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Abstract

Proteins have sparked fast growing interest as biological therapeutic agents for several diseases. 

Antibodies, in particular, carry an enormous potential as drugs owing to their remarkable target 

specificity and low immunogenicity. Although the market has numerous antibodies directed 

towards extracellular targets, their use in targeting therapeutically important intracellular targets is 

limited by their inability to cross cellular membrane. Realizing the potential for antibody therapy 

in disease treatment, progress has been made in the development of methods to deliver antibodies 

intracellularly. In this review, we address various platforms for delivery of antibodies, their merits 

and drawbacks.

Graphical Abstract

1. INTRODUCTION

Only 10% of the genome can be targeted by small molecule drugs.1 As a result, protein 

therapy has emerged as an alternative to small molecules, as witnessed by ~130 FDA-

approved biologics in the market.2 Owing to the specificity of proteins in interacting with 

their targets, the off-target effects of the drug is limited. Proteins have the potential to 

address key bottlenecks in cancer therapy, in metabolic diseases such as diabetes mellitus-

type 1, protein replacement therapy for genetic diseases such as in lysosomal storage 

disease, anti-viral therapy, diagnosis of bacterial infections and development of vaccines.3 

Corresponding author: thai@chem.umass.edu. 

HHS Public Access
Author manuscript
Bioconjug Chem. Author manuscript; available in PMC 2020 April 17.

Published in final edited form as:
Bioconjug Chem. 2019 April 17; 30(4): 1028–1041. doi:10.1021/acs.bioconjchem.9b00025.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Among proteins, antibodies hold a special place as a therapeutic. An illustrative example of 

antibodies’ niche involves ‘drugging the undruggable’ targets. Many disease targets, 

although identified, are considered undruggable; because these targets lack a specific and 

well-defined binding pocket and are present inside the cells.4 Antibodies hold enormous 

potential for drugging these targets, as they can be produced against any epitope using the 

well-established hybridoma technology or phage display.5,6 The cell membrane, however, 

poses a barrier for the entry of antibodies, thus restricting them for extracellular targets. 

Intracellular protein delivery, as a general topic, has been a subject of many recent reviews.
7,8 In this review, we specifically focus on cytosolic delivery of antibodies. An antibody 

against an intracellular target in circulation will be non-specifically taken up cells other than 

targeted cells such as immune cells that present Fc receptor giving rise to off-target effects9. 

This complication can be partially circumvented by developing smaller fragments of 

antibody devoid of Fc region such as antigen binding fragment (Fab), single chain variable 

fragment (ScFv) and nanobodies. However, the shorter antibody mimics are liable towards 

rapid clearance from the body.10 Furthermore, upon endocytotic uptake of antibody formats, 

the endosomes are fused with lysosome that degrades the antibody before they reach their 

targets in the cytoplasm.11 A potential solution to these problems can be achieved by 

association with a delivery vehicle that protects the antibody from degradation whilst 

allowing handles for attachment of cell-specific targeting molecules. These vehicles can be 

chemically modified to escape endosomes or enter cells via non-endocytotic pathways. 

Aspects of these would be discussed in detail throughout the review. We have organized this 

review based on the methods (physical vs. chemical approaches) and the materials 

(polymers, nanoparticles, and liposomes) used for the intracellular delivery of antibodies 

(Fig. 1).

2. CLASSICAL METHODS

Microinjection is among the first techniques to be used for delivering antibodies into cells.
12,13 For example, the role of IFN-induced protein-Mx in providing protection against 

influenza was demonstrated through microinjection of an anti-Mx antibody.14 Although this 

process provides near-quantitative incorporation of the proteins inside cells, the process 

itself is both harsh and tedious such that it greatly impacts cell viability.15 Electroporation, 

on the other hand, involves the use of electric field pulses to reversibly permeabilize the cell 

membrane via creation of transient pores that allow the transport of proteins across the 

membrane. In-vitro electroporation has been used to introduce antibodies into cytosol of 

many animal16,17 and plant cells18, whilst a few groups have successfully demonstrated the 

use of this method for antibody delivery into human cells.19,20 Electroporation allows the 

entry of antibodies into multiple cells simultaneously, while the microinjection process 

requires single cell manipulations. However, electroporation was found to be harsh and 

inefficient, and can only be used in vitro.15,21

2.1 Alternate strategies - Intrabodies

The drawbacks of these delivery methods could potentially be overcome by developing 

intracellularly expressed antibodies, called intrabodies.22,23,24 Here, cells are transfected 

with plasmids encoding for antibodies. In this strategy however, the challenges in delivery of 
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antibodies is simply replaced with the challenges in delivering plasmids. Based on their 

location of action, intrabodies can be of two type-cytosolic and endoplasmic reticulum (ER) 

intrabodies. The ER provides an oxidizing environment for correct folding of the antibodies 

following which they can be utilized to study the effects of knockdown in different pathways 

in ER, be presented on cell surface or secreted by the cell. For targets that are cytosolic or in 

the nucleus, intrabodies are required to be made in cytoplasm. The reducing intracellular 

environment and the absence of appropriate chaperone proteins forbid precise folding of the 

antibody, even if the plasmids were successfully introduced in the cells. The following 

reviews provide an excellent comprehensive study on production of intrabodies for 

therapy25,26. Therefore, although delivery of plasmids may be a viable strategy, methods that 

deliver intact antibodies with structural and functional integrity are attractive. Consequently, 

cell penetrating peptides conjugated to antibodies (transbody) are argued to be a better 

option than intrabodies27.

3. CELL PENETRATING PEPTIDES

Protein transduction domain (PTD) or cell penetrating peptides (CPP) comprise 10–30 

amino acids, primarily based on cationic lysines and arginines and/or hydrophobic amino 

acids. These peptides translocate across the cell membrane via different mechanisms.28,29 

CPPs have been shown to navigate the membrane in both endocytotic and non-endocytotic 

pathways (direct cell membrane penetration) depending upon the CPP-cargo combination, 

the concentration of the cargo and their molecular weights.30 Many CPP-cargo conjugates 

were able to enter cells at 4 °C invoking direct penetration mechanisms such as pore 

formation, carpet-like model and inverted micelle formation.31 However, under different 

circumstances CPPs were shown to enter cells via different endocytosis mechanisms such as 

clathrin/caveolin mediated, micropinocytosis and caveolin/clathrin independent pathways.32

Although CPPs have been used for delivery of small proteins, utilizing these for antibody 

delivery is sparse due to a dependence on cargo size33. HIV - transactivator of transcription 

(HIV-TAT)34 is the earliest protein with known CPP capabilities. The CPP domain of this 

protein, the so-called Tat-peptide, has been used for antibody delivery.35,36 For example, 

Tat-conjugated anti-tetanus (Fab’)2 was used to neutralize tetanus toxin in chromaffin cells.
37 Similarly, Tat-modified anti-Rev1-Fab was used to combat HIV infection, where the key 

nuclear export of viral transcripts using Rev-1 was compromised.38 The cytosolic delivery 

capabilities of the Tat-peptide conjugation were demonstrated by the nuclear localization of 

anti-Rev1-Fab (Fig. 2a). The nuclear localization itself was facilitated by the fact that Tat-

peptide, in addition to the CPP features, also has an embedded nuclear localization signal 

(NLS) sequence.

A recombinant fusion of Tat and full-length anti-Hepatitis-B virus X (anti-HBx) was used to 

inhibit HBx, critical for Hep-B replication, in Huh7 and HepG2 cells39 (Fig. 2b). The effect 

of utilizing the full-length antibody was demonstrated by the reduction of intracellular 

concentrations of HBx, because the Fc-domain of the antibody binds to TRIM-21 thus 

guiding the bound HBx protein for proteasomal degradation. The Fc region of the antibody 

has essential role in antibody therapy for cancer40. Various monoclonal antibodies targeting 

tumor cell surface proteins are recognized by Fc-receptors on immune cells such as Natural 
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Killer (NK) cells, monocytes, macrophages and a subset of T-cells9. Following this 

interaction, the target tumor cells are eliminated via antibody-dependent cellular 

cytotoxicity.41 The Fc region can also be recognized by complement system that cause 

complement dependent cytotoxicity42. For the purposes of this review, we will focus on 

antibody that has intracellular targets as opposed to cell surface proteins for cancer therapy.

Cell penetrating ability of Tat has also been used in enhancing tumor retention of antibodies.
43 To target aberrant expression of proteins in cancer, Tat-123I-anti-p21WAF−1/Cip−1 antibody 

was delivered into MDA-MB-468 breast cancer cells; the antibody was shown to be 

transported to the nucleus to block p21-mediated G1-S phase arrest, as seen from 35% 

nuclear radioactivity as compared to 7% for 123I-anti-p21WAF−1/Cip−1 without the 

Tatpeptide.44,45

In a unique attempt, an anti-DNA antibody46 itself has been shown to exhibit CPP-like 

features including transport to the nucleus.47 A fusion between mAb3G5, which targets 

cancer-related MDM2 protein, and anti-DNA-ScFv was delivered into COS-7 cells and 

melanoma cells. The bispecific antibody inhibited MDM2 in vitro and retarded the growth 

of tumor in mice. To make the effect of antibody-based inhibition of a target selective, 

histone-2A-based CPP BR2 was used to deliver the ScFv against a mutated K-Ras to induce 

apoptosis in cancer cells.48 Some of the other CPPs that have been used for delivering 

antibodies include transportan49, peptides identified from autoantibodies50 and membrane 

translocating sequence from Kaposi fibroblast growth factor.51,52

Inspired by naturally occurring CPPs, researchers have designed synthetic guanidinium-rich 

CPPs to facilitate interaction with cell membrane for internalization of the cargo. In one 

such example, an oligoarginine was conjugated with the Fab of IgG using their lysine 

handles (Fig. 3a) and was delivered into HeLa cells.53 Cyclic arginine peptides, on the other 

hand, were shown to promote non-endocytic cellular uptake54,55 and subsequently used to 

make cell-permeable nanobodies. The CPP tagged nanobodies were used to re-localize two 

proteins, polymerase clamp PCNA (proliferating cell nuclear antigen) and p53, to the 

nucleolus and study the interaction between PCNA and tumor suppressor p53.56 Similarly, a 

commercially available CPP, Pep-157,58, was used to deliver anti-LAMP and anti-β-actin 

into mammalian cells (Table 1). Pep-1 was inspired by the lysine rich hydrophobic domain, 

mimicking the NLS sequence of Simian virus protein, SV40.

In addition to directly conjugating CPPs with antibodies, intracellular access was also 

achieved by conjugating these peptides with protein A/G (derived from Staphylococcus 
aureus and Streptococcus) which binds strongly to the crystallizable fragment (Fc) of 

antibodies. This combination was used to deliver a mitochondria-targeting antibody, which 

was imaged using the nanoparticle bearing the CPP-modified protein A/G (Fig. 3b).59 

Similarly, a fusion between protein A and Tat was also used to deliver AF546 conjugated 

anti-mouse IgG into 3T3 cells that expressed GFP.60 In contrast to proteins, a peptide 

capable of binding to the IgG-Fc, called FcBP61, was used to deliver human/rabbit IgG into 

HeLa and 3T3-L1.62 In another example, a fusion protein comprised of a nucleocapsid 

protein and the ZZ domain of protein A was used to load antibodies into hemagglutinating 

virus of Japan envelope (HVJ-E) capsid. In this case, the viral capsid itself presumably acted 
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like a CPP. The versatility of this platform was demonstrated by delivering an unspecific 

mouse IgG1, anti-nuclear pore complex and anti-tubulin.63

Since endocytosis is predominantly the mechanism of uptake for CPP associated cargos, 

newer membrane disruptive agents derived from viral/bacterial toxins that aid in endosomal 

escape of the cargo are sought. The endosomal escape properties of CPP was enhanced upon 

fusion of endosomolytic peptide from influenza virus hemagglutinin-2.64 Even though many 

fusogenic peptides are employed for improving gene delivery65, optimization of 

endosomolytic peptides for delivery of biologics is an ongoing challenge.66 Beginning with 

a cationic membrane lytic M-lycotoxin, a glutamate residue was introduced in the 

hydrophobic face of the amphiphilic α-helix. The idea here is that the lytic property of the 

toxin would be only revealed upon protonation of glutamate in endosomal compartments 

leading to an escape of antibodies from the endosome67 (Fig. 4a). Similarly, cytosolic 

release of antibody was made possible upon treatment with dimer of Tat-conjugated with 

tetramethylrhodamine (dfTat) pre-incubated with antibody.68 It was reasoned that endosomal 

entrapment of Tat could be due to electrostatic interactions with negatively charged proteins/

degradation of peptide along the endosomal pathway. The dimer of Tat presumably resists 

this degradation and is able to deliver to the cytosol.69

3.1 Limitations and Future Directions:

CPPs are quite attractive for delivering antibodies inside cells, as a simple conjugation of a 

short peptide can result in a remarkably enhanced cellular uptake. However, these are not 

without some limitations. These peptides are often conjugated with antibodies using a linker. 

It has been shown that the nature of the linker (e.g. disulfide37, thioether37, amide53 and 

Schiff’s base44) can greatly impact their cellular uptake properties. The drawbacks of these 

chemical conjugation strategies could be circumvented with the fusion protein approaches. 

However, fusion protein generation is relatively tedious and is not amenable for rapid 

screening, which in itself provides a significant research opportunity for future development. 

The report, suggesting that CPP conjugation retards the binding capabilities of the scFv70, is 

also a cautionary example that shows that CPP-based approaches might not be as 

generalizable. Despite these drawbacks, the success stories in CPP-based delivery of 

antibodies suggest that this area does warrant further investigation. As a part of this 

investigation, there is a surge in interest in the mechanism by which CPPs access the cellular 

interior. Arguably, the biggest challenge for the CPP-based delivery involves its potential for 

in vivo translation. For example, CPPs have been shown to exhibit poor stability in vivo. 

This complication has been addressed by designing a rigid collagen like helix comprised of 

arginines and delivered FITC-labeled IgG to HeLa cells.71 Also, CPPs cause their 

appendage to be rapidly taken up by the cells, but this very feature also provides the 

stumbling block for selectivity in cellular uptake. This complication is being circumvented 

by developing peptides that are activated to be cell penetrating, upon reaching a specific 

target. Examples of such strategy include activatable CPPs72,73 and pH-low insertion 

peptides (pHLIP)74, although these approaches are yet to be used for intracellular delivery of 

antibodies (Fig. 4b).
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4. NANOPARTICLES

4.1 Inorganic Nanoparticles

The use of nanoparticles for delivering antibodies can be broadly classified into two 

categories, viz., inorganic and polymeric nanoparticles (see Table 1). Recently, use of 

inorganic nanoparticles to act as an immobilization support for bioactive molecules has 

gained a lot of attention.75,76 Among these, silica nanoparticles (SiNPs) have additional 

advantages of biocompatibility, surface functionalization capabilities, and pore volume 

tunability. In addition, the inherent rigidity of the material offers to protect encapsulated 

antibodies against harsh species in intra- and extracellular milieu.77

Non-porous SiNPs (~20 nm), surface modified with hydrophobic n-

octadecyltrimethoxysilane (n-ODMS) groups, were used to hydrophobically adsorb protein 

cargos.78 The resultant complexes were shown to cause cellular uptake via energy-dependent 

endocytotic pathways, such as through clathrin pits and actin filaments. Anti-phospho-Akt 

was loaded onto the SiNPs and was effectively delivered in cytosol, where cellular apoptosis 

was used as the evidence for cytosolic protein delivery. On the other hand, mesoporous 

SiNPs containing 2–50 nm sized voids have been used to non-covalently immobilize larger 

proteins such as IgG.79 Amine-functionalized hollow dendritic mesoporous silica nano-

spheres and surface functionalizable hollow mesoporous silica nanocapsules bearing a 

singular hole per particle of 25–50 nm, have also been reported with high antibody loading 

capacity.80,81

Electrostatic complexation between SiNPs of different sizes have been utilized to obtain the 

so-called rough silica nanoparticles (RSN), which has a raspberry-like shell morphology. 

The interstitial spaces in the shell were utilized to load antibodies.82 Building on this, RSNs 

were designed with controlled surface roughness and longer neck space by complexing 

larger anionic SiNPs as the shell on amine-modified cores.83 These anionic RSNs were 

loaded with positively charged anti-phospho-Akt via electrostatic complexation, which 

showed successful release in human breast cancer (MCF-7) cells. In a follow up work, it was 

found that the enhanced surface roughness and void sizes determine high loading ability, 

while a hydrophobic octadecyl (C18) functionality plays a key role in better uptake via 

endocytosis and endo/lysosomal escape of RSNs.84

Similarly, a therapeutic antibody Cetuximab was encapsulated in a biodegradable silica 

nanoquencher (BS-qNP), which was shown to be efficiently taken up by cancer cells and 

underwent degradation in the presence of the hypoxic environment specific to cancer cells85 

(Fig. 5). The exterior of antibody-loaded silica nanoshells was surface functionalized with 

azo groups, which provide several benefits. First, it acts as a protective sheath for the 

encapsulated antibody, while also instilling stimuli responsiveness in presence of 

cytochrome reductase that exists in hypoxic cells causing the BS-qNPs to degrade and 

concurrently release the native antibody. Additionally, the internal silica nanocapsule was 

doped with a fluorophore, the fluorescence of which is turned OFF by the azobenzene 

moiety of the BS-qNP. When the carrier vehicle falls apart, the fluorescence is turned ON, 

because of the spatial separation between the fluorophore and the quencher components, 

thus enabling the ability to track the protein release under hypoxia. Also, the poly(disulfide) 
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functionalities on the BS-qNP surface have been implicated in facilitating cellular uptake via 

an endocytosis-independent, thiol-mediated pathway with minimal cytotoxicity.86 Once 

inside the cell, disulfide shuffling results in depolymerization of poly(disulfide) moieties (<5 

min), exposing the antibody-BS-qNP to hypoxic conditions which then causes reduction-

induced cleavage of the azobenzene crosslinkers, leading to Cetuximab release and cellular 

apoptosis.

4.2 Polymer based nanoparticles

4.2.1 Non-covalent antibody-polymer complexation—Complementary to 

inorganic nanoparticles, polymer-based nanoparticles offer greater tunability in molecular 

weights, particle sizes and surface functional groups, which in turn could be used to 

optimize circulation times and endo/lysosomolytic efficiencies.87 Within the polymer-

antibody combinations, approaches can be broadly classified into non-covalent complexation 

and covalent conjugation.

Non-covalent complexation approaches are generally dominated by electrostatics (see 

below), although there have been isolated efforts to utilize other non-covalent partners such 

as the biotin-avidin combination.88 A biotinylated poly(propylacrylic acid) (PPAAc) and a 

biotinylated anti-CD3 antibody was mixed with streptavidin to give rise to a ternary 

complex.89 These complexes were taken up by Jurkat lymphoma cells via receptor-mediated 

endocytosis; a diffused fluorescence in cytoplasm after 4 h was attributed to the 

endolysosomal release, possibly due to the proton-sponge features of the PPAAc moieties.90 

Alternately, poly(lactic-co-glycolic acid) (PLGA) based carriers have been used to protect 

non-covalently encapsulated anti-AnnexinA2 (AnxA2) antibody.91 The slow degrading 

features of PLGA endowed the material with the ability to release the antibody over 12 days 

with retained function.

The popularity of charge-based complexation is attributed to its phenomenological 

simplicity. Polyethyleneimine (PEI) has been widely reported to complex with negatively-

charged nucleic acids and deliver them intracellularly by making use of the ‘proton sponge’ 

effect of protonated amines at endosomal pH.92 Similarly, PEI was used to complex anti-

lamin, a nuclear protein; interaction between the negatively charged cellular membrane and 

positively charged complexes facilitated uptake of antibody in human fibroblasts.93 In a 

strategy utilizing cell-surface receptors, anti-synuclein complexed polybutylcyanoacrylate 

nanoparticles were taken up by primary hippocampal cultures via low-density lipoprotein 

receptor mediated endocytosis.94,95 In an interesting strategy, polyion complex (PIC) 

micelles were formulated by optimizing ratios between anionized antibody and [N-{N′-(2-

aminoethyl)-2-aminoethyl}aspartamide] (PAsp(DET)) based cationic block co-polymer and 

a homopolymer96,97 (Fig. 6). The anionized antibody was obtained by modification of lysine 

residues using citraconic anhydride. The protonation of (PAsp(DET)) at endosomal pH 

caused escape from endosomes, reversal of modification on anionized antibody followed by 

nuclear envelope targeting. Similarly, polymeric scaffolds, that mimic the cell penetrating 

features of CPPs, have been approached because of their ease of synthesis and structural 

tunability.98 In this context, an amphiphilic polymer consisting of phenyl and guanidinium 
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moieties has been used to deliver anti-pPKCθ to human peripheral blood mononuclear cells.
99

4.2.2. Covalent linkage-based antibody-polymer conjugation—Covalent 

attachment of polymers to form conjugates for intracellular delivery of antibodies is useful 

since polymeric chains can protect the encapsulated antibody from harsh in vivo conditions.
87 The carboxylic acid of the antibody was conjugated to amines of PEI using carbodiimide 

chemistry and delivered to human fibroblast cells. The conjugates were endocytosed via 

adsorption-mediated pathways and was localized to cell periphery. However, these studies 

were performed in serum-free conditions thereby minimizing adsorption of proteins on 

conjugates, that may pose hindrance to cellular uptake of the antibody.100 Cell penetrating 

poly(disulfides) (CPD) comprising of guanidium groups and terminated with tetrazine was 

conjugated to trans-cyclooctyne (TCO) bearing antibody.86,101 The antibody was modified 

via sulphone chemistry to introduce TCO moiety by reduction of native disulfide linkages. 

CPD-conjugated antibodies can bypass endocytosis102 and enter cells via thiol-mediated 

pathways, as seen by confocal microscopy.

Amphiphilic polyanhydride nanoparticles derived from diacids of 1,6-bis-(p-

carboxyphenoxy)hexane and 1,8-bis-(p-carboxyphenoxy)-3,6-dioxaoctane and sebacic acid 

were utilized to demonstrate sustained release of Tetanus antitoxin and anti-TNF-α 
antibodies in vitro and ex vivo over a period of a month with preservation of biological 

activity.103 The delivery scaffold is biodegradable, because of the reported surface erosion 

mechanism and the by-products are speculated to be mildly acidic. An initial burst release of 

anti-TNF-α was observed with 70–90% total release achieved over a course of 25 days.

4.3 Limitations and Future Directions:

Nanoparticles are an exciting platform for intracellular delivery of antibodies due to the ease 

of synthesis and tunability in chemistry for optimization. Electrostatic complexation93,96,97, 

offering faster formulation, can cause toxicity to cells and result in endosomal entrapment 

especially when positively charged scaffolds are used. On the contrary, covalent conjugation 

of the antibody with polymeric scaffolds can prevent scaffold-mediated toxicity. Despite 

numerous examples of covalent conjugation strategies in literature, only a few have been 

capable of endosomal escape and efficient release of antibody in the cytosol. The released 

antibody is often linked to remnants of polymeric scaffold, which may pose hindrance 

towards targeting specific interaction. Our group has developed a protein assisted covalent 

assembly that undergoes self-immolation under reducing conditions encountered 

intracellularly to release the protein in its intact form, which has the potential to circumvent 

these issues.104 Additionally, quick formulation strategies that compete with electrostatic 

complexation, but are as robust as in covalent conjugation strategies, need to be developed. 

Unpublished work from our lab has successfully shown a mix-and-go covalent chemistry 

between protein and polymer, which has been used to deliver β-galactosidase to cells.

5. LIPOSOMAL DELIVERY

Liposome, a lipid based spherical bilayered particle, is considered as an attractive delivery 

agent due to its biocompatibility, biodegradability and controlled release property.105 
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Significant research efforts have been made to design liposomes that can be sensitive to 

stimuli (pH106, redox107, light108, temperature109), have long circulation half-life 

(PEGylation110) and can even be decorated with ligands/antibodies for specific targeting.111 

Understandably, the desirable aspects of this platform has led to commercial development of 

several therapeutics (Doxil/Caelix-Johnson & Johnson, AmBisome- Gilead, Myocet-

Cephalon).105

Within the area of antibody delivery (Table 1), a cationic liposome, PULSin (Polyplus-

transfection (Illkirch, France)) was utilized to deliver mouse-IgG, anti-transmembrane golgi 

protein giantin and anti-nuclear pore complex in HeLa cells.112 In another study, a liposomal 

formulation was prepared with cationic trifluoroacetylated lipopolyamine (TFA-DODAPL) 

and neutral dioleoyl phosphatidylethanolamine (DOPE) combination (TFA-

DODAPL:DOPE= 2:1, called BioPORTER, Gene Therapy Systems, San Diego, CA) to 

deliver functional proteins and a fluorescent antibody (FITC-IgG) into cytoplasm of five 

different cell types.113 Complementary electrostatic charges and hydrophobic interactions 

governed the lipid-protein/antibody assemblies and their successful internalization into cells. 

However, highly positively charged bio-macromolecules with low hydrophobic domains 

could not be delivered successfully. Selection of cationic and/or helper co-lipids were 

reported to be critical for successful delivery of antibody and lipid compositions were often 

varied from one target to another. Guanidinium-cholesterol cationic lipid bis(guanidinium)-

tren-cholesterol (BGTC) and DOPE could efficiently deliver β-gal with high cellular 

activity.114 In contrast, BGTC-DOPE and other lipid combinations (DOSP-DOPE and 

BGTC-MM27, MM27 is a helper lipid based on imidazole) had low transfection efficacy for 

antibody directed against human cytokeratin 8 (anti-cytokeratin 8, K8). However, only 

DOSP-MM27 based liposomes were able to transfect 67% of total population of HeLa cells 

with FITC-anti-K8.

Strategies involving incorporation of cell penetrating peptides in liposome-based 

formulations have been well reported in literature. However, this approach is often 

associated with the problem of endosomal entrapment hindering efficient cytosolic delivery. 

In a recent report, a strategy for ‘high-speed’ intracellular transduction of antibody was 

developed using octaarginines (R8), a cell penetrating peptide and GALA, a pH sensitive 

fusogenic lipid (Fig. 7a, b).115 A liposome-based formulation was prepared with DOPE and 

cholesteryl hemisuccinate decorated with stearyl-R8 and cholesteryl–GALA to deliver 

mouse anti-NPC and IgG. In comparison to current antibody delivery methods that typically 

require 4–24 h incubation time, the reported technique can cytosolically translocate antibody 

in ~99% cells with 30–120 min incubation that includes both uptake and endosomal escape. 

Similarly, high transfection efficacy (99%) was also observed with a cationic aminolipid 

liposomes based on lysine for intracellular delivery of mouse anti-F actin antibody.113

In another approach, a liposomal delivery system is developed for photo-controlled targeted 

delivery of TuBB-9 antibody that inactivates nuclear Ki-67 protein, a bio-marker for 

proliferating cancer cells.116,117 TuBB-9-FITC construct was encapsulated in liposomes 

constructed with DPPC, DOTAP, cholesterol, and PEG2000-DSPE. A benzoporphyrin 

derivative monoacid photosensitizer is utilized for ROS mediated cleavage of endosomes to 

release the antibody into the cytosol. Specific targeting and inhibition of specific signaling 
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pathways could be coupled together to achieve therapeutic benefit. This strategy is 

demonstrated in an anti-CD44 antibody decorated liposome formulation (DOPC, DOPE, 

cholesterol with DSPE-PEG3400-NHS modified anti-CD44 antibody) encapsulated with 

anti-IL6R antibody to inhibit IL6R-Stat3 signaling and reduce several gene expressions 

(Stat3, Sox2, VEGFA, MMP-9, CD206)118 (Fig. 7c). The liposome formulation showed 

efficient CD44+ targeting and anti-tumor metastasis effect in different triple negative and 

luminal breast cancer mouse models (Fig. 7d). Suppression of critical tumor metastasis 

factors could also provide effective ways to treat metastatic cancer, where delivery of anti-

S100A4, responsible for inactivating apoptotic p53 protein, is reported to show inhibition of 

metastasis119. A liposome formulation consisting DSPE-4A (attached with 4 arginines) and 

DSPE-Hy-PEG2k (attached with benzaldehyde) was developed for direct cytosolic entry of 

vehicles through membrane fusion. Codelivery of doxorubicin was found to be synergistic 

for suppressing metastasis and improving the function of chemotherapeutic agent.119

5.1 Limitations and Future Directions:

Liposome’s tremendous success as a drug delivery agent stem from its ability to provide 

versatile guest encapsulation and to encompass a biocompatible tunable composition. The 

flexibility of liposomal design to incorporate surface functionality, relatively simple 

preparation methods and encapsulation techniques, in addition to previously approved 

formulations based on liposomes, have provided some competitive advantage for this 

platform. Nonetheless, liposome-based systems also suffer from several limitations. 

Although liposomes can provide home to both hydrophobic (in lipid bilayer) and hydrophilic 

(inside aqueous pool) guests, encapsulation efficacy for hydrophilic molecules are poor, as 

there is no driving force for encapsulation inside liposomes’ aqueous core. Other areas that 

need significant improvements include systemic destabilization of these structurally soft 

lipids, lack of structurally diverse stimulus-responsive lipids, opsonization via non-specific 

plasma protein absorption and subsequent macrophage mediated recognition and clearance.
120,121

6. CONCLUDING REMARKS

An ideal candidate for intracellular delivery of antibodies is envisioned to fulfill the 

following criteria: (a) the method must be non-toxic to cells; (b) it is capable of protecting 

the antibody from degradation by proteases during circulation; (c) the delivery efficiency is 

high; (d) the method delivers the antibody in active conformation; and (e) have the potential 

to deliver to a target cell type. Early methods of protein delivery such as electroporation and 

microinjection can deliver antibodies to cells specifically albeit for in vitro applications but 

suffer from high cell toxicity and low throughput efficiency. Contrarily cell penetrating 

peptides have been shown to deliver antibodies intracellularly with improved efficiency; 

however, CPPs are incapable of providing protection from proteases and lack cell-targeting 

properties thereby restricting their translation to in vivo therapeutic models. Designs such as 

activatable CPPs72 and pHLIP74 peptides have shown to enhance cell targeting ability of 

CPPs. Nonetheless, since the mechanism of uptake in many instances is endocytosis, the 

delivery efficiency is hampered by endosomal entrapment of the cargo. Nanoparticles, 

including liposomes, can ameliorate other deficiencies by shielding the antibody from 
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protease degradation and providing a chemical handle for attachment of targeting ligands. 

Liposomes, however, suffer from low protein encapsulation efficiency thereby demanding a 

greater dosage for efficient delivery. Polymeric nanoparticles, on the other hand, have 

improved antibody encapsulation efficiency, but are often associated with high cell toxicity 

(electrostatic complexation) or deliver antibodies modified with a polymer remains (covalent 

conjugation). In this regard, it is desired that polymeric nanoparticles retain high protein 

loading capacity and tracelessly deliver them inside cells, while being non-cytotoxic104. A 

common theme of delivery agents is associated endosomal entrapment. Therefore, it is 

pertinent that the focus be now placed on improving endosomal escape of endocytosed 

particles or newer pathways of internalization that bypass endocytosis such as the thiol-

mediated cellular uptake be investigated102.
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TABLE OF ABBREVIATIONS

FDA Food and Drug Administration

IFN Interferon

PTD Protein Transduction Domains

CPP Cell Penetrating Peptides

HIV Human Immunodeficiency Virus

Tat Transactivator of transcription

Fab Antigen binding fragment of an antibody

NLS Nuclear Localization Signal

TRIM 21 Tripartite motif containing protein 21

PBMCs Peripheral Blood Mononuclear Cells

DAPI 4′,6-diamidino-2-phenylindole

LAMP Lysosomal associated membrane protein 1

HVJE Hemagglutinating virus of Japan Envelope

pHLIP pH low insertion peptides

ACPP Activatable cell penetrating peptides

SiNPs Silica nanoparticles

n-ODMS n-octadecyltrimethoxysilane
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RSN Rough silica nanoparticles

BS-qNP Biodegradable- silica nanoquencher

PLGA poly(lactic-co-glycolic acid)

PEI Polyethylene Imine

PIC Polyion complex

CPD Cell Penetrating Poly(disulfides)

TCO Trans-cyclooctyne

TNF-α Tumor Necrosis Factor-α

PULSin Polyplus-transfection

TFA-DODAPL trifluoroacetylated lipopolyamine

DOPC 1,2-Dioleoyl-sn-glycero-3-phosphocholine

BGTC bis (guanidinium)-tren-cholesterol

DOSP dioleyl succinyl paromomycin

MM27 Imidazole based helper lipid

DPPC 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine

DOTAP 1,2-dioleoyl-3-trimethylammonium-propane

DSPE 1,2-Distearoyl-sn-glycero-3-phosphoethanolamine

ROS Reactive Oxygen Species

ECM Extracellular matrix

CHEMS Cholesteryl hemisuccinate

R8 Octaarginine

ER Endoplasmic reticulum

DOPE 1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine
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Fig. 1. 
Illustration of different protein delivery systems and their mechanism of cellular entry
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Fig. 2. 
(a) Confocal microscopy for studying the transduction of FabRev1 (A-C) and Tat-conjugated 

FabRev1 (D-F) into PBMCs. The presence of tat-FabRev1 in nucleus is evident from 

turquoise color. Blue is from DAPI fluorescence in nucleus, Green is for AF488 conjugated 

anti-Fab secondary antibody, PBMC-peripheral blood mononuclear cells, reprinted with 

permission from [38]; Fig.1 (b) Confocal microscopy studying intracellular localization of 

9D11-Tat conjugated anti-HBx and HBx in Huh7 cells. 9D11-Tat-anti-HBX was stained 

with AF488 goat anti-human antibody, HBx was stained with AF594 anti-HBx antibody. 

Reprinted with permission from [39]
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Fig. 3. 
(a) The lysines on Fab were modified with oligoarginines as CPP, reprinted with permission 

from [53] (Bioconjug. Chem. 2009, 20 (2), 249–257) Copyright 2009 American Chemical 

Society; (b) Protein G is modified to contain CPP and hexahistidine tag. The histidine 

affinity tag complexes with Nickel on nanoparticle while the antibody is bound to protein G, 

Reprinted with permission from [59]
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Fig. 4. 
(a) Schematic illustration of design of endosomolytic peptides. The strong lytic activity of a 

cationic peptide was attenuated by introducing a glutamate residue into hydrophobic face. 

Protonation of Glu at endosomal pH enables interaction with endosomal membrane followed 

by membrane perturbation to release the antibodies intracellularly, reprinted with permission 

from [67]; (b) Activatable cell penetrating peptides or pH low insertion peptides (pHLIP) 

display their ability to enter cells only upon reaching target site, where protease cleavage 

reveals CPP in case of ACPP reprinted with permission from [73] (Copyright 2004 National 

Academy of Sciences, U.S.A) or conformational change observed in peptides due to acidic 

pH at tumor site, reprinted with permission from [74]
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Fig. 5. 
Scheme showing the preparation of CPD-protein@BS-qNP and its endocytosis-independent 

cell uptake (step I), endogenous GSH- assisted CPD depolymerization (step II), and 

hypoxia-triggered intracellular protein release with fluorescence turn-on imaging (step III). 

The imaging module and release module are highlighted, Reprinted with permission from 

[85]
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Fig. 6. 
(Top) Pathways for successful intracellular antibody delivery with PIC micelles. (Bottom) 

Formation of PIC micelles incorporating charge-converted IgG antibody derivatives, PEG-

PAsp(DET) and PAsp(DET); Strategies to engineer the micelles with optimal modification 

degree to maintain bioactivity of antibody, as well as polymer concentration to enhance 

stability of micelles with high cellular uptake. Reprinted with permission from [97]
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Fig. 7. 
(a, b) Fast antibody delivery with liposomes: time course of cellular uptake of antibodies 

(IgGAlexa488) via R8-GALA liposomes represented in flow cytometry histograms (a) and 

confocal microscopy images (b), M1 & M2 corresponds to cell populations with no antibody 

& with IgG uptake, respectively, M2 % table reflects the percentage of cells with antibody 

internalization with time. Reprinted with permission from [115]; (c) Schematic diagram of 

the CD44 antibody decorated and IL6R antibody encapsulated liposomal nanoparticles, (d) 

Efficacy of CD44/IL6R liposomes in metastasis: % of metastatic foci area in the lung of 

BALB/c mice after treatment with liposomal nanoparticles and other controls. Reprinted 

with permission from [118]
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