Skip to main content
. 2019 Mar 26;19(6):1476. doi: 10.3390/s19061476

Table 3.

Comparison of Classification Results on the Vehicle Dataset.

Algorithm Accuracy Precision Recall F1 AUC Error
PSOPD-AdaBoost-A 0.925000 0.809345 0.902400 0.851406 0.917187 0.074999
G-AdaBoost 0.923584 0.861940 0.811999 0.833173 0.885012 0.076415
D-AdaBoost 0.924529 0.857178 0.824000 0.836553 0.889777 0.075471
B-AdaBoost 0.914150 0.781936 0.892000 0.831131 0.906493 0.085849
Random Forest 0.911886 0.841605 0.806001 0.823128 0.872567 0.088114
Extra Trees 0.920377 0.831528 0.84800 0.838903 0.896098 0.079633
Smote 0.897169 0.708473 0.960000 0.814594 0.898271 0.102831