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Self-renewal and differentiation of stem cells can be the best option for treating intractable diseases in regenerative medicine, and
they occur when these cells reside in a special microenvironment, called the “stem cell niche.” Thus, the niche is crucial for the
effective performance of the stem cells in both in vivo and in vitro since the niche provides its functional cues by interacting
with stem cells chemically, physically, or topologically. This review provides a perspective on the different types of artificial
niches including engineered phage and how they could be used to recapitulate or manipulate stem cell niches. Phage-based
artificial niche engineering as a promising therapeutic strategy for repair and regeneration of tissues is also discussed.

1. Introduction

Stem cells are undifferentiated cells that can self-renew
and can differentiate into multiple lineages based on the
provided signal, holding great promise for the repair,
regeneration, and reconstruction of tissues and organs.
They have very low immune rejection compared to fully
differentiated cells and their multipotency to differentiate
into the specific cell types [1, 2]. These merits are depen-
dent on their surrounding microenvironment in which the
stem cells reside, called “stem cell niche” [3]. Nowadays,
stem cell researchers are focusing their attention on vari-
ous stem cell niches. Since the implanted cells should
reside in a special microenvironment to achieve desirable
functions, therefore, we should consider the ways to pro-
vide a special microenvironment so as to mimic the naive
stem cell microenvironment [4, 5].

In this review, we discuss about the recent progress and
future opportunities in artificial stem cell niches. Firstly, we
highlight the components of the stem cell niche and their
function. Then, we discuss the proposed artificial niche.

Lastly, we describe the engineered phage as an artificial niche
and its promising application in tissue engineering.

2. Stem Cell Niche

Stem cells reside in the special microenvironment that con-
sists of cellular and noncellular components that provide
structural and functional cues that are various biophysical,
biochemical, and mechanical cues including cell to cell con-
tact, growth factors, and stiffness. These factors contribute
to the regulating stem cell function in vivo [3, 5]. The
research on the niche is increasing at an exponential rate as
this is the governing factor for stem cell self-renewal and dif-
ferentiation as well as other important biological phenomena
[1, 4].

The stem cell niche is very important for the smooth per-
formance of stem cells; determining its fate and the absence
of which leads to loss of those functions. The concept of the
niche was proposed around 4 decades ago but is best under-
stood today due to the understanding of the microenviron-
ment by using recent tools [6-8]. A stem cell, according to
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its niche, can undergo four different fates: (a) quiescent, (b)
symmetric divisions (giving rise to two daughter stem cells),
(c) asymmetric divisions (giving rise to one daughter stem
cell and one differentiated cell), and (d) divisions with loss
of self-renewal (giving rise to two differentiated progeny) [1].

Every stem cell niche is distinct and specific in its own
way and the way they interact with the neighboring cell pop-
ulation. But there are common features that are shared by all
the different types of stem cell niches. The generic compo-
nents of the stem cell niche are illustrated in Figure 1. The
advancement in scientific technology has led to a successful
understanding of the stem cell niche.

2.1. Cellular Components in the Stem Cell Niche. The stem cell
niche consists of different types of cells, and each of the cells
has a specific function. For example, the hematopoietic stem
cell (HSC) niche contains various cell types like osteoblasts,
vascular, neural, macrophages, and immune cells, and each
of them has a specific function [9-11]. Nowadays, scientists
are debating on the differential functions of endosteal and
perivascular niches, mainly, whether they have specialized
roles or whether there is harmonized regulation of HSC,
and as a result, there is an overlap of function [12]. The stem
cell and the niche cells communicate with each other by either
direct cell contact physical interaction or indirectly secreted
factors. Heterogeneous cell-cell interactions are always pres-
ent and often show complex bidirectional signaling [13, 14].
Direct contact is mediated by a range of receptors including
cell-cell adhesion molecules and receptors with membrane-
bound ligands. On the other hand, there is the presence of
blood vessels which transport long-range signals as well as a
channel for recruitment of circulating cells into the niche [3].

2.1.1. Cell-Cell Adhesion Molecules. Cell adhesion molecules
are membrane-associated cell surface glycoproteins involved
in numerous cellular processes including cell recognition,
adhesion, migration, differentiation, and cancer metastasis.
They are also responsible for exchanging information from
ECM to the cell [15, 16]. Based on the different structures
and functions, cell adhesion molecules are classified into
immunoglobulin (Ig) superfamily cell adhesion molecules
(CAMs), integrins, cadherins, and selectins [17]. It has been
reported that E-selectin is expressed by bone marrow endo-
thelial cells in the vascular HSC niche, thus promoting the
proliferation of HSC. The authors illustrated that HSC quies-
cence was improved and self-renewal potential was increased
after the antagonists of E-selectin were administered. This
showed E-selectin encourages HSC proliferation and is an
important component of the vascular niche [18].

2.1.2. Membrane-Associated Proteins. Adhesion molecules
(support cells) tether the stem cells and also provide a favor-
able microenvironment for the biological functionality of
cells; however, the underlying mechanism is not clearly
understood. These types of cell-cell interaction are mainly
governed by the cadherin protein family [19]. In order to
fully understand the in vivo mechanism related to stem cells,
the scientific community is mimicking the same in in vitro.
Apart from physical cues, the biochemical cues have also
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been widely reported to affect stem cell fate by targeting spe-
cific signaling pathway, such as the Wnt signaling pathway in
the HSC, f1 integrin-activated MAPK signaling, and Notch
signaling in the development of the nervous system [20-
22]. Notch signaling is a significant signaling pathway func-
tioning through Notch receptors and their ligands Jagged
and delta. These transmembrane proteins are expressed by
stem cells and their supporting cells in different tissues.
Notch signaling plays a vital role in controlling cell function
during embryonic development and in adult tissues for stem
cell self-renewal and differentiation [22-25].

2.2. Soluble Niche Effectors. Secreted and membrane-bound
factors like chemokines, cytokines, hormones, growth factors
(GFs), and Wnt directly bind surface receptors on the stem
cells to modulate stem cell fate [26, 27]. Soluble candidate
molecules, developmental morphogen proteins such as fibro-
blast growth factors (FGFs), bone morphogenetic proteins
(BMPs), Wnt, or hedgehog proteins can be found in many
niches across different species, ranging from the fruit fly to
mammals. For instance, FGF, Shh, and Wnt3a have appeared
as the candidates for regulating HSC self-renewal [28-30].
The soluble factors found so far are the expressing proteins
during normal tissue development. In order to better under-
stand the role of stem cells in various physiological and path-
ological conditions and exploit these cells for the repair and
regeneration, stem cell researchers are working on the precise
cell intrinsic and cell extrinsic regulators of key stem cell
function [31-36].

2.3. Extracellular Matrix (ECM) Components. ECM is pro-
tein- and sugar-rich cross-linked gel networks that surround
stem cells thus providing structure and organization as well
as mechanical and biochemical signals [37]. They are the
important component in the stem cell niche as they can
directly or indirectly modulate the maintenance, prolifera-
tion, self-renewal, and differentiation of stem cells [37].
Many cellular phenomena including stem cell functions were
powerfully governed by ECM. They can be either 2-
dimensional sheets like basal lamina or 3-dimensional fibril-
lar polymer networks [36]. ECM directly interacts with cells
via cell integrin receptors and regulates cellular activity as
well as morphology by providing various kinds of instructive
cues such as physical, biochemical, or mechanical cues [38-
40]. Stem cells in in vitro conditions may not be active with-
out these governing factors, so a proper external niche should
be provided. The external niche would revolutionize the cell
culture, and if this niche can be maintained in vivo, then it
can prove to be a great boon for cell and other transplanta-
tion studies [1, 41].

2.4. Metabolic Signals. Apart from the above-mentioned
components of the stem cell niche, there are many metabolic
signals like calcium ions, reactive oxygen species (ROS), and
lipids, which can influence the stem cell functions [42-44].
HSC, cardiac progenitor, and many other cell populations
reside in a low oxygen tension microenvironment that con-
tributes to their survival and maintenance. Kimura and
Sadek demonstrated that cells in hypoxic conditions perform
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FIGURE 1: Generic components of the stem cell niche. The stem cell niche is the special microenvironments that consist of many factors such
as cellular and secreted factors, ECM proteins, physical parameters, metabolic signals, and immunological factors. All the parameters function
in a coordinated way to attain a specific goal. ROS: reactive oxygen species; ECM: extracellular matrix (adapted and modified from [3]).

glycolysis thus expressing increased levels of hypoxia-
inducible factor 1o (HIF1a) [45]. It has been reported that
HSC located close to the bone’s endosteal surface is exposed
to high calcium ion concentration. Moreover, it expresses a
high level of calcium-sensing receptor, and the lack of these
receptors leads to the loss of stem cell ability to find their
way back into the niche [42].

2.5. Immune Factors. Many cells of the innate and adaptive
immune system migrate in and out of the tissue. The immune
cells modulate to perform stem cell function. These cells also
provide niche regulations during tissue damage and inflam-
mations [3]. Fujisaki et al. demonstrated Treg cells accumulate
in the hematopoietic stem/progenitor cell (HSPC) niche and
might provide this niche with immune privilege mechanism,
facilitating transplanted allo-HSPCs to escape from allogenic
rejection. This mechanism of the HSPC niche will protect
endogenous HSPCs from excessive inflammations thus will
assist malignant cells to escape host immunity [46].

2.6. Physical Factors. Stem cells respond to the cues from the
physical surroundings like stiffness, topography, and shear
force, and these have an influence on stem cell fate [47]. Sub-
strate stiffness has a profound influence on adhesion, migra-
tion, proliferation, and differentiation of numerous cells [48].
Engler et al. reported that stiffness of various organs and tis-
sue varies from the lowest stiffness in the case of soft tissue
like a nerve to the highest stiffness in the case of bone [49].
Furthermore, tissue stiftness is changed by the diseased state.
For example, the stiffness of mammary tissue increases from
1kPa in normal to 4kPa during breast cancer [50]. A stem
cell cultured on a standard tissue culture plate loses stemness

due to the higher stiffness, so the substrate stiffness has to be
modulated in order to mimic the native stem cell niche [47].

3. Hematopoietic Stem Cell (HSC) Niche

Out of many niches in the living system, some of the well-
characterized niches are hematopoietic stem cell (HSC),
muscle stem cell, neuron stem cell, and endothelial stem cell
niches [41]. Here, we have discussed the HSC niche as a
related example.

HSCs are multipotent progenitor cells with their self-
renewal capacity that give rise to all the blood cells and com-
prise the immune system [51, 52]. They are localized in
between the endosteal surface of trabecular bone close to
osteoblasts and the endothelial cells that line the blood ves-
sels. The endosteal niche (quiescent HSC) and the perivascu-
lar niche (active HSC) are two distinctive cellular entities that
are present in the HSC niche [9, 53]. HSC is attached to the
endosteal niche by cell-cell interactions mainly by N-
cadherin (Figure 2). Next, the perivascular niche resides
around small sinusoidal blood vessels related to the different
stromal and neural elements. These elements regulate the dif-
ferentiation of HSC and ultimately mobilization to the neural
circulation.

3.1. Cellular Components in the HSC Niche. Different cell
types like osteoblasts, vascular endothelial cells, bone marrow
adipocytes, nestin-positive mesenchymal stem cells (nestin®
MSCs), CXCL12 abundant reticular (CAR) cells, macro-
phages, and neuronal cells are actively associated with the
HSC niche for HSC quiescence, self-renewal, and differentia-
tion [55-57]. It has been reported that osteoblasts influence



HSC pool by regulating the stem cell number and also
maintain HSC dormancy by releasing signals like the stro-
mal cell-derived factor (SCF), thrombopoietin (TPO), and
angiopoietin-1 (Ang-1) [56, 58]. Nestin” MSCs are an impor-
tant component of the HSC niche. Self-renewal and differen-
tiation of MSC are regulated through vascular cell adhesion
molecule-1 (VCAM-1) or via soluble factor SCF. Besides
osteoblasts and MSC, endothelial cells are also important
for the maintenance of HSC functional phenotype [59, 60].
These cells are important in the context of HSC mobilization,
homing, and engraftment. Cytokines like fms-related tyro-
sine kinase 3-ligand (FIt3L), granulocyte colony-stimulating
factor (G-CSF), interleukin-3 (IL-3), IL-6, IL-11, SCF, and
TPO are known mediators of quiescence, self-renewal, and
engraftment in vivo [58, 61-64]. CXCL12 is an effective che-
mokine expressed by HSC niche cell CAR, which is found in
perivascular regions [65, 66]. CXCL2, CXCL12, G-CSF, SCF,
and interleukins (IL-1/6/7/8/12) have been involved in HSC
homing, migration, and retention within the bone marrow
niche [54, 67].

3.2. Other Important Factors in the HSC Niche. The metabolic
factors including calcium ions, oxygen tension, and ROS are
also present in the HSC niche [68]. HSC that is located near
the endosteal surface of the bone is subjected to high calcium
ion. It expresses a high level of calcium receptors, and the
absence of these receptors leads to the loss of stem cell ability
to find their way back into the niche [42]. Bone marrow (in
the HSC niche) experiences stiffness in the order of 40-
50 kPa near the bone surface region whereas the central med-
ullary region experiences stiffness in the order of <3 kPa [26].
HSCs inside the bone marrow, as well as the cells mobilized
within the blood, also experience additional biochemical
forces including hydrostatic pressure and fluid shear stress
[49, 69]. Next, immune factors like Treg cells gather in the
HSPC niche and might offer this niche with immune privi-
lege mechanism, thus, facilitating transplanted allo-HSPCs
to escape from allogenic rejection. This mechanism of the
HSPC niche will defend endogenous HSPCs from excessive
inflammations thus will assist malignant cells to escape host
immunity [46].

3.3. Extracellular Matrix Proteins in the HSC Niche. ECM
proteins like collagen IV, collagen VI, fibronectin, vitronec-
tin, laminin, and tenascin C are widely found in the bone
marrow niche. HSCs and their differentiated progeny express
a variety of integrins like @431, a5p1, aLf2, and aMf2 [70].
The interactions between HSC and ECM are mediated by
integrin, and downstream signaling pathways have been
involved in HSC differentiation, quiescence, and mobiliza-
tion. Near the endosteum, there are high levels of fibronectin
whereas higher levels of laminin are observed in the perivas-
cular space [53]. Collagen VI was reported as cytoadhesive
substrates for different hematopoietic cell types [71].
Nakamura-Ishizu et al. showed that tenascin C is required
for hematopoietic regeneration by promoting the in vivo
and in vitro proliferations of hematopoietic stem and progen-
itor cells [72].
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4. Cell Numbers in Stem Cell Pool

It has been reported that stem cell pool decreases with age
due to the loss of self-renewal activity and terminal differen-
tiation. Due to the various intrinsic and extrinsic factors, the
pools undergo apoptosis or senescence. But, it is still unclear
if what governs the stem cell choice between apoptosis and
senescence [73]. Various research groups have reported the
age-dependent decrease in the number of stem cell or per-
turbed (disturbed) cell cycle activity [74-77].

Stem cell pool size is correlated with the niche size [55].
One particular type of the stem cell may have multiple types
of niche, and the nature of two niches may serve to command
the state of stem cell activity [7, 78-80]. The HSC niche rep-
resents the best example of having two different niches, end-
osteal and vascular niches, and they function in a
coordinated manner [9]. During homeostasis, the stem cell
number in the niche must be kept constant by certain signals
[8]. The dynamic niche can be made or damaged in response
to physiological needs. Under physiological stress and patho-
logical conditions, the demand is higher and self-renewal
divisions are dominant leading to the expansion of the stem
cell pool. On the other hand, symmetric differentiation divi-
sion leads to a decrease in the stem cell pool in the niche
compromising regeneration [1].

5. Creating Stem Cell Niches In Vitro

To overcome the issues in using single stem cells, many
researchers are digging to generate an artificial platform
mimicking crucial biochemical or structural aspects of the
niche, “an artificial niche.” In order to imitate the natural
niche in the living system, the researchers since a decade
and a half have focused their study towards engineering an
artificial niche so that the stem cell can be explained properly
in vitro. Culturing cells in polystyrene plates may not mimic
the in vivo environment as the cells are under the influence of
2-dimensional and high-stiffness cultured plates [47].
Manipulation of the culturing substrate is required so as to
get the believable and reproducible results. Stiffness is gener-
ally represented by elastic modulus or Young’s modulus of
the materials and is represented by rigidity, flexibility, and
modulus [81-84]. Tunable biomaterials alone or in combina-
tion with other technologies could assist in designing appro-
priate cues that are essential for an artificial niche.
Biomaterials can be natural, synthetic, or semisynthetic. Bio-
materials along with microfabrication platforms could be of
great help in designing the artificial niche and identifying
the stem cell regulators. Growth factors (GFs) and ECM are
the major components for creating the artificial stem cell
niche.

5.1. Growth Factors (GFs). GFs are the protein molecules that
have a significant role in various cellular processes ranging
from cell growth, differentiation, and migration. Various
GFs have been used directly or via gene therapy since many
decades for the treatment of several pathological conditions,
and many are being investigated for tissue engineering and
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(adapted and modified from [37, 41, 54]).

regenerative medicine. GFs like FGF, PDGF, BMP2, TGFf1,
VEGEF, and IGF play important roles [85-87].

5.2. ECM. ECM provides “mechanical support” for neighbor-
ing cells as well as a range of “biochemical and biophysical
signals” that influence the behavior of the cell. These are
mainly due to the composition of ECM that comprises fibrous
matrix proteins, adhesive glycoproteins, glycosaminoglycans,
and proteoglycans [88]. Apart from these, ECM also acts as a
modulator of intracellular signaling pathways [89].

In order to control stem cell behavior in in vitro condi-
tion, the material with niche-like characteristics should be
selected so that it can be molecularly engineered and func-
tionalized in order to mimic physiological condition. There
exists a give and take relation at the cell/material interface.
It gives the signal to the cell in the form of degradation by-
products and also takes a signal from the cell by the binding
and unbinding of GF from material-associated ligand [90].
Various types of materials including polymers like hydrogel
and PEG and some of the natural materials like chitosan
are being investigated for this purpose [91, 92]. Based on
the source of origin, they can be further classified into natural
and synthetic biomaterials.

5.2.1. Naturally Derived Biomaterials. The biomaterials
derived from the natural source and native tissues are used

for modulating the stiffness by many researchers. Native tis-
sues like collagen and glycosaminoglycan as well as natural
materials like gelatin, agarose, fibrin, collagen, polyproteins,
alginate hydrogels, silk hydrogels, silk-alginate hydrogels,
and hyaluronic acid (HA) are widely used [93-97]. The
advantages of using natural biomaterials are that they are
derived from the natural source [92]. However, batch to
batch variation is the major issue with the use of natural
materials. Furthermore, cost, preparation/extraction time,
impurity, unwanted immune reaction, and limited mechani-
cal properties to achieve the variable elasticity are the chal-
lenging issues [92].

5.2.2. Synthetic-Based Materials. To overcome the batch var-
iations and availability of natural biomaterials, the materials
of artificial origin are gaining popularity. The widely used
synthetic-based materials are polyethylene glycol (PEG),
polyacrylamide (PA), (meth)acrylate-based networks, poly(-
propylene fumarate)-co-polycaprolactone (PPF-co-PCL),
poly(dimethylsiloxane) (PDMS), PEG-silica gel, polyvinyl
alcohol (PVA), etc. [98-102].

Several researchers have reported the use of the above-
mentioned polymers for creating the appropriate niche for
cell spreading and differentiation. Substrate stiffness has been
reported to be an important cue in directing MSC prolifera-
tion and differentiation [47, 49, 103]. Hydrogels alone or in



their chemically modified forms are the appropriate candi-
dates to be used for the artificial niche because the substrate
is soft with a high percentage of water content. They mimic
the tissues, and this can play a vital role in differentiation
and other phenomena [49]. This can be a great advantage
over the tissue culture plate which has a very high stiffness
that does not reflect the tissue stiffness thus leading to the
false result. Polyacrylamide is a popular polymer among the
researchers working in creating different stiffnesses. Poly-
acrylamide hydrogels of various stiffnesses can be obtained
by tuning the ratio of monomer (acrylamide) and cross-
linker (bisacrylamide). Vertelov et al. have demonstrated that
softer gels support adipogenic differentiation and stiffer gel
supports osteogenic differentiation of MSC [104]. Poly(di-
methylsiloxane) (PDMS) is the elastomeric material whose
stiffness can be adjusted from tens of kPa to a few MPa by
tuning the base to curing agent ratio [105].

6. Existing Artificial Niche Strategy and
Challenges of Self-Renewal

Stem cells have been widely used for repair and regeneration
of tissues for a long time. The hallmark of stem cells is self-
renewal and differentiation, and in order to achieve this goal,
stem cells are subjected to a multitude of biochemical and
biophysical cues existing in their spatial locality. The differ-
entiation of the stem cell into specific cell types has been
broadly explored whereas there is limited understanding
about the mechanism governing self-renewal capacity of
stem cells. Self-renewal of the stem cell is the process by
which stem cells divide to generate one or two daughter stem
cells. It requires mechanisms that confer the capacity to
divide with the maintenance of the undifferentiated state
and are often multi-/pluripotent [5, 106].

The major drawbacks of the current studies with respect
to modulating artificial niches are that not a single factor can
tulfill and imitate the native stem cell niche. Many factors
have to be taken into account to create a favorable microen-
vironment for the stem cell niche. Due to the technological
advancement, biomaterials alone or in combination with
other technologies are being used for investigation of the
stem cell niche. However, they are not sufficient enough for
mimicking native stem cell niches, and many factors have
to be taken into considerations. Most of the work described
above has illustrated that the repair and regeneration pro-
cesses are mainly due to direct differentiation of stem cells
or indirectly by its paracrine functions. To date, there are
only a few reports of self-renewal of stem cells by exploiting
the biomaterials for fabricating the biomimetic stem cell
niche.

There are few literatures which use nanoscale topography
[107], change in chemistry [108, 109], and substrate stiffness
[110] to attain self-renewal of stem cells. It has been reported
that self-renewal of MSC involves an intermediate adhesion
state that suppresses differentiation and permits for long-
term growth in vitro. MSC adipogenesis required weak adhe-
sion supporting low intracellular protein [108, 111] while
osteogenesis required large adhesions that support high
intracellular protein [107, 112]. Self-renewal of MSC is
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favored midway between these two fates [113, 114]. Gilbert
et al. showed that soft hydrogel substrates mimicking the
native elasticity of the muscle (12 kPa) regulate skeletal mus-
cle stem cell self-renewal in vitro and contribute to the regen-
eration of muscle when transplanted into mice [110]. Self-
renewal of the skeletal muscle stem cell on the soft PEG
hydrogel occurred even after multiple divisions. McMurray
and colleagues demonstrated that nanoscale surfaces fabri-
cated to form an array of specific depth and pitch in a square
arrangement lead to the maintenance of MSC phenotype and
multipotency. The authors evaluated the multipotency of
MSC markers over four and eight weeks, respectively [115].
Biomaterials, signaling molecules, and cells have been used
for repair and regeneration of tissues and organs in tissue.
It is difficult to control the peptides that have been used on
the surface of biomaterial by the chemical conjugation.

As we discussed, the HSC niche is a well-characterized
niche out of many stem cell niches [41, 54, 116]. Currently,
various two-dimensional and three-dimensional biomaterial
platforms are being exploited to engineer the HSC niche
[41, 117] However, the techniques to engineer them in vitro
for the expansion of clinically relevant HSC population are
still lacking [118]. The mutations in the hematopoiesis pro-
cess can lead to pathological conditions like bone marrow
failure or leukaemia. The treatment strategy in the aforemen-
tioned conditions is hematopoietic stem cell transplantation
(HSCT), but there are complications in this procedure. Infec-
tions, severe graft versus host disease, and relapse contribute
to mortality of patients, but the major issue remains due to
low homing efliciency to the marrow cavity and failure to
reengraft [119].

For mimicking the HSC niche and its application, more
detailed understanding of the HSC niche along with the fac-
tors involved is needed [116]. HSC may display a variety of
responses to a niche signal, and these responses will likely
be magnified in multicue settings, which should be defined
[120, 121]. The labelling techniques or functional assays that
are currently available rarely allow in situ analysis of single,
live stem cells, which may skew the characterization of stem
cell responses to niche-mediated cues [122]. There are several
reports discussing compositions of the stem cell niche to
modulate stem cell behaviors. The researchers in this field
have been trying their best to recreate the aspect of the stem
cell niche to better understand the regulation of the stem cell
and manipulate stem cell functions [123, 124]. However,
there are still technical challenges in constructing the desired
cell niches [125, 126].

To overcome the limitations mentioned above, engi-
neered phage can be proposed as an alternative platform as
it provides appropriate biophysical, biochemical, and topog-
raphy cues and ECM for mimicking a native stem cell niche
[127-129]. Engineered phage based on 2D films provides
biophysical and biochemical cues on the proliferation and
differentiation of MSC as reported [127]. Phage could induce
angiogenesis and osteogenesis for MSC phage-based vascu-
larized bone regeneration [130]. Various types of cues that
are essential for mimicking a native stem cell niche are pro-
vided by the engineered phage displaying specific peptides
[129, 131, 132]. Although phage does not directly help the
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stem cell for self-renewal or differentiation, it provides vari-
ous types of physical, chemical, and topological cues that
are crucial for determining stem cell fate. In addition, engi-
neered phage induces or stimulates the native stem cell niche
or modulates/controls the niche in which the stem cell
resides. The engineered phage system is believed to
strengthen the existing strategy that uses biomaterials and
nanotopography. Engineered phage incorporated into the
biomaterial provides appropriate cues for mimicking a native
stem cell niche. More research is yet to be done to sort out the
mechanism by which engineered phage helps to self-renewal
of stem cells for repair and regeneration of damaged tissue.
Herein, the multifunctional engineered phage can be consid-
ered as a better option and is discussed more in the next
section.

7. Phage as an Artificial Niche

Bacteriophages (phages) are viruses that can infect bacterial
host cells. They are classified based on the genetic materials,
the structure of capsids containing their genome, and mech-
anisms of mRNA production [133]. Phage is being widely
exploited in biomedical sciences and other allied areas after
its discovery a century ago [134, 135]. Phage has been
exploited for the detection of various antigens and effluent
for a long time [136]. Several authors have reported that
the presence of these peptides influences behaviors like via-
bility, cell adhesion, proliferation, and differentiation [128,
129, 131, 137-139]. Nowadays, M13 phage is being consid-
ered as the promising tool that can be functionalized and
controlled at great precision by genetic and chemical modifi-
cations of their outer protein coat with the filamentous struc-
ture of 880 nm long and 6.6 nm diameter [140]. It consists of
2700 copies of major coat protein (pVIII) that is coded by a
single gene called gene VIII [141]. pVIII is generally modified
for desired characteristics. One end of M13 phage is com-
posed of five copies each of pIIl and pVI while the other
end is composed of five copies each of pVII and pIX [142,
143]. Moreover, the coat proteins can be genetically engi-
neered to express short peptides so that nanofibrous struc-
tured virus expressing a functional peptide with high
density has been utilized as tissue engineering scaffold imitat-
ing the ECM fibrous protein network for tissue regeneration
purposes (Figure 3) [131, 132, 144-150].

Phage can be packaged in an economical manner, and
also, they remain stable under different physiological stresses
[151]. Phage has been reported to elicit mild immune
response making it favorable for its use in a human [54].
Phage possesses the least adverse effects in the human body
as they are removed from the body by lysosomal degradation
[152]. The phage replication leads to accurate production of
monodisperse with no error [153]. Also, several peptides
can be displayed on the surface of a single phage resulting
in a multifunctional nanofiber [154]. By tuning the concen-
tration of the phage, it tends to self-assemble into different
ordered structures [155]. Biomaterials are widely used for
providing biochemical and physical cues for creating an arti-
ficial stem cell niche. Due to the dynamic nature of the phage,

it is a very appropriate candidate for mimicking and estab-
lishing an artificial stem cell niche.

Various researchers have demonstrated that the use of
engineered phage helps to provide all the different physical,
mechanical, and biochemical cues thus creating a suitable
artificial stem cell niche. It has been well reported that engi-
neered phage could regulate various behaviors of cells like
proliferation and differentiation [145, 147, 148]. The differ-
ent types of engineered phage-based artificial cell/stem cell
niches are listed in Table 1.

Merzlyak et al. genetically engineered M13 phage to dis-
play cell adhesive peptides like IKVAV and RGD on their
major coat protein in a periodic and dense display. This engi-
neered phage served as a favorable substrate providing an
ECM and topographical cues for neural progenitor cell
(NPC) proliferation and differentiation [132]. In the other
study, to overcome the challenges of blood vessel formation
in bone regeneration, Wang et al. exploited fibronectin-
derived peptide RGD displayed on M13 phage and integrated
with a 3D-printed MSC-seeded bioceramic scaffold to form a
virus-activated matrix (VAM). Here, RGD-phage nanofibers
and unique ridge/groove nanotopography served as an ECM
helping osteoblastic differentiation of MSC without supple-
ments thus leading to a successful in vivo regeneration of vas-
cularized bone [130]. In both of these studies, engineered
phage displaying peptides provided biochemical and topo-
graphical cues for providing a biomimetic niche so as to
modulate stem cell fate. In the next study, Wang et al. fabri-
cated M13 phage films by layer-by-layer self-assembly for
induction of iPSC differentiation into osteoblast cells without
any chemical supplements [129]. They showed phage-based
matrices function as a substrate for generating a safe and effi-
cient cell source apart from various cues.

Yoo et al. demonstrated an early osteogenic differentia-
tion of mouse preosteoblasts (MC3T3) on phage engineered
with DGEA peptide matrices. The groups constructed the
membrane protein varying one single amino acid from
DGEA or RGD in order to obtain DGDA, EGEA, or RGE
phage. The response was DGEA peptide-specific showing
that phage-based cues can be controlled by genetical engi-
neering [148]. Thus, MC3T3 cultured on engineered phage
matrices showed outgrown morphologies with the efficient
spreading of the cells expressing early bone markers. Also,
Yoo et al. reported synergistic roles of immobilized growth
factors and genetically engineered phage in controlling mor-
phology and growth of NPC [147]. They engineered M13
phage to express HPQ and RGD on their major and minor
coat proteins to form nanofibrous matrices that could immo-
bilize FGF and NGF. This engineered phage system provides
biochemical, ECM, and topographical cues that mimic the
native stem cell niche and is promising for tissue engineering
and regenerative medicine. The genetic engineering of the
phage can be an alternative to using various types of
biomaterials.

Zhu et al. demonstrated that genetically engineered M13
phage with displayed functional peptides like PDPLEPR-
REVCE (PD-phage) and YGFGG (YG-phage) supported
MSC proliferation and differentiation. The formation of the
phage film with grooved structures by the layer-by-layer
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FIGURE 3: Phage engineering examples of artificial stem cell niches. Engineered nanofibrous structured phage to express short functional
peptides has been utilized as tissue engineering scaffold imitating the ECM fibrous protein network for various tissue engineering
purposes. The peptides displayed on the arrow are the peptide displayed on the engineered phage for providing various cues to the
stem/progenitor cells to mimic a native stem cell niche. Adapted from [131, 132, 144, 146, 148, 149].

method can be used as a scaffold for MSC growth. They
showed that phage concentration and types of functional
peptides on phage nanofiber control the morphology, prolif-
eration, and differentiation of MSC. Moreover, they con-
cluded that engineered phage incorporated into the scaffold
for governing its surface topography offers a promising
model for the research related to stem cell niches [127].

Yoo et al. demonstrated that the presence of angiogenic
peptide SDKP on pVIII and integrin-binding peptide RGD
on plIl of M13 bacteriophage induced angiogenesis by
recruiting and activating endothelial and/or stem cells and
has the potential to restore tissues after ischemic injury
[131]. In their study, micropatterned surfaces with engi-
neered phage produced the highest aspect ratios and order
parameters for the directional growth of human endothelial
cells. Moreover, the results of the in vitro tube formation
assay and in vivo Matrigel plug assay also showed that phage
nanofibers provide essential topological cues to the biochem-
ical cues of RGD and SDKP, and both the cues are critical for
mimicking the stem cell niche for angiogenesis.

Our ongoing work on angiogenic differentiation showed
a promising result about the use of phage (unpublished).
We found that the cells were not proliferating and slowly
started to die when the cells were only provided physical cues
as one cue may not be sufficient in creating a special micro-
environment for the cells. Interestingly, on incorporating
the phage into the system, cells were adhered to the substrate
and proliferated well. The engineered phage provided bio-
chemical and topographical cues to the physical cues of the
system. We propose a stem cell niche mimicking system by
exploiting engineered phages.

In another study, Lee et al. demonstrated the genetically
engineered M13 phage matrix modulating matrix stiffness
together with providing functional peptides expressed on
phage surfaces to interact with cells. This engineered phage
matrix could modulate osteogenic differentiation. The
authors fabricated nanofibrous RGD peptide- and HPQ
peptide-engineered phages and combined them with strepta-
vidin (for HPQ-streptavidin binding) or with PDDA (for
negatively charged phage-positively charged PDDA binding)
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TaBLE 1: Engineered M13 phage-based artificial cell niches.
SN Peptide sequence expressed Progenclzﬁr/stem Influence on cell fate References
1 PDPLEPRREVCE and YGEGG MSC Morphology, proliferation, and differentiation of MSCis ~ Zhu et al.
enhanced [127]
) RGD and PHSRN MSC Osteoblastic differentiation of MSC without osteogenic ~ Wang et al.
supplements [128]
3 RGD, PHSRN, ALKRQGRTLYGFGG, iPSC Differentiation into osteoblasts in the absence of Wang et al.
and KIPKASSSVPTELSAISTLYL osteogenic supplements [129]
4 RGD MSC Vascularized osteogenesis in 3D-printed bone scaffolds Waﬁ% ((;]t al.
5 RGD and SDKP EC Induced angiogenesis bY recruiting .and activating EC;  Yooetal
potential to restore tissues after ischemic injury [131]
Favorable substrates for NPC proliferation and Merzlyak
6 RGD and IKVAV NPC differentiation et al. [132]
” RGD and HPQ MC3T3, ASC Stiffness platform f01T modu}at?ng cell expansion and Lee et al.
differentiation [144]
Synergistic roles of immobilized growth factor and phage Yoo et al.
8 RGD and HPQ NPC in controlling NPC morphology and growth [147]
Early osteogenic differentiation of mouse preosteoblasts ~ Yoo et al.
9 DGEA MC3T3 MeaTs (148]
Enhanced directional proliferation and differentiation of Chung et al.
10 RGD NPC NPC [150]
1 RGD and DDYP MC3T3 Biomimetic nanoink showed gnl.lanced proliferation and  Lee et al.
differentiation [156]

EC: endothelial cells; iPSC: induced pluripotent stem cells; NPC: neural progenitor cells; MSC: mesenchymal stem cells; ASC: adipose-derived stem cells;

MC3TS3: preosteoblast cells.

to control the stiffness of the phage matrix. This biomimetic
self-assembly template assembly of engineered phage mixed
with polymer helps in controlling structural and mechanical
cues with different stiffnesses, thereby promoting the appro-
priate stiffness required for the cells to adhere and differenti-
ate into osteogenic expressing cells [144].

In addition, the phage can also be exploited as a scaffold
and vector for gene delivery. Phage was utilized as a versatile
nanoink for creating 3D cell-laden scaffold printing [156]. In
this study, the preosteoblast cells (MC3T3) within the scaf-
fold showed increased proliferation and differentiation which
was dependent on phage concentration. The phage-based
bioink closely mimics natural structural proteins in the
ECM and addresses the recent issues in bioprinting using
the scaffold for fabricating the stem cell niche. Partial success
had been achieved through biomimetic 3D scaffolds, the use
of growth factors like vascular endothelial growth factor
(VEGE), or potent cell sources such as stem cells or mature
vascular cells [139]. Yoo et al. have demonstrated that the
MI13-adeno-associated virus phage matrix induced GFP
expression into mammalian cells as a novel tissue engineer-
ing material with gene delivery functions and might possess
biomedical applications including therapeutic patches [149].

Therefore, the phage can induce in vivo tissue repair and
regeneration by mimicking and inducing the native stem cell
niche. An engineered phage displaying other functional pep-
tides could also be used for the regeneration of tissues and
organs. Evaluation on the safety of a phage-based artificial
niche may need to be performed more in future studies.

8. Conclusions

Stem cells have great potential for the regenerative medicine
and treatment of various diseases. Due to the technological
development and better understanding of stem cell biology,
it has shed light on the importance of the stem cell niche in
both the physiological and pathological conditions. Various
types of biomaterial and microfabrication technologies are
being employed for creating an artificial stem cell niche. In
this review, we introduced different natural and synthetic
biomaterials that are being used to create an artificial niche.
Nowadays, the genetically engineered phage is being widely
exploited as a suitable candidate for artificial niche and is a
promising tool for stem cell-based therapies. Taken together,
phage along with existing technology needs to be customized
for mimicking a native stem cell niche for successful clinical
application of stem cells.
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