenic mechanisms of the SCAs or specific subsets of SCAs have
been reviewed extensively elsewhere2-. Here, we focus primarily on challenges in
therapeutic development for the SCAs. We review the scientific premise and rigour of
preclinical and molecular data relevant to such challenges and assess current gaps that need
to be filled before promising drugs for SCAs can be tested in clinical trials.

Diagnosis

Key observations that support a diagnosis of an SCA in patients with progressive cerebellar
ataxia include a family history of similar disease and a high index of suspicion of a
genetically based disease. However, a lack of family history does not necessarily exclude
SCADJ, as incomplete family history, uninformed adoption and other causes of nonaternity,
early death of a transmitting parent, low penetrance and de novo mutations can be present.
When apparent sporadic ataxia is evaluated, treatable causes must be excluded carefully
before hereditary causes of ataxia are considered® (FIG. 2). In early stages of SCA, the
phenotype can present as purely cerebellar, but subsequent, non-ataxic manifestations
usually emerge. Owing to phenotypic overlap, a specific diagnosis of SCA is usually
difficult without DNA testing, although certain findings can help to predict the genotype (see
notable characteristic clinical signs in TABLES 1,2).

The most common SCAs are repeat-expansion diseases. A first step in establishing a
diagnosis of a specific SCA is to screen for these repeat expansions, particularly for the most
common subtypes — SCAL, SCA2, SCA3, SCA6 and SCA7. An important consideration is
that sporadic-onset ataxia in an adult can be Friedreich ataxia, the most common recessive
ataxia, which also results from a repeat expansion that can be easily tested for. Detection and
sizing of repeat-expansion mutations are currently accomplished by conventional PCR,
repeat-primed PCR or Southern blot analyses, depending on the size of the repeat. Internal
repeat sequence irregularities are found in some SCAs, which can alter the characteristics of
repeat length stability’~19. The expansion size and, in some SCAs, repeat-interrupting motifs
can substantially alter disease penetrance, age at onset or even clinical manifestations. In
SCAL1, for example, CAT interruptions are an important determinant for the difference
between normal alleles and disease alleles; a CAT interruption in the SCA1 CAG expansion
reduces penetrance of the mutation’-11. Interruptions in the repeat expansions are also
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associated with a parkinsonian phenotype in SCA2 (REFS812.13) SCA10 (REF.14), SCA17
(REFS!5:.16) and possibly SCA8 (REF.16) and might increase the risk of amyotrophic lateral
sclerosis in SCA2 (REFS17-19) and epilepsy in SCA10 (REF.20) (TABLE 1).

For SCAs caused by point mutations, whole-genome sequencing (WGS) and whole-exome
sequencing (WES) are useful for the detection of mutations in known SCA genes and in the
identification of new genetic causes of SCA2L. However, detection of variants of unknown
importance by WES or WGS could necessitate an extensive family study for co-segregation
of the variant with the disease as well as assessment of the biological consequences of the
variant in silico and in experimental models to determine the potential pathogenic
importance of the variant. Repeat expansions are difficult to detect with WGS and WES
because short sequence reads obtained in next-generation sequencing (NGS) cannot be
assembled effectively in repeat regions, but new NGS technologies that enable long
sequence reads are emerging, including CRISPR—Cas9-targeted direct genomic single-
molecule real-time sequencing (SMRT)4, nanopore?? sequencing and analytical advances
such as the RepeatHMM alignment23,

With a few exceptions (for example, SCAG), SCAs are relentlessly progressive, fatal
diseases. No drugs for SCAs have been approved by the FDA or European Medicines
Agency (EMA). However, multiple studies support the efficacy of coordinative physical
therapy24-30 with the caveat that all previous studies were unblinded or evaluator-blinded
trials with a small number of participants (allied health care in ataxia has been reviewed
systematically elsewhere31). A double-blind sham-controlled trial of transcranial magnetic
stimulation involving 74 patients with spinocerebellar degeneration suggested that this
treatment can alleviate ataxia for a week32:33, Many agents for SCAs have been tested in
clinical trials, including randomized, double-blind, placebo-controlled studies
(Supplementary Table 1), and more therapies are being tested in ongoing clinical trials
(Supplementary Table 2). Development of efficacious drugs for SCAs, both symptomatic
and disease-modifying, is urgently needed.

Disease-modifying drugs

For dominantly inherited diseases such as the SCAs, the most compelling therapeutic targets
lie upstream in the pathogenic cascade, regardless of the type of mutation and pathogenic
mechanism (FIG. 3). Directing treatment to the root cause (in the case of SCAs, the
mutation) or targets close to the root cause generally makes sense, although this concept has
not yet been clinically tested in the treatment of SCAs. A special consideration for SCAs
that result from a repeat expansion is that the expansion size generally determines the
disease severity, progression rate and age of onset. Different degrees of expansion could
change the pathogenic process, both quantitatively and qualitatively, which could confound
the selection of targets for molecular interventions. The time of intervention is also likely to
be a crucial issue for disease-modifying treatments. Data from SCA animal models suggest
that prevention or delay of disease onset is easier than slowing, halting or reversing the
disease process in symptomatic patients, especially in advanced stages of disease34-37.
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PolyQ SCAs.

At least seven degenerative ataxias are caused by expanded CAG repeats encoding polyQ
tracts: SCAs 1, 2, 3, 6, 7, 17 and dentatorubral-pallidoluysian atrophy, the last of which
shares features with the SCAs and another polyQ disease, Huntington disease (HD) (TABLE
1). In these disorders, a gain of toxic function by the mutant protein plays a key part in the
pathogenic mechanism?, although the precise basis of this toxicity remains unresolved.
Although the normal functions of SCA polyQ disease proteins differ greatly, several of them
might interact with one another directly or indirectly in the protein interactome of vulnerable
cells in the nervous system38:3°. The native physiological functions of the protein can also
be compromised by the expansion and lead to partial loss of function in some SCAs2:38:40.41
as in HD#2:43_ Although research points to aberrant properties of the mutant polyQ disease
protein as key drivers of disease, RNA transcripts containing the expanded CAG repeat also
might be toxic, as demonstrated in experimental models of HD and of several polyQ
SCAs*448,

A further complication of our understanding of disease mechanisms is the fact that the
disease gene can also produce an antisense transcript from the opposite DNA strand, which
contains a complementary expanded RNA repeat, as shown in SCAs 8, 2 and 7 (REFS#3-52),
Furthermore, some expanded repeats form hairpin structures that can trigger noncanonical
(non-ATG initiated) translation of protein across the repeat in all three reading frames3.
This repeat-associated non-ATG (RAN) translation, which was first described in SCA8
(REF.53), has since been demonstrated in cellular and animal models of several SCAs and
other repeat-expansion disorders. However, the extent of the pathogenic contribution of
RAN translation to SCAs and other ataxias remains uncertain®3-27, Nevertheless, these
observations highlight that multiple toxic molecules can be generated from the expanded
repeat in polyQ and other SCAs resulting from repeat expansions (FIG. 3).

Expanded microsatellite repeats generally exhibit repeat length instability in the germ line
and soma, and polyQ-coding CAG repeats are no exception. With respect to
intergenerational instability, the pattern of instability (for example, predilection towards
further expansion and the extent of repeat size change) varies depending on the disease gene
and the sex of the transmitting parent. Such differences are mostly attributable to germline
instability patterns, which differ between men and women, whereas somatic instability
differs between tissues®8. Repeat-expansion size has profound effects not only on the age at
disease onset but also on disease phenotype, which further complicates the application of
therapeutic strategies that are based on downstream protein interactions in some of the
SCAs.

The dominant nature of the SCAs indicates several points of potential therapeutic
intervention, illustrated in FIG. 3. As for many genetic disorders, the ideal treatment would
be correction of the mutation. Although genome editing is technically feasible, therapeutic
applications of zinc-finger nucleases, transcription activator-like effector nucleases
(TALENS) and CRISPR-Cas nucleases in SCAs currently face numerous challenges,
including delivery, off-target effects, indel formation at the double-strand break by
nonhomologous end joining and other toxicity or safety concerns®9-62. Furthermore, the
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discovery of anti-CRISPR proteins that inhibit the CRISPR—Cas system could complicate
this promising technology®3.

Targeting of the mutant mRNA transcript might be the next best option after genome editing
for engaging the root cause of disease264 (FIG. 3). Experimental results with antisense
oligonucleotides (ASOs), small interfering RNAs (siRNAS), short hairpin RNAs (ShRNAS)
and artificial microRNAs (miRNAS) in cellular and animal models of polyQ diseases have
shown promising preclinical efficacy%%:66 (TABLE 3). Most of these strategies have not yet
advanced to human clinical trials, with the exception of ASOs. For example, a phase I/lla
trial of an ASO targeting /77 mRNA in participants with HD achieved a dose-dependent
reduction in the levels of mutant huntingtin protein measured in cerebrospinal fluid (CSF)%”.

Specific therapeutic targets might also be identifiable when the downstream pathogenic
pathways triggered by a given mutant polyQ protein are well characterized (FIG. 3). An
example in SCA1 is inhibitors of nuclear mitogen and stress-activated protein kinase 1
(MSK1; also known as RPS6KADB) in the RAS—mitogen-activated protein kinase (MAPK)—
MSK1 signalling pathway. MSK1 regulates phosphorylation at a critical amino acid in
mutant ataxin 1 (REF.58). Genetic reduction of the levels of MSK1 was beneficial in SCA1
mouse models and resulted in decreased levels of mutant ataxin 1 and, correspondingly,
reduced neurodegeneration and an improved disease phenotype°.

For some SCAs, unbiased screening of small molecules has identified compounds that might
have therapeutic benefits even when the mechanism of action remains unknown. For
example, compound screening in a nematode model of SCA3 identified citalopram, a widely
used antidepressant, as a promising candidate drug. Citalopram was shown to decrease the
levels of ataxin 3 and improve motor behavioural phenotype in an SCA3 mouse model7°.
Similar screening efforts in cell-based platforms identified aripiprazole, an atypical
antipsychotic, as a compound that might reduce levels of mutant ataxin 3 (REF."%).

The accumulation of aggregated protein in polyQ SCAs suggests that efforts to enhance
protein quality-control pathways in the brain offer a route to disease-modifying therapy
(reviewed elsewhere?2). Increasing the expression of specific molecular chaperones or
quality-control ubiquitin ligases can suppress disease features in a variety of cellular and
animal models of disease’3~77. Conversely, quality-control pathways are impaired in several
polyQ diseases’8-81 which further supports the utility of boosting pathways that maintain
protein homeostasis. Despite the attraction of co-opting protein quality control for therapy,
compounds that act in this manner have not yet progressed to clinical trials in SCAs.

SCAs caused by toxic RNA.

Some rare SCAs are caused by an expanded microsatellite repeat in an intron (including
SCAs 10, 31, 36 and 37) or 3’ untranslated region (such as SCAS8) (FIG. 1; TABLE 1). In
these disorders, expanded repeats consist of trinucleotide, pentanucleotide or hexanucleotide
units and bind to RNA binding proteins (RBPs). This binding can result in a loss of function
of the RBP or the formation of stress granules, which leads to cellular toxicity. Viable
strategies that intervene in the upstream portion of the pathogenic pathway might include
reduction of the level of toxic RNA by ASO or other RNA interference (RNAI) technology,
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disruption of the interaction between the toxic RNA and the RBP by decoys or competitors,
overexpression of the RBP and modulation of stress granule formation. These approaches
also would eliminate expression of toxic polypeptides produced through RAN translation of
non-coding RNA repeats®3-57. Other approaches such as unbiased screening and
interventions that target pathways downstream of the toxic RNA effects might also yield
therapeutic strategies, but will require further characterization of the pathogenic pathway of
each disease.

SCAs caused by point mutation.

The use of NGS has led to the discovery of an increasing number of SCAs caused by point
mutations. These mutations are mostly missense but a few involve deletion or duplication of
a DNA segment consisting of a small number of nucleotides (TABLE 2). The majority of
these disorders are rare, with some affecting only a single family. Most of the mutations
identified are predicted to lead to a novel toxic function or a dominant negative effect by the
mutant protein. Therapeutic strategies for such SCAs might involve gene silencing, skipping
of the mutated exon by RNAI or ASO technologies or intervention in specific downstream
pathways. Several SCAs of this class are caused by mutations in ion channels or in proteins
involved in signal transduction pathways linked to cell surface receptors82:83 (TABLE 2).
Thus, pharmacological modifications of the dysfunctional molecules in these SCAs might
lead to sustainable symptomatic improvements.

Symptomatic treatments

No efficacious symptomatic treatments currently exist for SCAs. The FDA has approved 4-
aminopyridine (4-AP) for improvement of gait disturbance in multiple sclerosis (MS) but
not in the SCAs8485, Nevertheless, 4-AP has been shown to normalize cerebellar Purkinje
cell firing and alleviate motor coordination deficits in mouse models of SCAL and SCA6
(REFS86:87). The Ministry of Health in Japan has approved the thyrotropin-releasing
hormone mimetic agent taltirelin hydrate for spinocerebellar degeneration but it has not been
approved in other countries8:89, Although many FDA-approved drugs have been tested in
randomized, double-blind, placebo-controlled trials in individuals with SCA (Supplementary
Table 1), none has resulted in approval for treatment of SCAs by the FDA or the EMA. The
failure of such trials stems in part from inconsistent outcomes, underpowered trial designs or
suboptimal data analyses. Most of these clinical trials were based on a limited scientific
premise, and many lacked rigorous preclinical data (Supplementary Table 1). Although
serendipity should not be ignored and can lead to valuable discoveries of new drugs, solid
scientific premise and rigorous preclinical data will be essential for future symptomatic drug
treatments and have been highlighted by the NIH as crucial elements for translational and
clinical research aiming to successfully develop new therapeutics®.

An attractive route to symptomatic therapy is modulation of the ion channels that underlie
cerebellar circuitry (reviewed previously91). Several lines of evidence indicate the
involvement of impaired cerebellar electro-physiology in ataxia. Mutations in genes that
encode potassium and calcium channels or relevant signalling receptors underlie various
forms of ataxia in mice and humans, including SCAs and episodic ataxias. In addition,
changes in the intrinsic excitability of cerebellar Purkinje cells and synaptic signalling
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pathways precede robust neurodegeneration in numerous mouse models of polyQ SCAs
(reviewed previously?). Furthermore, restoration of normal cerebellar electrophysiology,
genetically or pharmacologically, has proved beneficial in mouse models of SCA86:87.91.92,
Potassium channels, which play a key part in regulation of the excitability and dendritic
plasticity of cerebellar Purkinje cells, are a particularly attractive therapeutic target93-99.
Thus, a building scientific premise exists for the use of activators of small-conductance,
calcium-activated potassium channels, such as chlorzoxazone!% and NS13001 (REF.92), as
well as compounds with complex actions on ion channels such as riluzole. Riluzole elicited
a substantial improvement in the Scale for the Assessment and Rating of Ataxia (SARA)
total score in heterogeneous groups of patients with ataxia, including those with
SCAs10L102 A noted earlier in the article, 4-AP also might be worth studying, particularly
given its clinical usefulness in treating gait disturbance in MS (TABLE 4).

Preparation for sound clinical trials

Future clinical trials of therapeutic compounds must be carefully justified with a strong
scientific premise and rigorous preclinical evidence of efficacy. These considerations are
particularly important for trials of disease-modifying therapies, partly because of the scarcity
of patients with SCA. The collective prevalence of all known types of SCAs has been
estimated as 1.0-5.6 per 100,000 individuals3:4-103-106: a5 sych, the number of individuals
with any one of the SCAs is far less than 200,000 in the United States and satisfies the FDA
and NIH criteria for rare diseases?’. The limited number of patients available for clinical
trials restricts the number of applicable clinical trial designs and the number of drugs that
can be tested. Investigators will need to establish which cohort of participants will be
studied, the natural history of the specific SCA being investigated, the clinical outcome
measures that will be used, which biomarkers can be used to objectively track the disease-
related biological changes and the expected effect size and the potential adverse events of
the agents to be tested. With the availability of such information, statistically valid clinical
trial designs must be carefully chosen with the strictest control of variables achievable given
the inherently small sample size of these rare diseases.

Assessment measures

Natural history

Under NIH funding, the Clinical Research Consortium for Studies of Cerebellar Ataxias
(CRC-SCA) obtained natural history data on the most common types of polyQ SCAs
(namely, SCAs 1, 2, 3 and 6) with SARA108 55 the primary outcome measurel®9, The study
included 60 individuals with SCA1, 75 with SCA2, 138 with SCA3 and 72 with SCAG, all
of who were enrolled from 2009 to 2012 at 12 US sites. The European Ataxia Study Group
(EASG), which includes the EUROSCA team and the Spastic Paraplegia and Ataxia
network (SPATAX) team, enrolled 107 patients with SCA1, 146 with SCA2, 122 with SCA3
and 87 with SCAG in their natural history study at 17 European ataxia referral centres!10.
For SCAZ3, the European SCA3/Machado Joseph Disease Initiative (ESMI) has compiled
data on 570 participants with SCA3 from 7 multinational investigators, including those in
EASGL1L112 Collectively, these studies have shown that disease progression data obtained
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with the SARA are best fitted with a linear model for all genotypes, that SCA1 is the fastest
progressing SCA, that SCA3 is the most prevalent SCA and that patients with SCA6 have
substantially later onset and slower progression than those with SCAs 1, 2 and 3.

The responsiveness of the SARA score to clinical change is calculated as the standardized
response mean (SRM), which is the mean annual change in SARA score divided by the s.d.
of the annual change. The mean + s.d. of the annual change of the SARA total score can be
obtained from the CRC-SCA and EUROSCA natural history studies. Using the EUROSCA
data, the minimal sample size required to achieve 80% power with an effect size of 50% was
estimated to be 142 individuals (71 per group) for SCAL, the fastest progressing SCA110
(FIG. 4). For SCA2, SCA3 and SCAB, the minimal sample size is comparable to or larger
than that for SCAL. Data obtained in the CRC-SCA cohort indicate that the sample size
would need to be even larger. As such, we will face the challenge of insufficient sample
sizes unless we identify drugs with a very large effect size. The rate of progression of each
SCA varies in different populations (Supplementary Table 3), and further investigations are
needed to determine whether the differences are due to biological disparity or artefacts
caused by procedural variation. The required sample size can also be estimated from the
difference between the mean progression in SARA score of the placebo group and of the
intervention group (estimated on the basis of the hypothetical effects of the intervention)113.
This estimation of sample size from placebo groups facilitates the design of double-blind,
randomized, placebo-controlled clinical trials.

The effect size of potential therapeutic compounds in humans will be difficult to predict
even when data from well-performed preclinical studies are available. Thus, identification of
a sufficiently large cohort of study participants available for clinical trials is crucially
important. The European and US investigators continue to increase the size of respective
cohorts and extend the longitudinal data collection. The collaborative approach adopted by
the ESMI for SCA3 has now been extended to SCA1 by a new US—European joint
leadership initiative that involves multiple large international SCA consortia (FIG. 5). These
studies focus on individuals in whom SCA is premanifest or who are at an early stage of the
disease!14 because convincing data suggest that early-stage neurodegeneration has
reversibility that is lost as the disease progresses and cellular dysfunction and cell death
increase in the brain11®, Investigators in other parts of the world, particularly East Asia and
South America, have also shown interest in such a collaborative approach.

Clinical outcome

The primary clinical outcome assessment measure used in most natural history studies of
SCAs has been the SARA08, a semi-quantitative scale. Other validated semi-quantitative
ataxia scales include the International Cooperative Ataxia Rating Scale (ICARS)16,
Modified ICARS (MICARS)17, Brief Ataxia Rating Scale (BARS)!8 and Neurological
Examination Score for Spinocerebellar Ataxia (NESSCA)!9. The SARA has been the scale
of choice in clinical studies of SCA within the past few years because it is simple, can be
completed in 10 minutes and has been extensively validated and correlated with measures of
the quality of life in patients with SCAs120.121 Although composite ataxia measures, such as
Composite Cerebellar Functional Severity (CCFS)122, SCA Functional Index (SCAFI)123
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and spatiotemporal movement capture of intralimb variability24, provide quantitative data,
the responsiveness of these measures has not consistently demonstrated superiority over
SARA. A study of 171 patients (including 43 with SCA1, 61 with SCA2, 37 with SCA3 and
30 with SCAB) in the EUROSCA natural history cohort compared the responsiveness of
different clinical assessment tools in participants after a 1-year follow-up period.
Standardized response means were 0.50 for SARA and —0.48 for SCAFI, and sample size
was estimated to be 250 per group for SARA and 275 per group for SCAFI for a two-arm
interventional trial aiming at 50% reduction of progression and 80% power'25. A similar 1-
year follow-up study, conducted in France, of 25 individuals with SCA1, 35 with SCA2 and
58 with SCA3 showed sample size estimates of 175 for SARA and 260 for CCFS26, In 49
patients with SCA2 evaluated with SARA, NESSCA, INAS, SCAFI and CCFS, the only
instrument that presented good responsiveness to change in 1 year was SARA121,

Wearable devices to measure ataxia and ataxia-related activities would enable data to be
recorded in the daily living environment'27:128_ Sych measures, which result from
remarkable advances in data capture and analysis, would provide better information about
participants’ performance in variable conditions than the typical ‘snap shot” obtained during
clinic visits and might be more clinically meaningful.

Genetic and environmental modifiers

Several genetic variants have been reported as predictors of the age at onset in patients with
SCAB3. These variants include the size of the polyQ-coding CAG repeat in the normal allele
in eight genes (ATXNI-3, ATXN7, ATXN17, CACNAIA, ATN1and HTT)129.130 two
single-nucleotide polymorphisms (rs709930 and rs910369) in the 3’ untranslated region of
the ATXN3genel3L the APOE e2 allele32, the C90rf72 GGGGCC repeat sizel33, promoter
sequence variation and expression levels of inflammatory genes such as /L1A, /L1B, IL6
and 7NVFL34 and the presence of parkinsonism and/or dystonial3®. However, the findings
from most of these genetic association studies remain to be confirmed. For example, the
association of APOFE 2 with decreased age at onset!32 was not confirmed in one study36,
and different associations between disease onset and genes that contain polyQ-coding CAG
repeats were obtained in populations from Europe!2?, Chinal30 and Brazill3’. Living
environment might also affect symptoms and signs of SCAs, as has been suggested in other
genetic neurodegenerative disorders. Identification of genetic and environmental predictors
will enable the definition of patient subgroups with homogeneous disease evolution and the
capture of patients at a high risk of disease, both of which will be crucial to stratification of
participants in trials.

Biomarkers

Although the field of translational medicine has broadened the definition of a biomarker, the
core definition is a biological characteristic that can be measured and evaluated objectively
as an indicator of normal biological processes, pathogenic processes or pharmacological
responses to therapeutic intervention138, Biomarkers are crucial for new drug discovery and
development and are often used to stratify patient populations to reduce variability of the
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clinical outcome (FIG. 6). Although reliable molecular biomarkers in body fluids are yet to
be discovered for the SCAs, MRI-based biomarkers have shown promising results.

Imaging biomarkers

As in other neurodegenerative conditions, clinical outcome assessment measures are the
primary outcome measures in clinical trials of SCAs and are likely to remain so for the
foreseeable future. However, use of clinical outcome assessment measures to assess whether
therapies slow disease progression in the SCASs is challenging because of their slow
progression and phenotypic variability and because they require long clinical trials with
large sample sizes (FIG. 4). Clinical outcome assessment measures also lack sensitivity in
the earliest stages of disease, including premanifest stages when neuroprotective agents are
likely to be most effective, and usually have poor test—retest reliability139. Consequently,
although such measures are an essential component of any SCA treatment trial, they should
be supplemented with non-invasive neuroimaging to directly assess treatment effects on the
brain. Validated imaging biomarkers of CNS pathology can contribute to patient
stratification, in combination with genotypic, demographic and clinical outcome assessment
data, to enable the individuals most likely to benefit from prospective therapies to be
selected (FIG. 6). Validated imaging biomarkers also enable enrolment of mutation carriers
at the premanifest stage of SCA by providing evidence of early pathological changes in the
brain. Finally, they could enable a reduction in sample sizes if they are approved as primary
outcome measures by the FDA or EMA. As detailed earlier in the article, estimated sample
sizes range from 71 to 301 patients in each group for a two-arm interventional trial that aims
to reduce disease progression by 50% in 1 year in the common SCAs when SARA is used as
the outcome measurel10:125, On the other hand, 37 patients would be needed per arm of the
trial to detect a comparable change by the most sensitive volumetric MRI measure (SRM of
-1.3) reported across SCAs40 in 1 year with the same power. This number is in contrast
with 78 patients per arm of the trial for SARA (SRM of 0.9) reported in the same cohort140.

Several studies have demonstrated regional metabolic abnormalities and dopaminergic
dysfunction in SCAs via PET, including at the premanifest stage14. MRI-based modalities
have the advantage of a wider availability than PET and avoid concerns about the repeated
radiation exposure associated with PET. Hence, MRI-based modalities have been used in
multisite settings and have been more widely validated in SCAs than has PET. In addition,
conventional structural MRI has been the standard of care to monitor the characteristic
cerebellar and brainstem atrophy in patients with SCAs.

Among the many MRI modalities, morphometric MRI, diffusion MRI and magnetic
resonance spectroscopy (MRS) have been evaluated as biomarkers in SCAs by a number of
groups worldwidel4L, In addition, the utility of task-based and resting-state functional
MRI142.143 js gathering increased interest for monitoring of functional abnormalities.

Regarding macrostructural MRI measures, the EASG group conducted single-site and
multisite investigations to establish the sensitivity of volumetric MRI to morphometric
alterations in the most common SCAs112.144.145 Morphometric T1-weighted MRI data
analysed with a 3D volumetric method and voxel-based morphometry reveal prominent
reductions in grey matter and white matter in the cerebellum and brainstem in individuals
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with SCAs145. Although these macrostructural changes correlate with SARA45, the
volumetric measures were shown to be more sensitive to change than SARA ina
longitudinal multisite study49, which provides a strong rationale to supplement clinical
outcome assessments with these objective, non-invasive MRI markers in trials (FIG. 6).

Regarding microstructural MR measures, many groups have demonstrated regional damage
to white matter in common SCAs via diffusion tensor imaging (DT1)146-151 |n cross-
sectional investigations, differences in DTI metrics between patients with SCAs and healthy
controls were reported in multiple brain regions, including cerebellar peduncles, cerebellum,
brainstem and cerebral white matter. Most of these studies also showed correlations between
DTI metrics and clinical severity in SCAs. The sensitivity of DTI metrics to progressive
changes in SCAs is largely unexplored, except for one report in SCA2 that showed
progressive microstructural damage to white matter tracts!®2. In addition, the standard DTI
model could miss subtle alterations in white matter and does not resolve crossing fibres.
These limitations can be overcome by more sophisticated diffusion models, such as high
angular resolution diffusion imaging3.154, which need to be validated in large patient
cohorts in multisite longitudinal settings.

Complementary to these morphometric MRI measures, proton MRS enables non-invasive
and regional quantification of endogenous neurochemicals, thereby providing biochemical
and metabolic information®, The sensitivity of MRS to neurochemical abnormalities in
SCAs has been demonstrated consistently by different groups on the basis of a few
metabolites accessible at low magnetic fields156:157, Within the past few years, increased
field strength has enabled quantification of neurochemical profiles of up to 15 metabolites.
This capability enabled the detection of robust neurochemical alterations, including
molecules reflecting neuronal loss or dysfunction (such as N-acetylaspartate and glutamate)
and gliosis (such as myo-inositol), among differences in other metabolites, in the cerebella
and brainstems of patients with SCAs198-161 Similar to morphometric measures, the
neurochemical alterations measured by MRS correlated with SARA158.159.161 bt were more
sensitive to change than SARA in a longitudinal 3T MRI study162. MRS biomarkers were
further validated in animal models of SCA and were shown to be sensitive to the
progression1®3 and reversal164.165 of SCA1 pathology. Neurochemical abnormalities were
detected in the animals at the pre-symptomatic stagel®3 and before the appearance of gross
histopathological changes66. Importantly, MRS detected treatment effects in a conditional
transgenic SCA1 mouse model with the same sensitivity and specificity as invasive outcome
measures and had higher sensitivity and specificity than standard motor behavioural
assessment18°, Finally, MRS measures were demonstrated to be reproducible within sitel67
and between sites168.169 which is crucial for utility in future multisite trials.

In light of mounting evidence that argues for administration of therapies in the earliest stages
of neurodegeneration!1®, the sensitivity of MRI measures to premanifest abnormalities has
been investigated in patients with SCAs. Although conventional MRI has limited sensitivity
at the premanifest stagel70171 sophisticated analyses of MRI structural data that use
volumetry and voxel-based morphometry confer sensitivity to early changes. A large
multisite EASG study (RISCA) of individuals at risk of SCA (with SARA < 3) showed
substantial grey matter loss in the brainstem and cerebellum in individuals with an ATXNZ
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or ATXN2mutation and showed a loss of brainstem volume in individuals carrying an
ATXN2mutation!11, In addition, the feasibility of detecting premanifest abnormalities with
MRS and diffusion MRI has been demonstrated151:158.170.172 ‘Notably, neurochemical
abnormalities were detectable by MRS in a small cohort of premanifest carriers of common
SCA-causative mutations whose estimated disease onset was within 10 years, showing that
such changes may be detected up to 10 years before onset of ataxial®8,

In summary, numerous studies have demonstrated the sensitivity of biomarkers on MRI and
MRS to cerebral changes in patients with SCAs, as well as their correlations with disease
severity112.140.144-149,158-161,173 Fyrthermore, morphological MRI and MRS have shown
abnormalities in premanifest carriers of SCA-causative mutations!11:158, However, further
studies must validate the capability of these modalities to predict disease onset in
premanifest individuals, to facilitate participant selection for trials and to enable disease
progression to be monitored in early-stage patients in multicentre longitudinal settings.

Biofluids and other biomarkers

Biofluid biomarkers are attractive because they are generally less expensive and are
potentially easier to access than imaging biomarkers. Although the genetic mutation is the
definitive diagnostic biomarker in SCAs, useful body fluid biomarkers for disease activities
and disease progression are yet to be developed. CSF levels of taul”4, indices of oxidative
stress in serum1”®, serum cytokines!’®, serum level of glutathione S-transferasel’” and
circulating plasma DNA level78 are altered in some SCAs. However, these measures have
not proved to be useful in clinical trials owing to insufficient specificity or sensitivity for, or
limited correlations with, target disease measures. In the past few years, SCA consortia have
initiated the search for body fluid biomarkers via transcriptomics, proteomics and
investigations of molecules of particular interest in CSF, plasma, serum, exosomes and
peripheral cells. Among these markers, the CSF level of ataxin 1 (ATXN1), ATXN2,
ATXN3, ATXN7 and other SCA disease proteins that possess toxic gain-of-function
properties is considered to be a promising biomarker for monitoring the response to
nucleotide-based gene-silencing therapeutic approaches such as ASOs or RNA. (FIG. 6).
Other preliminary biomarker studies in SCAs include the frequency of micronuclei in buccal
cells?®, retinal nerve layer thinning on optical coherence tomography80-181 various
measures of CNS function (including cognition!82, eye motility183-188  rapid eye movement
(REM) sleep and other sleep-related functions189-191) peripheral nerve electrophysiological
measures92 and quantitative measures of gait and other motor activities184193.194 However,
further studies are needed to determine the utility of these potential biomarkers.

The importance of stringent adherence to sample and data acquisition and processing
protocols when using biomarkers cannot be overemphasized. Standard operating procedures
for sample collections are essential and should be based on careful consideration of the
stability of biomarker molecules, the nature of assays to be used, the condition of the patient
at the time of sample or data acquisition and the circumstances in which the sample is
collected.
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Conclusions

SCAs are autosomal dominant degenerative disorders that primarily affect the cerebellum
and its efferent and afferent pathways. Although clinical characteristics can help to guide
physicians towards the correct diagnosis, the diagnosis of SCAs ultimately depends on
genetic testing. DNA testing technologies have rapidly improved with NGS technologies
although challenges remain, especially in repeat-expansion disorders. Although currently no
symptomatic or disease-modifying drugs for SCAs have been approved by the FDA or the
EMA, promising candidate drugs are being developed that are based on a strong scientific
premise and rigorous preclinical studies. However, SCAs are rare diseases, and clinical trials
for these drugs face challenges. Strategies to ensure the feasibility of scientifically sound
clinical trials for SCAs include the identification or development of drugs with a large effect
size, establishment of sufficiently large cohorts of individuals with SCAs, characterization of
cohorts for natural history of the disease, development of responsive clinical outcome
assessment measures, identification of disease modifiers to enable refinement of study
participant stratification, identification and characterization of biomarkers of disease-related
biological changes and adoption of valid clinical designs for small sample sizes.
Employment of these strategies should enable decisive clinical trials of new drugs. Given the
success of large-scale clinical research efforts in the SCAs in the past few years and
continued coordination among ataxia investigators worldwide, we are cautiously optimistic
that drugs will be found that are beneficial for those with SCAs.
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Key points

Spinocerebellar ataxias (ScAs) are a group of dominantly inherited
degenerative disorders that principally involve the cerebellum and its
connections.

Insights into the pathogenic mechanisms of many ScAs have suggested
promising routes to symptomatic and disease-modifying therapy.

clinical research consortia for ScAs have started international collaborations
to share and analyse natural history data.

the Scale for Assessment and rating of Ataxia is the best validated clinical
outcome assessment measure, but additional measures should be developed
with improved responsiveness to changes that are directly relevant to patients
lives.

mrl and magnetic resonance spectroscopy have emerged as potentially
powerful biomarkers for disease activities and progression, but target
engagement biomarkers, especially molecular biomarkers in biofluids, are yet
to be developed.

collective efforts in ScA clinical research within the past few years have
improved the prospects for eventual successful therapeutic development for
the ScAs.
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Fig. 1 |. Hereditary degenerative ataxias caused by expanded microsatellite repeats.
A CAG repeat expansion within the open reading frame of the respective genes associated

with the spinocerebellar ataxias (SCASs) 1, 2, 3, 6, 7 and 17 and dentatorubral-pallidoluysian
atrophy (DRPLA,; green) encodes an elongated polyglutamine (polyQ) tract in the protein
product. The CAG repeat in SCA12 (yellow), present in PPP2R2B, is shown in the 5
untranslated region (UTR) in this figure but can be intronic depending on the transcription
start site. In SCAS (purple), a CTG repeat is located in the 3" UTR of ATXNEOS. However,
the complementary CAG repeat on the opposite strand encodes polyQ in A7TXNE. Four large
intronic microsatellite repeats include three pentanucleotide repeats (blue) in SCAs 10, 31
and 37 and one hexanucleotide repeat (red) in SCA36. In SCA31, a TGGAA repeat is
located in BEANI, and a TTCCA repeat is found in 7K2on the opposite strand, although
only the UGGAA-containing transcripts are shown to be pathogenic. Likewise, the large
ATTTC repeat, but not the ATTTT repeat, is pathogenic in SCA37. In SCA10, the risk of
epilepsy increases sixfold when the ATTCT repeat is interrupted by a stretch of ATCCT
repeat. In SCA36, an expanded GGCCTG repeat (with high sequence homology with the
GGGGCC repeat in C90rf72) is present in NOP56.
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‘ Clearly secondary to a known underlying sporadic disease on initial work-up? ‘
NS lYES
‘ Positive family history
Secondary Sporadic SAOA
lYES NO ataxia MSA-C (ILOCA)
Limited screen for common dominant
Genetic basis already (including repeat-expansion ataxias) and YES NO
identified in family member recessive ataxia (including Friedreich
ataxia) testing. Positive?
YES Autonomic dysfunction and other
. lYES Jno YES NO characteristics of MSA?
3 Specific ‘ Genetic ataxia Shicable
| genetic 1_>NO panel includir]g _)NO for WGS I Onset before 45 years of age? NO
! testing. | repeat-expansion or WES?
;Posmve" ataxias. Positive? s YES NO Re-evaluation of NG Sl
YES YES NO clinical presentation for WGS
YES Full recessive ataxia | DNA test for | O and, if appropriate, or WES? NO
Genetic cause work-up (WGS or FXTAS further testing
identified by Unknown WES) positive? positive? for rare causes of YES
WGS or WES? | NO > | genetic sporadic ataxia.
- ataxia Positive? Fesihe
YES YES
Specific lYES result by
genetic WGS or |—
ataxia YES| WES?

Fig. 2 |. Diagnostic algorithm for progressive ataxias.
Red arrows show steps to the diagnosis of inherited ataxias. Grey arrows indicate processes

in which a genetic ataxia is still included in the differential diagnosis. Black arrows are
routes to diagnoses of non-genetic ataxias. Obvious secondary ataxia should be excluded
before a diagnosis of a spinocerebellar ataxia (SCA) can be made. The next step is to
determine whether ataxia is inherited. If genetic diagnosis is already known in the family,
optional confirmatory genetic testing is advised. If genetic diagnosis is unknown, panel
testing or selective genotyping for dominant and/or recessive ataxias is recommended. If
results are negative, whole-exome sequencing (WES), and potentially whole-genome
sequencing (WGS), can lead to the specific genetic diagnosis. When no family history is
present of a similar ataxic disorder, treatable causes of progressive ataxias should be
explored on the basis of the differential diagnosis (for example, immune-mediated ataxias).
Once treatable causes are excluded, genetic testing can be considered in patients with
apparently sporadic ataxia. After exclusion of secondary ataxias and genetic ataxias, the
diagnosis of either probable multiple system atrophy of cerebellar type (MSA-C) or sporadic
adult-onset ataxia (SAOA,; also known as idiopathic late-onset cerebellar ataxia (ILOCA))
can be established on the basis of the diagnostic criteria. FXTAS, fragile X-associated
tremor/ataxia syndrome.
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Fig. 3 |. Therapeutic strategies for the SCAs.
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¢ CRISPR and other gene-
editing technologies

* CRISPR-mediated repression
¢ Target relevant transcription factors

¢ Degrade transcript
* Modulate splicing
* Block translation

¢ Enhance clearance
¢ Promote folding

* Screen for compounds that
target implicated pathway
* Repurpose existing drugs

A generic CAG repeat polyglutamine disease gene is used to illustrate positions along the
pathogenic cascade for which disease-modifying therapeutic approaches are being
developed. Examples of specific strategies at each point are shown on the right. Five
representative downstream consequences of the spinocerebellar ataxia (SCA) disease protein
are shown that represent potentially targetable pathways shared across multiple SCAs; this
list is not intended to be comprehensive. C, carboxyl terminus; N, amino terminus; pA,

polyadenosine tail.
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Fig. 4 |. Sample size estimation for evaluation of drug efficacy in SCAL.
FIGure shows the estimated sample size required for the efficacy of a drug to be tested in a

clinical trial of patients with spinocerebellar ataxia 1 (SCAL). Among individuals with
common SCAs, patients with SCA1 have shown the fastest progression rate with an annual
increase of the Scale for Assessment and Rating of Ataxia (SARA) total score of 1.61 + 0.41
(mean % s.e.) in the 2-year Clinical Research Consortium for Studies of Cerebellar Ataxias
(CRC-SCA) study and of 2.11 + 0.12 in the 5-year EUROSCA study. On the basis of the
progression data, the sample size needed for two-group interventional trials of 1-year
duration was calculated to be P<0.05 for various effect sizes of the intervention. The
estimated sample size per group to achieve 80% power with effect sizes ranging from 20%
to 100% is shown. The estimates were calculated separately from the CRC-SCA data (red)
and the EUROSCA data (blue).
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FIG. 5. Transatlantic SCA consortia.
Twenty US institutions (top panel) are participating in the Clinical Research Consortium for

Studies of Cerebellar Ataxias (CRC-SCA). The European consortia (bottom panel) operate
in multiple organizations including the German Centre for Neurodegenerative Diseases
(DZNE), the European Ataxia Study Group (EASG), the Spastic Paraplegia and Ataxia
network (SPATAX) and the European SCA3/Machado Joseph Disease Initiative (ESMI).
The US CRC-SCA and these European counterparts are now collaborating in translational
and clinical research of spinocerebellar ataxias (SCAs). BCM, Baylor College of Medicine;
BRP, Bioengineering Research Partnerships; Charité, Charité Universitdtsmedizin Berlin;
CHRU, Regional Hospital University Centre; CHU, Hospital University Centre; HMRI,
Houston Methodist Research Institute; Hop Des, Hopital Des; ICM, Brain & Spine Institute;
Inst., Institute; IRCCS, Instituto Di Ricovero e Cura a Carattere Scientifico; JHU, Johns
Hopkins University; MGH, Massachusetts General Hospital; MRS, magnetic resonance
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spectroscopy; Nat., National; Pécs, University of Pécs; Psych & Neurol, Psychiatry and
Neurology; U., University or University of; UAB, University of Alabama-Birmingham;
UCL, University College London; UCLA, University of California—Los Angeles; UCSF,
University of California—San Francisco; UF, University of Florida; UMN, University of
Minnesota; UPMC, Université Pierre et Marie Curie; USF, University of South Florida;
UTSW, University of Texas Southwestern. The complete list of institutions involved is
available in supplementary materials.
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Fig. 6 |. Biomarkers for SCAs.

Diagram shows the stages at which clinical outcome assessment measures and biomarkers
are expected to have utility in a hypothetical gene-silencing trial of a polyglutamine (polyQ)
spinocerebellar ataxia (SCA) in which a patient cohort with early and premanifest disease is
targeted. Clinical outcome assessment, genetic markers (for example, size of CAG triplet
repeat and other modifiers of age of onset) and MRI or magnetic resonance spectroscopy
(MRS) markers might facilitate the selection of patients with minimal cerebral involvement
and enable premanifest enrolment of patients who already show cerebral changes. Measures
of the disease protein in cerebrospinal fluid (CSF) are being developed to monitor target
engagement in those who have been allocated to a gene-silencing intervention. Use of a PET
tracer that specifically binds to polyQ repeats could provide direct evidence of clearance of
the mutant protein or aggregates from the brainl%. Finally, MRI and MRS markers are
expected to aid treatment monitoring as secondary outcome measures that supplement the
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primary clinical outcome assessment measures. Furthermore, MRI and MRS markers might
also serve as safety markers to ensure that the treatment does not exacerbate the cerebral
pathology. The biomarkers shown are not intended to be comprehensive and need further
development and/or validation, particularly in the premanifest and early disease stages, for
the proposed uses in trials. ATXN, ataxin; SARA, Scale for Assessment and Rating of
Ataxia.
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