Table 3.
Comparison of Classification Results on the Vehicle Dataset.
Algorithm | Accuracy | Precision | Recall | F1 | AUC | Error |
---|---|---|---|---|---|---|
PSOPD-AdaBoost-A | 0.925000 | 0.809345 | 0.902400 | 0.851406 | 0.917187 | 0.074999 |
G-AdaBoost | 0.923584 | 0.861940 | 0.811999 | 0.833173 | 0.885012 | 0.076415 |
D-AdaBoost | 0.924529 | 0.857178 | 0.824000 | 0.836553 | 0.889777 | 0.075471 |
B-AdaBoost | 0.914150 | 0.781936 | 0.892000 | 0.831131 | 0.906493 | 0.085849 |
Random Forest | 0.911886 | 0.841605 | 0.806001 | 0.823128 | 0.872567 | 0.088114 |
Extra Trees | 0.920377 | 0.831528 | 0.84800 | 0.838903 | 0.896098 | 0.079633 |
Smote | 0.897169 | 0.708473 | 0.960000 | 0.814594 | 0.898271 | 0.102831 |