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Abstract: Due to the existing relationship between microstructural properties and magnetic ones
of the ferromagnetic materials, the application potential of the magnetic Barkhausen noise (BN)
method to non-destructive testing is constantly growing. However, the stochastic nature of the
Barkhausen effect requires the use of advanced signal processing methods. Recently, the need to
apply time-frequency (TF) transformations to the processing of BN signals arose. However, various TF
methods have been used in the majority of cases for qualitative signal conditioning and no extensive
analysis of TF-based information has been conducted so far. Therefore, in this paper, the wide
analysis of BN TF representation was carried out. Considering the properties of TF transformations,
the Short-Time Fourier Transform (STFT) was used. A procedure for definition of the envelopes
of the TF characteristic was proposed. To verify the quality of extracted features, an analysis was
performed on the basis of BN signals acquired during stress loading experiments of steel elements.
First, the preliminary experiments were processed for various parameters of the measuring system
and calculation procedures. The feature extraction procedure was performed for different modes
of TF representations. Finally, the distributions of TF features over the loading stages are presented
and their information content was validated using commonly used features derived from time T and
frequency F domains.

Keywords: Barkhausen noise; feature extraction; magnetization process; multidimensional signal
processing; non-destructive testing; spectral analysis; spectrogram; STFT; stress evaluation

1. Introduction

Ferromagnetic materials microstructure is defined by regions known as magnetic domains.
The domains are micro-areas of spontaneous, homogeneous magnetization, separated from each
other by thin layers of magnetic discontinuity of atoms moments called Bloch walls. The direction of
magnetization between the two domains is gradually changed by the rotation of the resulting magnetic
moment [1–3]. It is well known that the magnetic structure depends on the mechanical one [4–9].
Thus, by observation of magnetization process under the alternating field conditions, it is possible to
monitor the changes of a material’s state. The relationship is reflected in parameters such as magnetic
coercivity, remanence or initial magnetic permeability and magnetic hysteresis loop loss [5–7,10–12].
The areas that have non-homogeneities (i.e., of micro-stress concentration or dislocations) do not
allow the Bloch walls to rotate freely and influences the reorganization of the domain structure
during the magnetization process. Consequently, these obstacles arising in the material require
additional energy and cause discontinuous changes of the magnetic state. This phenomenon has been
studied and gradually used for non-destructive testing (NDT) of materials [4–6,11–33]. The stepwise
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change of the magnetization level during operation of the alternating magnetizing field can be
observed by coil placed in the neighbourhood of the material. As a result, a voltage UBN called
the Barkhausen Noise (BN) is induced in coil. The Magnetic Barkhausen Noise method (MBN) is used
mainly for [29]: detection and evaluation of fatigue and stress [4–6,11,12,16,17,22,24,26,31,32,34–39],
material microstructure [19,20,28,37,38,40] and microhardness (i.e., hardening level, case depth)
analysis [13,14,23,27].

There are two major aspects that have to be considered during the application of the MBN
method: the construction of the BN sensing unit and the signal processing procedure. The first one,
in case of NDT, is generally consistent. Most frequently, the transducers used for BN observation are
consisting of two sections, magnetization and pick-up. The material is magnetized by the yoke while
the signal is collected by sensing elements (e.g., pancake coil) placed between the pole pieces [32].
However, the second aspect is an important factor which may significantly influence the overall
effectiveness of the method. This demonstrates the need for development and implementation of
data mining procedures. Therefore, in this paper a work allowing obtaining new characteristics from
time-frequency TF domain of BN signal was carried out.

The BN has a stochastic nature and therefore it requires the application of advanced signals
processing methods allowing extraction of signal features containing critical information about the
state of the material. The exemplary BN signal is presented in Figure 1. Many factors defining material
state may affect various properties of BN signals. Mostly the analysis of BN is carried out in time
T domain [4,6,11,12,19,20,34–38]; however the frequency F characteristic is also considered, especially
for evaluation of material properties [12–14,26–28,39]. In case of T representation, the BN signal can
be analysed by calculating parameters directly from the raw signal. One of the most commonly used
parameters in the T domain is the root-mean-square (RMS) value of the BN signal [4,11,12,18,33].
Many other parameters are also calculated directly from raw BN signal such as energy, standard
deviation, variance or number of impulses. Furthermore, in order to extend the range of features being
extracted, frequently the envelope of BN signal is also used. Thus, the shape of the envelope can be
additionally studied to complement the information by the analysis of features such as peak height,
peak position, full-width-at-half module, skewness or kurtosis [11,12,19,24,25]. As the dynamics of BN
signal can also vary, the F domain has been also used. It was presented that by using a quantitative
approach to F domain analysis, one can also evaluate the applied and residual stress or hardness
level value [14,26–28]. For example, it has also been shown that the value of power spectral density
carries other information about changes in the material than the RMS value of MBN. However, none of
the parameters fully describes all aspects of physical impact on the ferromagnetic material as it
was discussed in [11,24] and the relationship between the magnetic properties and the mechanical
ones still requires constant and further study. The signal representation in T as well as in F domain
changes simultaneously. Moreover, the dynamics of the phenomenon depends on many factors,
including the stress state of the structure [7,13,19,20,25,29,33]. In such cases, the traditional methods
of frequency analysis are not adequate while they generalize the dynamics of non-stationary signal
over whole considered period of time. Thus, the combined TF domain analysis can provide one with
complementary information and should also be carried out [12,15,16,21,22,28,30,41,42].
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There are several works presenting the possibility of using the TF transformation for observation of
e.g., stress, fatigue or hardness influence on MBN. However, they mainly refer to qualitative evaluation
of material conditions and there was only little work done on extended quantitative extraction of
information from obtained TF representations. In [28] TF representation was used for qualitative
assessment of the time-frequency distributions and observation of frequency bandwidth at low and
high levels of magnetizing field. The application of TF transformation to signal conditioning and
reconstruction for the needs of stress and hardness evaluation was presented in [30]. The BN signal
was decomposed into the TF domain where it was modified and then reconstructed resulting in
reduction of background signal level. TF representation was also used for qualitative assessment
of measuring conditions of continuous BN signal under applied stress [17], while in [21] various
transformation methods were used to observe the influence of the hardness level on signal expressed
in TF domain and theirs comparison was presented. In the second case the area of iso-level curve,
cut at particular magnitude, was used to quantify the material changes. In [15,16] transformation
coefficients were used for assessment of residual stress level and fatigue crack evaluation. Nevertheless,
as the TF characteristics are complicated in shape and there are many aspects influencing the BN
signal properties, a detailed analysis and quantitative description should be carried out. It must be
underlined that the analysis must consider various aspects of the TF characteristics changes such
as symmetry, shift of the centre in T- or F-axis, flatness, uniformity or monotonicity, etc. While the
TF representation is preserving important information, using only a few parameters, such as peak
value or peak position, it does not allow extracting whole information content [22]. Therefore, the aim
of this paper was to evaluate the information content of the TF representation of BN signal in the
context of non-destructive testing of material changes using broad feature vector. Thus, in this paper
the wide analysis of BN TF representation was carried out. The procedure for the description of
TF characteristics by two envelopes over the T- and F-axis was proposed and conducted. The general
processing methods used for non-stationary signals characterization were also applied. It resulted in
a significant number of features allowing quantitative description of various aspects of changes in
obtained transformations distributions.

The second part, which was also considered before conducting the work, was the transformation
type. There are various transformation methods used under two major strategies of TF space division,
defined in accordance to a consistency of sliding window size, and thus allowing building of two
types of representations: time-scale TS (i.e., wavelet) [15,16,21,23] or time-frequency TF [17,21,22,43].
The first one is characterized by variable resolution of time-frequency spans and results in obtaining
representation in the form of scalograms. The second way to decompose the signal is to apply the
constant resolution of the time-frequency spans, which results in achieving representation in the
form of spectrograms. Examples of the first type of decomposition are frequently used various types
of wavelet transform WT as these allows good fitting rate to signals with stochastic characteristic.
The WT founds its application to residual stress, fatigue crack or hardening evaluation [15,16,21,23].
However, these methods, resulting in non-uniform resolution of TF representation, do not allow
the systematic comparison of frequency bandwidth in equal successive spans of the magnetization
period under different material conditions [21]. In accordance, application of constant resolution in the
division of the time-frequency space allows observation of changes in the dynamics of the signal for
subsequent magnetizing temporal moments. This may have a significant impact on the efficiency of the
whole non-destructive evaluation procedure along with interpretation of results. Consequently, it can
be especially beneficial when analysing changes or variations in material properties, at different
depths in the object under test. One of the simplest to implement transformation method of this
type is short-time Fourier transform (STFT). Even though it presents some limitations in terms of
frequency resolution, it is easy to use (has relatively low computational requirements) and provide
similar information content of BN signal as more advanced transformations [21]. This is crucial
factor in many industrial applications. Therefore, considering all those aspects, in this paper STFT,
the one allowing uniform division of the TF space, was used and an approach to quantify information
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of the spectrograms based on multiple features extraction was presented. To process the analysis
of information content of TF representation, the BN signals obtained during tensile loading of the
steel samples were used. The loading process introduces in the material changes of the mechanical
structure, which affect the magnetic properties and further reflects in the dynamics of Barkhausen
effect [4,7,10,24,44]. Thus, application of different stress level allows to observe the changes in the BN
signal dynamics. First, in order to adjust transformation properties, the measurements were conducted
under various magnetization conditions along with several setups of the transform. The results
were shown and discussed. Then TF feature extraction procedure was presented and conducted for
successive loading force levels. Finally, in order to validate the information content, the obtained
distributions of TF features were compared with the ones obtained during classical analysis method
(carried out separately in T and F domain). The results are presented and discussed.

2. Experimental Setup and Measurements

All data used in the experiments were acquired during stress loading tests of the steel samples.
The measurements were carried out using a computerized system. The block diagram of the system
is presented in Figure 2. The observation of MBN was processed using a transducer containing two
subunits: those for magnetization and acquisition. The sample was magnetized using a field generated
by a coil wound on C-shaped ferrite core. The BN signal was gathered by a pick-up coil section wound
on a rod ferrite, placed between the pole pieces of the magnetizing section’s ferrite core. Before the
acquisition process, the BN signals were filtered (1 kHz–50 kHz) and amplified. The observation of the
Barkhausen effect is carried out usually for frequency of a magnetization field ranging from tenths to
several tens of Hz. However, at lower bands the reduced intensity of the effect is obtained. At the same
time, the concentration of the domain reorientation phenomenon at a shorter time along with increase
of eddy current damping has an impact at higher bands. Thus, the highest sensitivity of features to
materials changes can be obtained for middle bands of the frequency range [25]. Therefore, during the
tests, the excitation coil of the BN transducer was driven with a sinusoidal waveform with a frequency
f E of 10, 20 and 30 Hz. Three frequencies were used in order to observe the influence of f E on
parameters distributions under different sampling resolution conditions. The pick-up signals were
acquired during five magnetization periods using NI USB-6251 DAQ device with a sampling frequency
f s of 500 kHz. All measurements were conducted during the stress loading process.
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The experiments were carried out for samples made of St3S (according to standard PN-88 H-84020)
low-carbon steel, commonly used for various constructions. During the measurements, the transducer
was picking-up the signal at a single position over the sample. Therefore, in the middle part, where the
transducer was fixed, the sample was narrowed to concentrate the material changes in this region.
The shape with dimensions of the sample along with the visualization of transducer’s position was
presented in Figure 3. To observe different damage stages in the material, the samples were subjected
to stress σ (tension) ranging from 0 to 350 MPa (0 MPa refers to as-cast state). The yield point of the
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used steel grade is in the range of 185–235 MPa, while the limit state in 340–520 MPa. The stress-strain
curve of the steel, with depicted levels at which the measurements were carried out for two testing
samples s1 and s2, is shown in Figure 4. Both samples were loaded using different tensile force limits.
The sample s1 was tensile loaded within the elastic range, while in case of the sample s2 the tests
were continued up to the stress level over the steel’s yield point. Consequently, there were more
observations data points for sample s2 than for s1 one.
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3. Time-Frequency Domain Analysis of MBN

The STFT-based TF representation is mostly used for spectral analysis and processing of
non-stationary signals under various applications for e.g., audio signals [45], medical EMG and
EEG signals [46] or for speech recognition [47]. The development of accurate decomposition of
signals, complex in time or space, allows showing the variability of amplitudes, frequencies and
phases of component signals. For that reason, time-dependent multispectral analysis is being applied
by decomposing an input signal using a sliding window in T domain. In the following section,
the properties of STFT in terms of BN signal analysis are discussed. Several aspects should be
considered before performing the computations. The transformation parameters defining the frequency
and time resolutions as well as magnetizing field frequency were considered in the process. Then the
computations were performed and the results presented.

3.1. STFT-Based TF Representation

The short-time Fourier transform is characterized by the high redundancy of information
contained in the TF representation. The distribution is composed of the Fourier transform results
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obtained for subsequent time periods of the signal [48]. Each time a given signal interval and a window
function is considered. The STFT is defined by the general expression [48]:

X(t, f ) =
∞∫
−∞

x(τ)w(τ − t)e−j2π f τdτ (1)

where x expresses an analysed signal, X is a complex result of STFT transformation and w is a window
function. In case of digital signal, a discrete form can be applied [48]. Next, based on the given
definition, a spectral density function SPEC(t, f ) called spectrogram can be defined as:

SPEC(t, f ) = |X(t, f )|2 (2)

It can be noticed that the transformation results, beside the analysed signal itself, depend on a
type of window function w and its length, by which the signal is multiplied prior obtaining Fast Fourier
Transform (FFT). Therefore, in order to properly process the analysis, it became important to choose the
appropriate type of window w function and to adjust its parameters as well. There are many functions
representing polynomial, cosine-sum and adjustable type of characteristics [48]. When analysing the
properties of a given functions, two parameters can be considered of the frequency representations: the
main-lobe width and side-lobe area. The rectangular window is the simplest nonparametric window
type. In discrete form it assumes the value equal to 1 over whole its length 0 ≤ n ≤ N − 1 and 0 in
other case (n is a given sample and N is the length of the window). It is mostly used in cases when
the energy of the analysed signal is distributed unevenly in time. Its characteristic is described as
the one with low dynamic range. Therefore, to improve the dynamics range, other windows are
defined such as polynomial, cosine-sum or adjustable ones. An example of polynomial function is a
triangular window, while the Hamming window represents the cosine-sum type of function. Those are
non-parametric types of windows. However, in case of a system that requires changes of measuring
conditions, the adjustable window type can be beneficial. In this case, a Kaiser window can be used.
The function minimizes the width of the main lobe and the percentage of energy of the side lobes at
the total spectrum energy [48]. The Kaiser window has the following form:

w(n) =

I0

β

√(
n− N

2
N
2

)2


I0(β)
(3)

where the I0 is the Bessel function of zero order. The value of β parameter was set to 0.5 in the
presented case. The application of various window functions affects the STFT results. The influence of
the window type and its length on TF distribution of BN signal is presented in next section.

3.2. TF Transformation Configuration for BN Signals Analysis

In addition to the window type selection, the measuring condition defined by the sampling
frequency and its ratio to the magnetizing field frequency should also be taken into account as this
affects also the desired window length and the sensitivity of the STFT results. Therefore, in order
to adjust the STFT transformation conditions, the preliminary tests were carried out. Those allowed
calculation of STFT representations of BN signal SBN(t, f ) and further theirs spectrograms |SBN(t, f )|2.
Consequently, the qualitative assessment was performed. As the signals were acquired each time for
five magnetization periods, ten spectrograms were obtained for each case. This allowed application of
the smoothing procedure which resulted in calculation of the average |SBN(t, f )|2 distribution denoted
as BNTF_S. The results of BNTF_S obtained for selected MBN signal under various transformation
parameters are presented in Figures 5–7.
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First, the influence of a window type on the spectrogram distribution was considered (Figure 5).
The distributions (achieved for f E of 10 Hz, f s of 500 kHz and N of 512 samples) obtained in case
of rectangular and Kaiser windows presents higher rate of distinguishability between the different
levels of energy distribution. The Kaiser window function allows conducting the optimization process
and thus is more flexible for various conditions. The window can be adjusted by changing the β

(Equation (3)). By setting β to 0 the rectangular window can be obtained, while with increasing the
β value the curve distribution narrows down in time domain and simultaneously the lower level of
side lobes in frequency domain are obtained. Therefore, taking into consideration all those aspects, the
Kaiser type of window was used in further analysis.
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In the second stage, the analysis of the spectrogram BNTF_S resolution was carried out. It must
be noticed that there is a strict relationship between the representations resolutions in time and
frequency domains. If the time period ∆T is increasing, the frequency resolution ∆F is simultaneously
decreasing [49,50]. The best resolution is maintained when ∆F = 1/∆T. There are works on the methods
for optimization of time resolution ∆T [49,50]. However, these mostly concern the linear frequency
modulated signals. In other cases, usually the procedures follow selection of window length from
a pool of window sets [49]. For that reason, several window sizes were used ranging from 32 up to
1024 samples, what corresponds respectively to time periods from 64 µs to over 2 ms. This results
in expecting the ∆F to be in the range of 15625 Hz and 488 Hz for the shortest and the longest ∆T
respectively. Taking into consideration that the BN signal is with noise-like wideband frequency
characteristic it is required to apply high resolution ∆F, in this case equal to 488 Hz. This would result
in insufficient time resolution. Therefore, to overcome this aspect, in further calculations, the window
overlapping technique was used with the overlapping step of 0.75. Consequently, it was possible
to obtain the effective ∆T equal to 0.5 ms. Considering the results presented in Figure 6, one can
clearly notice that the greatest visibility of energy distribution was obtained for the largest size of the
window. In this case, the time period allows for observing a significant number of BN signal peaks
(MBN activity). In the same time, taking into consideration the bandwidth of the measured BN signals
(between 1 kHz and 50 kHz) the frequency resolution is still enough to observe the details of changes in
frequency characteristic and thus further increasing of ∆F would not affect much the results. Therefore,
in the later experiments the window size of 1024 was applied.

In the final test, in order to verify qualitative influence of the measuring conditions on the resulting
BNTF_S spectrograms, different excitation signal frequencies of 10 Hz, 20 Hz and 30 Hz were applied
during the signal acquisition. It can be noticed that the increase of the excitation frequency also
caused the change in energy distribution (Figure 7). The higher rate of fluctuation of magnetizing
field direction forces the domains to rotate at shorter periods. Therefore the majority of energy in
the BNTF_S spectrogram is concentrated in the vicinity of the beginning of the magnetic field period.
As the resolution in time decrease with the increase of the excitation frequency, a higher number of BN
peaks can be observed for each window. Thus, in order to gain the highest possible discrimination
level between the different states of the examined sample, in the following stage, the highest sampling
frequency and the lowest excitation frequency was further used.

3.3. Procedure for Features Extraction Based on TF Representation

Use of TF distributions in their entirety for non-destructive assessment of changes of material
states would be computational challenging process requiring to use e.g., a highly complicated
multiple-layers artificial neural network [51–55]. Thus, in order to describe variations in the achieved
characteristics, and on that basis processing in the future e.g., the classification, the feature extraction
was implemented. Considering the need for characterization of TF representation of BN signal, a set
of features has been calculated. The general diagram of the proposed feature extraction procedure
was presented in Figure 8. The exploration of the TF representation SBN(t, f ) was carried out for three
forms. First the spectrogram was analysed. Then, the method allowing delineation of the greatest
activity part of the spectrograms by two envelopes over T- and F-axis was proposed and implemented.
Finally, the real and imaginary parts of the spectral density SBN(t, f ) were also analysed.

To conduct the first form of the computation procedure, the 2D spectrogram BNTF_S was
considered. The essence of BN representation analysis is the determination of several parameters
enabling the observation of TF distribution changes under any aspect. The key role in later
interpretation may depend on the detection of variance in the dynamics of energy distribution,
concentration, centroid shift in time and frequency, and the degree of disorder or scope of changes.
These aspects are affected by changes in magnetic properties forced by material changes that occur as
a result of several different factors, such as change in the stress state and depth of hardening. There are
many features used in audio signal recognition and classification or biomedical applications [56–60].
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Those can be useful for BN signal analysis; however, they have not found much interest in previous
research. Generally, the spectrogram features are defined by extending T and F domain features
definition over the common 2D TF spatial representation [56–60]. This allows obtaining additional
information which would not be available under single domain representation regime. They mostly
refer to some well-known statistical properties applied to the TF representation such various forms
of mean values (i.e., arithmetic, geometric, harmonic or generalized) centroid, variance or standard
deviation, skewness or kurtosis. Other aspects being analysed are the shape of the TF spectrogram, its
energy distribution or entropy. The shape related features allow distinguishing between the signals
with slow and fast varying spectral content. The others express the uniformity of the energy distribution
and randomness in the distribution of signals energy. For shape assessment of TF distribution, the TF
flux, spread or slope are frequently used. The flux rates the amount of the changes of signal energy and
the spread describes the concentration of power around spectral centroid while the slope measures the
slope of the TF representation shape [56–58]. The energy concentration level can be evaluated on the
basis of spectral flatness or concentration measures [56,60]. The first one expresses the ratio between
the geometric and the arithmetic mean of TF what results in high value of coefficient for uniform
distributions. The example for the second one is the Minkowski distance, which reaches higher values
when the energy is spread out over whole TF plane [56]. The last crucial aspect is the assessment of the
degree of order/disorder of the TF representation. For that purpose the entropy is calculated.
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Taking into consideration all presented circumstances, in order to extract the information content
which further can be useful for evaluation of changes of BN signal’s TF representation under all
mentioned aspects, several spectrogram features were chosen and used. To clarify the calculations
process, the definitions of the features are presented in Table 1. Finally, as a result of conducted
calculations, a set of variables were obtained referring to spectrogram’s characteristic values such
as maximum (BNTF_MAX) and its location on time and frequency axis or mean, standard deviation
and variance as well. To assess the changes of the energy distribution concentration the spectral
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flatness BNTF_SF, the spectral entropy BNTF_SE, the concentration measure BNTF_CM and the coefficient
of variation BNTF_CoV were calculated [56,57].

Table 1. Definition of selected features calculated based on spectrogram BNTF_S of TF representation
SBN(t, f ) 1.

Feature Formula

Maximum BNTF_S_MAX = max{BNTF_S}

Mean BNTF_S_MEAN = 1
N·M

N
∑

i=1

M
∑

j=1
BNTF_Si,j

Standard deviation

BNTF_S_SD =√√√√ 1
N·M

N
∑

i=1

M
∑

j=1

∣∣∣BNTF_Si,j − BNTF_S_MEAN

∣∣∣2
Variance BNTF_S_VAR = (BNTF_S_SD)

2

Skewness
BNTF_S_SKEW =

N
∑

i=1

M
∑

j=1

(
BNTF_Si,j−BNTF_S_MEAN

)3

N·M·BNTF_S_SD
3

Kurtosis
BNTF_S_KURT =

N
∑

i=1

M
∑

j=1

(
BNTF_Si,j−BNTF_S_MEAN

)4

N·M·BNTF_S_SD
4

Coefficient of Variation BNTF_S_CoV = BNTF_S_SD
BNTF_S_MEAN

Spectral Entropy BNTF_S_SE = 1
1−α log2

N
∑

i=1

M
∑

j=1

 BNTF_Si,j
N
∑

i=1

M
∑

j=1
BNTF_Si,j


α

Spectral Flatness BNTF_S_SF = M · N

N
∏
i=1

M
∏
j=1

∣∣∣BNTF_Si,j

∣∣∣ 1
N·M

N
∑

i=1

M
∑

j=1
BNTF_Si,j

Concentration measure BNTF_S_CM =

(
N
∑

i=1

M
∑

j=1

∣∣∣BNTF_Si,j

∣∣∣ 1
p

)p

1 Similarly same features set was calculated for real BNTF_R and imaginary BNTF_I part of SBN(t, f ). In accordance,
the type of the TF representation type from which a given feature is calculated is denoted by letter S, R or I in
reference to the spectrogram, real or imaginary part.

The proposed in this paper, second form of the computational procedure refers to extraction of
instantaneous features being a 1D functional representation of 2D spectrogram BNTF_S. It is based
on the calculation of two 1D curves over T and F axis, denoted as envelopes BNTF_E_T and BNTF_E_F

(Figure 9). The envelopes over the T and F axis ware obtained by delineation of area along each axis,
where the value of the spectrogram is not lower than the requested threshold BNTHD, for a given block
range (computational cell) of F or T values. For example, in case of extraction of T axis envelope, at each
time step (computation cell) ti the values over the whole F axis were compared with the threshold
BNTHD:

BNTF_E_T(ti) =
{

max
(

f j
)∣∣BNTF_S

(
ti, f j

)
≥ BNTHD

}
(4)

where: i = 1 . . . number of time steps, j = 1 . . . number of frequency bins (FFT points).
The highest value of j for which the above condition is true defines the frequency bin value for

a given time step i. According to the described procedure, the envelope over the F axis was also
defined. Then, the fitted curve was further analysed to obtain the set of standard statistical values and
the one describing the curve’s shape (e.g., skewness BNTF_E_SKEW or kurtosis BNTF_E_KURT) as well.
Additionally, the common area of both envelopes delineates the area of the greatest activity depicted
as a BNTF_E_TF_AREA and was considered in the feature extraction procedure. The envelopes BNTF_E

features were defined analogically to the ones presented in Table 1, by considering only one dimension
during calculations. The type of the envelope (along T or F axis) from which a given feature was
calculated was denoted then by letter T or F by its name. The whole computation process of the used
during the final experiment threshold value was described in the next section of the paper.
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Not only the magnitude may carry important characteristics while the phase change of the
STFT representation can provide one with additional information as well. Therefore finally, in the
process of extraction of complementary knowledge, the calculations were also carried out for both
real BNTF_R and imaginary BNTF_I parts of the initially obtained 2D transformation SBN(t, f ) of MBN
signal. The set of features were obtained based on same procedures used prior for the spectrograms
BNTF_S distributions.

At the end, the extended TF feature vector was obtained allowing evaluation of various aspects
of TF properties changes. Consequently, this can enhance the overall perception for monitoring of
mechanical changes of the examined material. The evaluation of the quality of the extracted features
was then performed for a set of signals acquired during stress loading of steel sample.

4. Stress Evaluation Experimental Results and Discussion

To evaluate the effectiveness and quality of the information extracted from the TF representation,
the verification experiment was carried out. The main idea was to monitor the changes of the magnetic
conditions under the changes of mechanical properties of the examined material. For that purpose,
the stress loading experiment was carried out and a set of BN signals was acquired. Next, the evaluation
of the TF representation quality was processed under two stages: qualitative and quantitative
assessment. Finally, in order to verify the information content of the TF representation, the obtained
TF features distributions were complied with the commonly used BN signals features extracted from
single T or F domain.
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4.1. Qualitative Evaluation of Spectrogram Changes under Progressive Stress-Strain Condition

First, the obtained during preliminary experiments configuration of STFT transformation
conditions were used to calculate the TF representation SBN(t, f ) of BN signal acquired for steel
samples at various stages of the stress loading process. The selected results of spectrograms BNTF_S

obtained for sample s2 for applied different stress level are presented in Figure 10. It can be noted
that in case of as-cast state (no loading force) the spectral density in BNTF_S presents rather uniform
distribution of over whole TF plane and reaches relatively low value (Figure 10a). Then, even low stress,
introduced in the sample during tensile loading, results in the rise of the energy level emanated within
the low frequency range (up to 10 kHz) and close to the beginning of the MBN burst (peaks activity)
period (Figure 10b). Further increase of the stress level, to the one close to yield point, resulted in
rising of the activity of MBN also in the higher frequency range (Figure 10c,d). For the stress level close
to the limit state, one can observe the shift of the high activity region in time towards the time span
referring to occurrence of the maximum of the magnetization field (Figure 10e). Further increase of the
tensile force causes further shift of the high-energy area along with a slight decrease of the highest
spectral energy level, what can be noticed in case of the results obtained at plastic deformation level
(Figure 10f). The observed effect can be explained by referring to the magnetic domain theory [1,34,35].
Because the direction of the magnetization is consistent with the direction of the applied stress in the
examined samples, the increase in the tensile load induces a reorientation of the magnetic domains.
First, the orientation towards the axis of easy magnetization closest to the axis of applied stress takes
place, followed by orientation towards the axis of the applied stress itself. As a result, domains
magnetized in the direction parallel to the stress will increase their area at the expense of domains
oriented in other directions. Taking into consideration that the generation of Barkhausen noise is closely
related to the reversal of magnetic domains with a magnetization direction parallel to the excitation
field, the increase in these domains as a result of tensile stress increases the MBN activity [34,35].
As the lower magnetic field is required to force the reorientation under tensile stress, MBN signal
shifts towards the lower magnetizing field value [39]. This state dominates within the elastic tensile
stress range (Figure 10a–d). Therefore, the initial growth of the highest energy area on spectrograms is
noticeable. As part of these changes, attention should be paid to two aspects. The first is the increase in
the maximum value, while the second is the increase of the frequency band and the extension of time
range. Additionally, it can also be observed that the BNTF_S distribution is not symmetric with a rapid
growth of energy at the beginning of the reorientation period (with maximum value occurring close to
it) and its smooth fall in the further part of the time. In the time domain, these changes are associated
with a simultaneous increase in the MBN signal envelope’s peak height along with decrease of its
width, shift of its peak position, as well as with increase of its skewness (right-skewed distribution).
Those observations find confirmation in other works [36–38]. Growth of the amplitude and decrease
of the width affect both the maximum value and the frequency band of the spectrogram distribution.
The higher value of MBN signal distributed in shorter time results in higher energy and wider
bandwidth in BNTF_S. Similar conclusions can be drawn for other discussed aspects. In case of higher
tensile stress regime the plastic deformations are introduced creating a increase in dislocation density
resulting in formation of pinning sites blocking the free movement of the magnetic domains walls,
which significantly weakens the aforementioned reorientation process [35–37]. Therefore, the MBN
activity is reduced finding its reflection in MBN signal changes. The peak height as well as the MBN
signal skewness is slightly decreasing [36]. As higher energy state is required for domains to overcome
the obstacles, the shift of the peak position to higher magnetizing field value is also reported [36,39].
Consequently, the spectrogram changes can be also observed (Figure 10e,f) e.g., in the form of decrease
of maximum value of BNTF_S or its shift in time.

The achieved spectrogram distributions confirmed the usability of the information content of the
TF representation in the process of stress evaluation. It is possible to clearly notice the influence of the
material properties changes based on the achieved TF distributions.
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4.2. Quantitative Evaluation of TF Domain Information under Progressive Stress-Strain Conditions

The information preserved in the TF representation of MBN is not apparent and, as it was
discussed in the previous section, is reflected in various forms of distribution changes. Use of only
some basic characteristic values do not allow full evaluation of the observed variations in the dynamics
of the process. Therefore, in order to enable evaluation of the quality of information provided by TF
distributions in a broad aspect, a set of features representing all three forms of the proposed calculation
procedure (expressing statistical properties, shape, energy distribution and disorder degree along
with the properties of extracted features) were selected for the final stage. To determine the threshold
value necessary to extract the envelope over the T and F axes, the results of the analysis carried out for
the first form of representations (i.e., spectrograms of measured BN signals) were used. Considering
the changes in the spectrogram distributions that were observed during the first part of the final
experiment, the threshold value was determined based on the results obtained for the unloaded as-cast
sample (the reference sample—with the lowest level of obtained values). First, the spectrograms for
BN signals acquired during several periods of the magnetizing field were calculated and the maximum
values BNTF_S_MAX were determined for each burst of the analysed BN signal. Then, the interquartile
range for the series of obtained values was determined and the mean of only those values, which were
within that range, was calculated. The final threshold value BNTHD corresponds to that value reduced
by the square root of two (which corresponds to 3 dB on a logarithmic scale). Results of the selected
TF features distributions as the function of obtained stress level are presented in Figure 11 (see also
Table 1). All results for s1 and s2 sample were normalized to 0–1 range in order to compare the
behaviours of distributions. As one can see, the distributions achieved for both samples present similar
behaviour what confirms the repeatability of the applied procedures. For all presented characteristics,
the greatest variation of value can be observed between the as-cast state and the first stage of loading
process. This is fully in agreement with the results of the qualitative observation of spectrogram
changes, conducted during the first stage of the assessment (Figure 10). Generally, the features
follow monotonic changes over the observed stress range. Only in case of concentration measure
BNTF_S_CM the value initially increases and then mostly decreases. It can be noticed that the entropy
of the power distribution BNTF_S_SE decreases with the increase of the stress state, which can be
understand as leading of the TF representation to higher degree of order and to accommodate the
existing energy states. Observed dependencies are associated with the increase of MBN activity within
the elastic stress regime, which was discussed in the previous section. At the same time, there is an
increase in the difference in values between the occurring states. The value of the standard deviation
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increases much faster than the average value, which is reflected in the increase in the coefficient of
variance BNTF_S_CoV. The observed phenomenon is also visible in the decrease of the course of spectral
flatness BNTF_S_SF. The spectral flatness represents the geometric mean of TF representation to its
arithmetic mean, what results in achieving higher values of BNTF_SF for randomly distributed signal.
Therefore, in reference to the presented spectrogram changes, as the distribution with progress of the
stress-strain stage is getting more consistent, the BNTF_SF is decreasing. However, it should be noted
that after a decrease in the TF distribution concentration for low stresses below 120 MPa (increase in
the BNTF_S_CM value), its smooth increase is visible for higher load states. The confirmation of this
fact is the initial increase and then the slight decrease of the area under the envelopes BNTF_E_T_AREA

and BNTF_E_TF_AREA. Although monotonic changes in the observed characteristics can be seen, one
can indicate precisely the area in which the change of local trend takes place. This refers to the stage
of the process related to the yield point area of the used steel (close to 200 MPa). This depicts the
border between the elastic and plastic regime and the change in the MBN activity which was discussed
in the previous section. The above description can be noticed on the courses of maximum of real
BNTF_RE_max and minimum of imaginary part BNTF_IM_min of the spectral function. Similarly, it can
be observed on all three envelopes areas BNTF_E_T_AREA, BNTF_E_F_AREA and BNTF_E_TF_AREA, spectral
entropy BNTF_SE, skewness BNTF_S_skew and coefficient of variance BNTF_S_CoV distributions as well.
However, the sensitivity for this effect varies within the features set. This can be beneficial under terms
of future classification procedures.

Sensors 2019, 19, x 14 of 19 

 

BNTF_E_T_AREA, BNTF_E_F_AREA and BNTF_E_TF_AREA, spectral entropy BNTF_SE, skewness BNTF_S_skew and 
coefficient of variance BNTF_S_CoV distributions as well. However, the sensitivity for this effect varies 
within the features set. This can be beneficial under terms of future classification procedures. 

 

Figure 11. Distribution of selected features extracted from of TF representation of BN signal for 
successive stress-strain stages; sample s1 results—red line; sample s2 results—blue line. 

Although the influence of applied strains on the Barkhausen effect is widely studied, its 
characteristics depend on many factors. In particular, the impact of plastic deformations after 
exceeding the yield point on MBN is considerably complicated and still not very well understood  
[5–7,11,29]. The interpretation of the observed characteristic in reference to the magnetic structure 
behaviour is not straight and requires additional material examination experiments. However, the 
obtained TF features distributions allow clearly monitoring the progress of the stress-strain process. 

4.3. Comparison of TF, T and F Features Distribution 

To validate the information content of TF representation for the need for non-destructive 
estimation of loading state, the TF features distributions were compared with the well-known ones, 
commonly used and allowing characterization of BN signal in single domain [12,22,24,36,61]. 
Therefore, signals acquired during the experiments were processed first in the T, and then in the F 
domain. In case of the T representation, statistical and characteristic quantities were computed 
directly from the obtained BN signal UBN. As a result, features such as peaks number (BNN), peak-to-
peak value (BNVpp), root-mean-square (BNRMS) or energy (BNEN) were obtained. Additionally, the BN 
signal’s envelope was also considered allowing calculations of a set containing features such as peak 
value, position (BNl_MAX) or width, as well as interquartile range (BNIQR), skewness or kurtosis 
(BNKURT). Furthermore, features expressing ratio between various characteristic quantities of T 
representation such as crest and impulse factor were also calculated. The crest, also called peak-to-
rms factor, is defined as [61]: 

Vpp
CREST

RMS

0.5 BN
BN

BN
⋅

= , (5) 

while impulse, frequently used to characterize electrical signals also called form factor, as: 

RMS
IMPULSE

1

1 N

i
i

BNBN
BN

N =

=


. 
(6) 

For F representation analysis, Fast Fourier Transform was used. The frequency spectrum 
characteristics were analysed and the features set corresponding to the set obtained for BN envelope 
was achieved (e.g., maximum of spectral power density BNf_PMAX, its position of F axis BNf_fMAX, or 
standard deviation of spectral power density distribution BNf_STD, etc.). The details of the applied 
features extraction procedure can be found in [12,22,24]. The usability of all those features for stress 
or hardening level evaluation was also confirmed by other works [14,34,36,61]. 

Figure 11. Distribution of selected features extracted from of TF representation of BN signal for
successive stress-strain stages; sample s1 results—red line; sample s2 results—blue line.

Although the influence of applied strains on the Barkhausen effect is widely studied, its characteristics
depend on many factors. In particular, the impact of plastic deformations after exceeding the yield point
on MBN is considerably complicated and still not very well understood [5–7,11,29]. The interpretation of
the observed characteristic in reference to the magnetic structure behaviour is not straight and requires
additional material examination experiments. However, the obtained TF features distributions allow
clearly monitoring the progress of the stress-strain process.

4.3. Comparison of TF, T and F Features Distribution

To validate the information content of TF representation for the need for non-destructive
estimation of loading state, the TF features distributions were compared with the well-known
ones, commonly used and allowing characterization of BN signal in single domain [12,22,24,36,61].
Therefore, signals acquired during the experiments were processed first in the T, and then in the F
domain. In case of the T representation, statistical and characteristic quantities were computed directly
from the obtained BN signal UBN. As a result, features such as peaks number (BNN), peak-to-peak
value (BNVpp), root-mean-square (BNRMS) or energy (BNEN) were obtained. Additionally, the BN
signal’s envelope was also considered allowing calculations of a set containing features such as peak
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value, position (BNl_MAX) or width, as well as interquartile range (BNIQR), skewness or kurtosis
(BNKURT). Furthermore, features expressing ratio between various characteristic quantities of T
representation such as crest and impulse factor were also calculated. The crest, also called peak-to-rms
factor, is defined as [61]:

BNCREST =
0.5 · BNVpp

BNRMS
, (5)

while impulse, frequently used to characterize electrical signals also called form factor, as:

BNIMPULSE =
BNRMS

1
N

N
∑

i=1
|BNi|

. (6)

For F representation analysis, Fast Fourier Transform was used. The frequency spectrum
characteristics were analysed and the features set corresponding to the set obtained for BN envelope
was achieved (e.g., maximum of spectral power density BNf_PMAX, its position of F axis BNf_fMAX,
or standard deviation of spectral power density distribution BNf_STD, etc.). The details of the applied
features extraction procedure can be found in [12,22,24]. The usability of all those features for stress or
hardening level evaluation was also confirmed by other works [14,34,36,61].

Selected results of the features obtained from T and F representations are presented in Figure 12.
Also in this case, one can observe a significant change in the value of individual features between the
as-cast state and the first level of the loading process. The number of peaks successively decreases with
the growth of stress level (BNN), while simultaneously the energy of the pulses BNEN is increasing
up to the stress level close to 200 MPa end then starts to slightly decrease. The observed relationship
(lower number of events resulting in similar cumulative energy) is in good agreement with the
observations conducted in Section 4.1. The initial increase in MBN activity results in superposition of
single MBN pulses to form one of higher amplitude. Consequently, the number of pulses decreases
while the energy increases. This confirms the decrease of BNTF_S_SE and also of BNTF_S_CM presented
at TF features distributions results (Figure 11.). Furthermore, the shift of peak position BNl_MAX is also
clearly visible. First, as the lower external energy is needed to process the reorientation of magnetic
domains for elastic stress regime, peak position moves to the times referring to beginning of the domain
reorientation process. Then within the range of around 100-200 MPa it stabilizes and finally, when the
pinning sites effect intensifies, it shifts toward the centre of magnetization period. The interquartile
range of BN signal’s distribution in time BNIQR after initial increase beyond the 100 MPa starts to
decrease, which indicates that the signal is getting more concentrated. Slightly different characteristic
can be observed for interquartile range of frequency spectrum characteristic. The BNIQRfft generally
increases to around 230 MPa; however the change of the dynamics can be noticed over 180 MPa level.
Above the limit of 230 MPa, the feature value starts to monotonically decrease. This corresponds to the
extension of the frequency bandwidth visible in the spectrograms achieved for elastic stress regime.
The crest and impulse factors depicting the relationship between the peak-to-rms and expressing
shape of the waveform is systematic increasing. This can be referred to the constant increase of
difference between the highest MBN pulses and the medium ones (the difference between the s1 and
s2 sample occurs as a consequence of normalization procedure). This finds confirmation in kurtosis
as its dynamic of increase is lower above 200 MPa aiming saturation. This means that majority of
impulses of the MBN signal are more concentrated in time. Nevertheless, all obtained characteristics
are in agreement with the results presented in other works [34–39,61] and confirm the observation
carried out for spectrograms and TF features distributions. For example, the change of the shape and
variation in peaks energy distribution was revealed in BNTF_S_Skew, BNTF_S_SF and BNTF_S_CoV features
plots and was also noticed in BNKURT, BNCREST or BNIMPULSE features courses as well.
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5. Conclusions

In this paper, the time-frequency representation was used to analyse the information content
of Barkhausen noise BN signal in terms of use for non-destructive evaluation of material state and
properties. To process the analysis, the STFT transformation was applied. First, several aspects of the
transformation setup were analysed and the influence of the various configurations on TF distributions
properties of BN signal was shown and discussed. Consequently, the transformation parameters
along with the measuring conditions (i.e., magnetizing field frequencies) were adjusted and used
during further work. Then, in order to quantify the information content provided by TF representation,
the feature extraction procedure was introduced. Although the TF representation of the BN noise
contains a lot of information that can be used in the process of non-destructive evaluation of materials,
little work has been done to quantify it. Therefore, the purpose of this paper was to carry out a
wide analysis allowing obtaining a large representation of extracted features expressing the observed
changes in a broad context. The process includes different forms of the obtained STFT representations.

To evaluate the information content of the TF representation, finally, the analysis was carried
out for a set of BN signals acquired during non-destructive evaluation of steel samples. To introduce
changes of material properties, the samples were tensile loaded during the measurements. Then the
resulting spectrograms were shown and qualitative evaluation of their properties was processed.
Next, in order to quantify the observed properties, the proposed feature extraction procedures were
applied. Consequently, it was shown that analysis of the TF domain spectrograms of BN signals provide
one with valuable information which allows to discriminate the various state of the material subjected
to stress. The analysis of many features of the obtained TF distributions enables effective observation.
The achieved characteristics between the parameter value and stress can, consequently, improve the
accuracy of proper identification of the state of the structure under examination. To validate the
information content preserved by the TF plane, the TF features distributions were compared with the
one commonly used in various MBN applications derived from single T and F domains. The achieved
results allowed to draw similar conclusions and confirmed the usability of the TF representation in the
material evaluation procedure. The similarities in information content of features extracted from all
three domains were noticed. As the presented T and F features have already proved their effectiveness
in MBN signal analysis in many works, the achieved results confirms the possibility of using the TF
representation for the need for efficient evaluation of material properties. In addition, the TF plain can
become beneficial. The representation can be useful especially when assessing the material properties
which vary i.e., within its depth. The use of the TF representation enables the analysis of signals
over 2D plane, thus it is also possible to observe changes in both domains simultaneously. Therefore,
information encoded in time and frequency is more accessible, furthermore allowing analysis of the
temporal change of dynamics. The dynamics of changes is closely related to the course of the magnetic
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domain’s reorientation process, thus it creates the possibility to obtain new or supplement information
expressed in single domains of time and frequency. In addition, the integrated TF domain allows
combining methods of analysis and unification of calculation procedures. Consequently, it is believed
this may lead to a more robust and stable evaluation of the condition and properties of the material.

In the future, it is planned to conduct various experiments for non-destructive assessment of
depth-varying properties such as case hardening and to study this behaviour. Furthermore, additional
methods for the analysis of time-frequency representations are going to be implemented. It is also
planned to use the obtained features set to build a multi-parameter classification model.
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