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Changes in protein function can lead to changes in the selection
acting on specific residues. This can often be detected as evolu-
tionary rate changes at the sites in question. A maximum-likeli-
hood method for detecting evolutionary rate shifts at specific
protein positions is presented. The method determines significance
values of the rate differences to give a sound statistical foundation
for the conclusions drawn from the analyses. A statistical test for
detecting slowly evolving sites is also described. The methods are
applied to a set of Myc proteins for the identification of both
conserved sites and those with changing evolutionary rates. Those
positions with conserved and changing rates are related to the
structures and functions of their proteins. The results are compared
with an earlier Bayesian method, thereby highlighting the advan-
tages of the new likelihood ratio tests.

The explosive growth of available sequence data has necessi-
tated the development of new computerized methods for the

functional analysis of proteins. A number of methods have been
developed for studying the functions of proteins from their
sequences and protein-coding DNAs (1–3). Some of these
methods estimate the ratio between nonsynonymous and syn-
onymous rates within protein-coding genes, with ratios �1 and
�1 indicating positive versus negative selection, respectively (4).
Methods for performing these analyses on a site-specific level
also have been developed (5). Along these lines, other methods
have focused on amino acid conservation as an indication of
protein function (6, 7). This approach is founded on the assump-
tion of functional constraint (i.e., that functionally important
residues and sequences are under stronger selective constraints
that lower their evolutionary rates).

The concept of amino acid conservation can be taken one step
further to yield insights about changes in function over time. This
divergence of protein function often is revealed by a rate change
in those amino acid residues of the protein that are most directly
responsible for its new function (8, 9). To investigate this change
in evolution, a likelihood ratio test (LRT) is developed for
detecting significant rate shifts at specific sites in proteins.

Such rate changes at a site over evolutionary time trace back
to the covarion model of Fitch and Markowitz (10). In this
model, the state of a site can change between variable and
invariable. Such changes can also occur anywhere in the evolu-
tionary tree relating the sequences under analysis. Furthermore,
as the acronym implies (concomitantly variable codons), these
rate shifts are tied to sites whose evolution is correlated and is
not independent (11). The LRT method assumes that changes
occur at a specific point in evolution and that these changes are
independent. Here, change is not limited to variable versus
invariable, but involves shifts between any two rates. For this
reason, we are not dealing with a true covarion model (12, 13).
Thus, a site showing a significant rate change will from here on
be called a rate shift site, rather than a covarion site.

The reason for focusing on a specific evolutionary point is that
gene duplications can create opportunities for functional diver-
gence as one copy of the gene can divergently evolve, whereas the
other fulfills the original function (2, 7). Other points in gene
evolution where functional change is most likely reflect specia-

tion events that lead to the origins of new major groups [e.g.,
ciliates versus other eukaryotes in the divergence of their
elongation factors (14)].

A slow evolutionary rate at a given site would indicate that this
position is functionally important for the protein. Conversely, a high
evolutionary rate would indicate that the position is not involved in
an important protein function. A significant rate difference be-
tween two subfamilies at a given site would thereby mean that the
function of this position is probably different in the two groups.

Some work has been done in this area before (2, 8, 15). The
approach developed here is unique in that it uses an LRT to
determine the significance of the rate differences at specific
positions. A test is also developed for deciding whether a given
site is evolving slower than the average for the entire protein
being analyzed.

Tests for detecting whether two subfamilies have undergone
functional divergence have been developed before (15) and will
not be the focus of this work. Instead, it is assumed that the
subfamilies are known to be functionally divergent, either from
biochemical knowledge or previous statistical tests. This work
aims to pinpoint the protein positions responsible for this
divergence.

The methods are illustrated with a set of Myc proteins and the
biochemical significance of these results is discussed. The results are
compared with those using the Bayesian method of Gu (15), which
calculates the posterior probability of a rate shift. The reasons for
the differences between the two approaches are explained.

The Model
The LRT is used as the basis for detecting rate shift sites. The
basic idea behind this test, as used in an evolutionary context, was
reviewed by Huelsenbeck and Rannala (16).

Position-Specific Rate Shift Test. To test whether a site from two
related groups of sequences is evolving differently, the positions
are analyzed individually. An outline of the method is shown in
Fig. 1 Left and Center.

The test used is as follows. The null hypothesis, H0, states that
a given position evolves with different rates in the two sequence
subfamilies. The likelihood under this model is calculated by
using the method of Felsenstein (17). The rate matrix used is the
JTT matrix of Jones et al. (18). The two rates of evolution are
varied to obtain the maximum-likelihood (ML) value under this
model, L0.

In contrast, hypothesis one (H1) states that the position
evolves at the same rate in the two subfamilies. Again, calcula-
tions are done according to Felsenstein (17) and with the JTT
matrix, but with a single rate used for the two subfamilies. The
optimal rate is found, giving the ML value under this model, L1.

Abbreviations: LRT, likelihood ratio test; ML, maximum likelihood; bHLHZip, basic helix–
loop–helix leucine zipper.
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Using an LRT statistic, we can evaluate H1. The test statistic
can be written as:

U � �2log
L1

L0
.

Because H1 is a special case of H0 (the hypotheses are nested),
the likelihoods will always obey the relationship that L1 � L0.
This means that U will never be negative.

There are two degrees of freedom under H0, whereas there is
only one under H1. This could indicate that under H1, the
distribution of U is approximately �2 with one degree of freedom,
here denoted �2(1). To investigate how close the distribution of
U is to �2(1), a number of simulations were conducted (Fig. 2).
The simulated distributions were quite close to the �2(1) distri-
bution, so a �2(1) test can be used with some caution.

Unknown and partially known amino acids are treated as
described by Felsenstein (17). This means that unknown amino
acids have the effect of pruning the tree to remove the sequences
containing them. Gaps are treated like unknown amino acids.
This means that all columns in the alignment can be used in the

analysis, even though some sequences are unknown or gapped in
that region. For moderate numbers of sequences with a gap at
a specific position, the test statistic is not influenced much,
because this corresponds to using a smaller tree (which would
ideally have the same distribution of U).

Advantages and Disadvantages of the Method. The LRT method
has the advantage that it is simple and direct. It answers exactly
the question of interest: Does a given position evolve at different
rates in different protein subfamilies? The Bayesian method is
indirect, because it only uses the JTT matrix to count the
expected number of replacements within each subfamily, before
comparing these counts (15). The problem is that some replace-
ments are rare (e.g., lysine to cysteine), whereas others are more
common (e.g., valine to isoleucine). The JTT rate matrix is fully
incorporated in the likelihood calculations presented here to
accommodate this fact.

Another advantage of this method, compared with some
earlier ones (e.g., ref. 8), is that it acknowledges that the
subfamilies are related to each other and are not independent.
To illustrate this, consider a given position in the sequences of
Fig. 1. Assume that Seq1a and Seq1b have an isoleucine and a
leucine, respectively, at this position, whereas Seq2a, Seq2b, and
Seq2c have alanines at this site. We know that at least two
replacements have occurred. The ML estimations of the indi-
vidual rates for the two subfamilies give a slow rate to subfamily
2, because there is no direct evidence of a replacement there.
Subfamily 1, on the other hand, requires one replacement, and
its rate of evolution is estimated to be fast. This means that the
model will tend to assume that both of the replacements
occurred in subfamily 1. This gives a more significant difference
than methods that do not take the relationship between the two
subfamilies into account, because they only use the single
replacement. Here, then, this hypothetical site would be signif-
icant according to our test with the two subfamilies considered
together (U � 4.07, P � 0.044), but barely insignificant if the two
were analyzed separately (U � 3.17, P � 0.075).

The obvious next question is: Which significance value should
be used in these tests? Often a value of P � 0.05 is chosen. The
problem here is that multiple tests are being performed. For an
alignment of length l, this means that �0.05l sites will be
significant just by chance when P � 0.05 is used. To correct for
this multiple testing, a stricter P value should be chosen, de-
pending on the number of sequences under analysis. For small
data sets with relatively few sequences, power is low, so a very
strict significance level will yield few results.

Taking all of this into account, we recommend that 0.05l be
used to estimate the expected number of sites with P � 0.05 by
chance alone. This expectation can then be compared with the

Fig. 1. Assume that a gene duplication has resulted in two protein subfamilies. The first consists of sequences Seq1a and Seq1b, whereas the second includes
sequences Seq2a, Seq2b, and Seq2c. (Left) H0, where the rates for a site may differ from one protein subfamily to the other. This rate divergence occurs at the
root of the tree, where the duplication event occurred. (Center) The situation under H1. The evolutionary rate for a site remains the same throughout the entire
tree. If H1 is rejected, rate shift behavior is present at the position under inspection. If H1 is retained, then one can test whether the rate for this site is equal to
the average for both proteins. (Right) The testing of this hypothesis (H2). If H2 is rejected, the evolutionary rate for the site is significantly different from the
average for all positions.

Fig. 2. The �2 distribution with one degree of freedom (smooth curve)
compared with a simulation study of U (ragged curve). The simulations
consisted of 1,000 samples generated under H1, with rates drawn from a
gamma distribution. The calculations are based on the phylogeny and ML
conditions used in the Myc protein example. The distribution of U approxi-
mately follows that of the �2(1) statistic, especially in the upper part. Other
follow-up simulations indicate that this distribution generally conforms more
closely to the �2(1) curve as the two subfamilies increase, both in terms of their
branch lengths and numbers of sequences (Figs. 4–7, which are published as
supporting information on the PNAS web site).
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observed number of such sites to assess the number of positions
with significantly different rates. Those sites with very significant
rate changes may stand out among the others. In turn, the entire
set of potentially significant sites can be further evaluated for
their importance against independent structural and functional
data for their proteins (8, 19). A combined approach that uses
both perspectives is illustrated below for Myc proteins.

LRT for Conserved Sites. As outlined in Fig. 1, one can also test
whether the rate for a site is different from the average for all
protein positions. Such a test is done if H1 is accepted (i.e., both
subfamilies have the same rate). The test is done exactly like the
rate shift test described above. The test statistic, U, again
approximates a �2(1) distribution according to simulations under
this hypothesis (H2) (Fig. 8, which is published as supporting
information on the PNAS web site, www.pnas.org). In many
cases, the most interesting sites will be those that have a
significantly slower rate than the average, because these posi-
tions are most likely to be those under the strongest selective
constraints and of greatest functional importance.

Analysis of a Set of Myc Sequences
To illustrate the utility of these methods, a set of 38 proteins for
c-Myc, N-Myc, and L-Myc (27, seven, and four sequences,
respectively) was analyzed for sites with rate shifts and slower
rates. These protein sequences included all of those used by
Miyamoto and Freire (20), except for those of the intron-less
retrogenes, viruses, and nonvertebrates. In addition, these 38
Myc sequences included the five new ones for eutherian mam-
mals reported by Miyamoto et al. (21).

The alignment of the 38 Myc proteins was based on the conserved
regions used by Miyamoto and Freire (20). The areas between their
conserved regions (including the common boundary between exons
2 and 3) were aligned by using CLUSTAL W (22). The final length of
the alignment was 583 positions, of which 285 had no gaps. In turn,
440 aligned positions did not have a gap in at least one sequence in
both the c-Myc and N-Myc subfamilies. Thus, 440 positions were
considered in our analysis of rate changes among sites (see below).
All of the position numbers discussed in the following are relative
to human c-Myc (23).

The phylogenetic tree used was that of Miyamoto and Freire
(20), except that the interordinal relationships of eutherian
mammals were fixed according to recent phylogenetic syntheses
of both their molecular and morphological data (24–26). The
branch lengths of this final phylogeny were optimized by ML
using the JTT matrix and gamma distribution for rate hetero-
geneity among sites (27). The two protein subfamilies compared
in our example were c-Myc and N-Myc, whereas L-Myc was used
as their outgroup.

The final set of Myc sequences (with accession numbers),
multiple sequence alignment, and phylogenetic tree are shown in
Table 3, Fig. 9, and Fig. 10, respectively, which are published as
supporting information on the PNAS web site.

Results and Interpretation. The c-myc, N-myc, and L-myc genes
encode transcription factors that are important in the regulation
of cell proliferation and differentiation (23, 28, 29). The c-myc
gene is expressed in many tissues and developmental stages,
whereas the expression of both N-myc and L-myc is reduced
spatially and temporally. Mutations in these genes have been
implicated in many human cancers (30). The proteins of all three
genes can be divided into three primary regions: (i) the N-
terminal domain (positions 1–144 of human c-Myc); (ii) the
central region (positions 145–354); and (iii) the basic helix–loop–
helix leucine zipper (bHLHZip) (positions 355–439) (Fig. 3).
The N-terminal domain is essential for transcriptional regulation
through both transactivation and repression, whereas the
bHLHZip is critical for specific DNA binding. The central region

includes sites for nonspecific DNA binding, nuclear localization,
and additional phosphorylation.

Ninety one sites in our evolutionary analyses were defined by
rates that were the same in c-Myc and N-Myc, but that were
slower than the average for both proteins (Fig. 3). These
positions map to different boxes and regions that are of known
functional importance to Myc proteins (e.g., Myc boxes 1 and 2
that are critical for the modulation and integration of transcrip-
tional regulation and for transcriptional repression, respectively)
(28, 29). Furthermore, these 91 sites with slower rates are not
randomly distributed across the three primary regions of Myc
proteins (Table 1). This nonrandom pattern identifies the N-
terminal domain and bHLHZip as conserved relative to the
more variable central region. This greater conservation for the
N-terminal domain and bHLHZip is not surprising, given that
the primary functions of Myc proteins (transcriptional regulation
and specific DNA binding) depend on these two regions.

Our LRTs identify 49 sites with significant rate differences at the
level of 5% (Table 2). Because the alignment has 440 positions that
could show rate shifts, �22 such sites are expected by chance alone
(440 � 0.05). This indicates that there are �27 more sites with
significant rate differences than expected. At the 1% level, there are
16 sites with significant rate changes, which again is more than
expected by chance (4 or 440 � 0.01). This illustrates the value of
using significance levels that are easy to interpret.

These 49 sites are not randomly distributed across the three
primary regions of c-Myc and N-Myc (Table 1). Rather, there are
relatively too many and too few sites with significant rate changes
in the N-terminal domain versus bHLHZip, respectively (Fig. 3).
These results agree with those of Dermitzakis and Clark (31),
who showed that the transactivation domains (but not the DNA
binding regions) of different transcription factors from the
MyoD and Mef2 gene families were characterized by variable
rates between duplicate genes. Thus, these results are consistent
with their hypothesis that the domains for transcriptional regu-
lation may be more important for the functional differences
among transcription factors than their DNA binding regions.

Furthermore, these 49 sites pinpoint more specific boxes and
other regions, as of greatest potential importance for the known
functional differences between c-Myc and N-Myc. For example,
Prendergast (28) hypothesized that positions 107–130 may un-
derlie the functional differences in transactivation and transfor-
mation that distinguish c-Myc from N-Myc. Our results identify
nine sites with significant rate differences that map to this region
(Fig. 3). These nine sites can now serve as specific targets in
experiments with site directed mutagenesis for their effects on
transactivation and transformation (32).

Comparison to Earlier Work. The ranking of sites by their signifi-
cance values differs from that derived from the Bayesian method
(15) (Table 2). This is primarily because all replacements are
effectively equally weighted in this method. Even though the JTT
matrix is used to infer expected numbers of replacements, all
replacements are treated equally thereafter. Any method based
on comparisons of replacement counts will suffer from this
problem. It is not only the number of replacements, but also the
nature of those replacements that is important in estimating the
significance of an observation.

To illustrate this point, consider position 414 (Fig. 3). It has
leucine in all N-Myc sequences, whereas the c-Myc sequences
have isoleucine, leucine, threonine, and valine. The latter four
amino acids can quickly change between each other, as indicated
in the JTT matrix. This means that a relatively slow evolutionary
rate can explain the variation at this position in c-Myc. This
reason is why this site has a low rank (47 overall and 25 among
ungapped sites), compared with the Bayesian method (five
among ungapped positions) (Table 2). The latter considers the
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high number of replacements, but fails to acknowledge that these
changes are all very common ones.

Another distinction between our LRT and the Bayesian
method (15) is that ours does not assume anything about the
distribution of rates across sites. Our distribution-free approach
stands in contrast to the latter’s reliance on the gamma distri-
bution for the accommodation of rate heterogeneity among sites.
Our approach also addresses a different question than the one

asked by the Bayesian method. In our approach, the question is:
Are the rates for a site the same in two subfamilies (Fig. 1)? In
the alternative method, the question is instead: Are the rates for
a site independent between two subfamilies? This latter distinc-
tion becomes particularly important, when the rates for a site are
both fast but different in two subfamilies. Here, our approach is
more likely to identify this site as significant, because it tests for
rate differences, rather than rate correlations.

Fig. 3. Summary of results for the 38 Myc proteins, as represented by the c-Myc and N-Myc sequences for human (Homo sapiens), chicken (Gallus gallus), and frog
(Xenopus laevis). The full alignment for all 38 Myc sequences is provided in Fig. 9, which is published as supporting information on the PNAS web site. Sites with both
blue and red highlighting correspond to those with significant rate differences between the two subfamilies. In these cases, the blue and red distinguish the subfamily
with the slower rate from the one with the faster rate, respectively. In turn, sites that are entirely blue or red highlight those with the same rate in the two subfamilies,
but with significantly slower or faster rates than the average for all positions, respectively. In all cases, significance refers to the 5% level. Key structural and functional
regions of the Myc proteins are labeled above and below the multiple sequence alignment (23, 28, 29). NLS, nuclear localization signal.

Table 1. Distributions of sites with significant rate shifts and equal, but significantly slower rates among the
three primary regions of Myc proteins (Fig. 3)

Myc region

Rate shift sites Equal, but slow rates

Significant sites Other sites Totals Significant sites Other sites Totals

N-terminal domain 22 (15.0) 113 (120.0) 135 36 (26.3) 77 (86.7) 113
Central region 24 (24.7) 198 (197.3) 222 30 (46.1) 168 (151.9) 198
bHLHZip 3 (9.2) 80 (73.8) 83 25 (18.6) 55 (61.4) 80

Totals 49 391 440 91 300 391

These summaries are for the 440 positions that could show rate changes between c-Myc and N-Myc. The chi-square test for rate shift
sites is significant at the level of 1.5% (X2 � 8.4). The chi-square test for equal, but slow, rates is also significant (X2 � 14.8, P � 0.001%).
Expected counts are given in parentheses.
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The above analysis of rate shift sites by the Bayesian method
is based on the fast approximate procedure that is now available
in the DIVERGE (version 1.04) computer program (ref. 15;
http:��xgu1.zool.iastate.edu�doc.html). Recently, Gu (2) pre-
sented a full Bayesian alternative for such analyses under the
JTT model, thereby correcting for the differences in replace-
ment rates among amino acids. Currently, a finished computer
program for general distribution is not available for this alter-
native, although one is expected soon (X. Gu, personal commu-
nication). Furthermore, this alternative still differs from our
LRT in its dependence on the gamma distribution to model rate
heterogeneity among sites and in its testing of rate correlations,
rather than rate differences. It also relies on an indirect proce-
dure for its likelihood calculations of the whole tree, whereby
these determinations are made for two extreme lengths of the
internal branch that connect its two subtrees. These separate
calculations are then linearly combined to obtain the final
likelihood of the whole tree. In the Appendix, we present a direct
procedure for the calculation of this likelihood.

Power Analysis. The power of the LRT for rate shift sites was
examined with evolutionary simulations using the Myc phylogenetic
tree (Fig. 10, which is published as supporting information on the
PNAS web site). When the same rates were used at each site
between the c-Myc and N-Myc subfamilies, 3.9% of the positions
(of 1,000) were significant at the level of 5%. This number should
ideally be 5%, but the �2 distribution of the test statistic is not exact
as shown in Fig. 2. When the N-Myc rate at each position was
doubled, but halved in c-Myc, for 500 sites, then vice versa for 500
additional sites, the percentage of significant positions of 1,000
increased to 10.4% for this rate ratio of four. When the rate ratio
was then increased in this fashion to 16, 34% of the 1,000 sites were
now significant. These power analyses indicate that quite high rate
ratios are needed to detect rate shift sites between c-Myc and
N-Myc. Because of the limited power of the test, it is particularly
important to use as many sequences as possible for each subfamily.
Furthermore, when using few sequences, evolutionary simulations

are recommended, instead of the �2 approximation, for determin-
ing significance levels.

Phylogenetic Errors. To examine the effects of phylogenetic error
on the detection of rate shift sites, the LRTs for the Myc
sequences were repeated by using five additional phylogenies.
The first two phylogenies were obtained from the neighbor-
joining and protein parsimony analyses of the Myc sequences
(33), whereas the next two were produced by rerooting the
accepted tree at the basal nodes of the c-Myc and N-Myc
subfamilies, respectively (20, 24–26). The fifth tree was gener-
ated by randomly rearranging the sequences within each sub-
family of the accepted phylogeny.

The first two trees were relatively similar topologically to the
accepted phylogeny, as they differed from the latter by symmet-
ric differences of 20 and 21, respectively (33). In turn, the two
rerooted trees varied from the accepted phylogeny only by their
minimized versus maximized basal branches for the c-Myc versus
N-Myc subfamilies (and vice versa), respectively. Forty one to 57
sites were significant according to these four alternatives, with 38
to 46 of these positions overlapping with the 49 for the accepted
phylogeny (Tables 4 and 5, which are published as supporting
information on the PNAS web site). These results indicate that
the LRT for rate shift sites is relatively insensitive to rearrange-
ments within the gene tree.

In contrast, the ‘‘random’’ alternative was quite different from
the accepted phylogeny, as it varied from the latter by a symmetric
difference of 60. One hundred and sixteen sites were significant
according to this random alternative, with 41 of these positions
overlapping with the 49 for the accepted phylogeny (Tables 4 and
5). These 116 sites document an increase in the frequency of false
positives as valid groups are fragmented and additional parallel and
back replacements are introduced into one subfamily versus an-
other. This situation becomes most acute when one subfamily is
varied for a site, but another is not. In this case, the addition of
parallel and back replacements in the first subfamily exaggerates its
rate for the site relative to that of the second. Correspondingly, the

Table 2. The 49 positions with significant rate shifts between the c-Myc and N-Myc subfamilies
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1 94 c-Myc 0.000040 — 18 284 N-Myc 0.010 4 35 146 c-Myc 0.027 11
2 221 c-Myc 0.00054 — 19 230 c-Myc 0.012 12 36 285 N-Myc 0.028 16
3 96 c-Myc 0.00062 — 20 157 c-Myc 0.012 — 37 153 c-Myc 0.031 —
4 272 N-Myc 0.00081 — 21 117 c-Myc 0.013 — 38 408 N-Myc 0.031 15
5 113 c-Myc 0.00085 2 22 283 N-Myc 0.014 6 39 121 c-Myc 0.035 13
6 68 c-Myc 0.0020 — 23 111 c-Myc 0.014 39 40 150 c-Myc 0.035 41
7 99 c-Myc 0.0025 1 24 277 N-Myc 0.015 3 41 83 c-Myc 0.036 —
8 114 c-Myc 0.0030 — 25 154 c-Myc 0.015 80 42 73 c-Myc 0.037 —
9 286 N-Myc 0.0040 — 26 293 c-Myc 0.017 10 43 282 N-Myc 0.037 24

10 66 c-Myc 0.0044 — 27 222 c-Myc 0.017 — 44 340 c-Myc 0.040 17
11 178 c-Myc 0.0071 — 28 301 c-Myc 0.017 9 45 404 N-Myc 0.041 21
12 273 N-Myc 0.0072 — 29 100 c-Myc 0.018 19 46 281 N-Myc 0.043 8
13 75 c-Myc 0.0077 — 30 122 c-Myc 0.022 14 47 414 N-Myc 0.048 5
14 69 c-Myc 0.0082 — 31 214 N-Myc 0.023 — 48 67 c-Myc 0.049 —
15 274 N-Myc 0.0084 30 32 109 c-Myc 0.024 18 49 93 c-Myc 0.050 —
16 116 c-Myc 0.0091 — 33 314 c-Myc 0.026 47
17 70 c-Myc 0.0099 — 34 115 c-Myc 0.027 —

These 49 positions are ranked according to their P values. At a significance level of 0.05, approximately 22 significant sites are expected by chance. Thus,
approximately 22 of these sites may be random occurrences. Bayesian rank refers to the results from the Bayesian analysis of these Myc sequences (15). As this
method cannot accommodate sites with any gaps or unknown positions, several sites in our analysis (marked by dashes) were excluded by the former.
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chance of a significant rate difference between them (i.e., a false
positive) becomes exaggerated, too.

Future Directions
A direct statistical test for rate shift sites is presented. It takes the
known replacement pattern of amino acids into account through
a suitable rate matrix and provides significance values that are
easy to interpret. The method is shown to perform well on a
protein family that has been studied before for its rate shift
positions (15). These comparisons now await further analyses of
this protein family with a new ML method (2).

One interesting area of future research is to study the heter-
ogeneity of amino acid frequencies between subfamilies, in
addition to their rate shift sites (15). This can be done both on
a position-specific level and the whole sequence level. Such
investigations would complement the use of rate changes to
identify sites of potential functional significance (2).

To compensate for the limited power of the LRT, one can
analyze groups of sites rather than individual positions. These
groups should be defined a priori according to the structural and
functional properties of the protein (e.g., the bHLHZip of Myc).
By analyzing positions together, one can increase the power of
the test, but at the cost of site specificity. Furthermore, the �2

method for testing significance becomes questionable in this
case, as the small deviations at each site of the group will lead
to a large overall departure from this idealized distribution.
Thus, when sites are grouped, evolutionary simulations will
provide a superior test of significance. Finally, by considering the
entire protein as the group, one can test for rate shifts at the
whole sequence level in a manner that is analogous to the �
coefficient in the Bayesian method (2, 15).

Availability of Computer Programs
The programs of this study are available at www.daimi.au.dk�
�compbio�rateshift. These programs can analyze both protein and
nucleic acid sequences for rate shift sites and conserved positions.

Appendix: A Bayesian Approach for the Identification of Rate
Shift Sites
If the rates among sites are assumed or known to follow some
distribution, e.g., a gamma distribution, this information can be
used as a prior in a Bayesian analysis of rate shift positions.

The whole tree is designated T, whereas the subtrees for the
two subfamilies under investigation are denoted T1 and T2,
respectively. Note that T1 and T2 include the branches that
connect their most recent common ancestors to the root of the
whole tree. Thus, T can be formed directly by joining T1 and T2.
The inclusion of these basal branches with their subtrees elim-
inates the need for separate likelihood calculations, as in the
whole tree procedure of the new Bayesian method (2). For a
given site, let X then denote the amino acid configuration for all

sequences, whereas X1 and X2 represent the configurations in the
two respective subfamilies.

We can calculate the probability of the data, P0(X), given that
the rates for a site are independent between the two subfamilies.
Here, �1 � �2 is used to symbolize that the two rates are
independent, with � referring to their prior distributions. In the
equations below, x represents the amino acids at the root of the
whole tree:

P0�X	 � P�X�T, �1 � �2	

� �
�1 � 0


 �
�2 � 0




P�X��1, �2, T	���1	���2	d�1d�2

� �
�1 � 0


 �
�2 � 0


 �
x

�P�X1�x, �1, T1	P�X2�x, �2, T2	P�x	�

� ���1	���2	d�1d�2

� �
x

P�X1�T1, x	P�X2�T2, x	P�x	.

Notice that no two-dimensional integration is necessary. The
integrals can be computed numerically.

We can also calculate the probability of the data, P1(X), given
that the two rates are equal.

P1�X	 � P�X�T, �1 � �2	 � �
� � 0




P�X��1 � �2 � �, T	���	ḋ�.

The two hypotheses can now be compared by comparing their two
probabilities. This can be expressed as the posterior probability that
the rates are independent at the site under investigation.

P��1 � �2�T, X	 �
P�X�T, �1 � �2	P��1 � �2�T	

P�X�T	

�
P0�X	P��1 � �2	

P1�X	�1 � P��1 � �2		 � P0�X	P��1 � �2	
.

A prior probability for the rates being independent, P(�1 � �2),
is needed. This probability can be estimated as by Gu (15), who
uses � (the coefficient of functional divergence) as the prior.
Using this, we can obtain the probability that the rates at a given
site are independent between the two subfamilies.
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