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Abstract

Introduction: Prognostic tools typically combine several time-invariant clinical predictors using 

regression models that yield a single, time-invariant outcome prediction. This results in 

considerable information loss as repeatedly or continuously sampled data are aggregated into 

single summary measures. We describe a method for real-time multivariate outcome prediction 

that accommodates both longitudinal data and time-invariant clinical characteristics.

Methods: We included comatose patients treated after resuscitation from cardiac arrest who 

underwent ≥6 hours of electroencephalographic (EEG) monitoring. We used Persyst v13 (Persyst 

Development Corp, Prescott AZ) to generate quantitative EEG (qEEG) features and calculated 

hourly summaries of whole brain suppression ratio and amplitude-integrated EEG. We randomly 

selected half of subjects as a training sample and used the other half as a test sample. We applied 

group-based trajectory modeling (GBTM) to the training sample to group patients based on qEEG 

evolution, then estimated the relationship of group membership and clinical covariates with 

awakening from coma and surviving to hospital discharge using logistic regression. We used these 

parameters to calculate posterior probabilities of group membership (PPGMs) in the test sample, 

and built three prognostic models: adjusted logistic regression (no GBTM), unadjusted GBTM (no 
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clinical covariates) and adjusted GBTM (all data). We compared these models performance 

characteristics.

Results: We included 723 patients. Group-specific outcome estimates from a 7-group GBTM 

ranged from 0 to 75%. Compared to unadjusted GBTM, adjusted GBTM calibration was 

significantly improved at 6 and 12 hours, and time to an outcome estimate <10% and <5% were 

significantly shortened. Compared to simple logistic regression, adjusted GBTM identified a 

substantially larger proportion of subjects with outcome probability <1%.

Conclusions: We describe a novel methodology for combining GBTM output and clinical 

covariates to estimate patient-specific prognosis over time. Refinement of such methods should 

form the basis for new avenues of prognostication research that minimize loss of clinically 

important information.
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Introduction

Neurological prognostication after resuscitation from cardiac arrest is challenging.[1, 2] 

Most patients who survive to hospital care after cardiac arrest are initially comatose.[3] 

Some awaken and enjoy favorable neurological recovery but most are ultimately deemed to 

have devastating brain injury and die after withdrawal of life-sustaining therapy based on 

perceived poor neurological prognosis (WLST-N).[4] Because clinical signs and prognostic 

test results are imperfect and may change over time, guidelines recommend WLST-N be 

delayed 72 hours or longer after initial resuscitation or be based on multiple prognostic 

modalities.[1, 2] Indeed, using multiple prognostic modalities in conjunction improves the 

prediction in this population.[5–7]

Traditional prognostic models combine one or more independent categorical (e.g. initial 

rhythm) or continuous (e.g. age) predictors into a regression model to make a single 

outcome prediction once all data are available.[3, 8–11] This results in considerable 

information loss as repeatedly or continuously sampled data are massively down sampled 

into single discrete predictors. Furthermore, these models are only useful after all 

information is available. We examined electroencephalography (EEG) data as a specific 

example of continuously measured, prognostically important data. After cardiac arrest, 

quantitative EEG (qEEG) measures evolve over time and group-based trajectory modeling 

(GBTM) can describe this evolution. [6] We have previously reported that although most 

subjects’ initial EEG tracings are quite suppressed, resolution of this suppression over the 

first 36 hours of monitoring is associated with an 8-fold increase in the odds of survival to 

hospital discharge compared to persistent suppression.[6] The 36-hour qEEG trajectory 

outperforms use of baseline and 24-hour measures in isolation as a prognostic marker.[6]

In this study, we describe a method for outcome prediction that combines information from 

baseline clinical characteristics and continuously sampled longitudinal data, and which can 

provide real-time prognostic information before all data are available. We compare the 
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performance characteristics of one such model to two established methodologies: adjusted 

logistic regression without using GBTM,[12] and prediction based on GBTM without 

adjustment for time-invariant baseline characteristics.[13]

Methods

Patients and setting

The University of Pittsburgh Human Research Protection Office (formerly Institutional 

Review Board) approved all aspects of this work with a waiver of informed consent. We 

included patients admitted to a single academic medical center from May 2010 to March 

2018 after resuscitation from cardiac arrest. We excluded patients who were awake within 6 

hours of arrival; those who arrested due to a primary neurological event or trauma; patients 

with death in the first 24 hours post-arrest from rearrest, refractory shock, withdrawal due to 

preexisting advanced directives; patients with <6 hours of EEG data available; and, those 

transferred to our facility >12 hours post-arrest. During the study period, it was our standard 

of care to perform at least 24 hours of continuous EEG monitoring on all comatose post-

arrest patients except those with non-survivable illness (e.g. refractory shock or cerebral 

edema with herniation) present on arrival or advanced directives limiting provision of 

aggressive care.

Our Post-Cardiac Arrest Service (PCAS) coordinates care through the entire post-arrest 

course including initial resuscitation, critical care and neurological prognostication. We have 

previously described roles of the service in detail,[14, 15] including our standardized bundle 

of sedation and antiepileptic drug therapy.[6] We routinely obtained baseline brain imaging 

using computerized tomography (CT) on arrival, and estimated the burden of cerebral edema 

by calculating the ratio of the density of grey matter to white matter Hounsfield units 

(GWR).[16] We actively managed patients’ temperature to 33°C (prior to November, 2014) 

or either 33°C or 36°C (after November, 2014) for 24 hours. Thereafter, we warmed patients 

at 0.25°C/hr to 37°C, and actively maintained normothermia until 72 hours post-arrest or 

awakening from coma. We typically delayed neurological prognostication for at least 72 

hours after arrest, and based the decision for WLST-N on multiple prognostic modalities 

including daily neurological examination, initial brain imaging, continuous EEG monitoring, 

somatosensory evoked potentials, and occasionally magnetic resonance imaging of the brain. 

Raw EEG data used in this work were available to the treating clinician, but qEEG and 

trajectory model results were not.

EEG acquisition and processing

Our hospital is staffed around-the-clock by EEG technologists who initiated continuous 

EEG monitoring on admission to the intensive care unit, a mean of 6–8 hours post-arrest.[6] 

We used 22 gold-plated cup electrodes in the standard 10–20 International System of 

Electrode Placement and recorded EEG data using XL Tech Natus Neuroworks digital 

video/EEG systems (Natus Medical, Inc.). We deidentified and exported each patient’s EEG 

data and used Persyst Version 13 (Persyst Development Corp., Prescott AZ) to generate 

second-by-second qEEG measures, which we imported into BrainFlux - a custom-built large 

time-series data warehouse implemented using InfluxDB time-series database (InfluxData, 
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San Francisco, CA). We considered any hour with <15 minutes of EEG data to be missing. 

We identified these epochs during the down-sampling process when data were aggregated 

from a frequency of 1Hz to hourly summaries. For the present analysis, we summarized two 

qEEG features in hourly epochs. First, we calculated each patient’s whole-brain suppression 

ratio (SR). We used Persyst to calculate SR in 10-second epochs in each electrode pair of a 

standard longitudinal bipolar montage by determining the proportion of each epoch 

suppressed below a voltage threshold of 2uV and used the software’s algorithm for artifact 

reduction. We used BrainFlux to calculate mean SR across leads in 10-second epochs, and 

then calculated the median of each whole-brain average each hour. We also used Persyst to 

calculate amplitude-integrated EEG (aEEG) values, which we similarly summarized first 

across space then over time to obtain hourly summaries for each patient. Because high-

amplitude polyspike burst-suppression may have particular prognostic significance after 

cardiac arrest,[14, 17] for aEEG we considered only the non-suppressed portions of the 

recording (i.e. took the median aEEG value conditional on aEEG ≥2) for patients with 

suppression-burst calculated aEEG only during bursts of activity. If no periods exceeded this 

voltage threshold during a given hour we defined aEEG as 0 for that hour. Data were 

exported from BrainFlux on September 15th, 2018 and reflect the most accurate information 

available for each patient as of that date.

Covariates and outcomes

We maintain a prospective registry including consecutive post-arrest patient’s clinical 

characteristics and outcomes. From this, we abstracted patients’ age; gender; initial illness 

severity measured using Pittsburgh Cardiac Arrest Category;[3, 18] arrest location in-

hospital versus out-of-hospital; GWR on initial brain CT, which we categorized as <1.2, 1.2 

to <1.3, 1.3 to <1.4, ≥1.4 or missing (CT not done or uninterpretable); initial arrest rhythm, 

which we dichotomized as shockable or nonshockable; whether or not each patient 

awakened from coma, which we defined as following verbal commands; and survival to 

hospital discharge. We combined these into a composite binary outcome of awake and alive 

at discharge for prognostication.

Statistical methods

GBTM is a specialized application of a finite mixture model that identifies groups of 

individuals following a similar trajectory of one or more measures of interest, in this case SR 

and aEEG, over time.[19, 20] Let K denote the number of biomarkers defining each 

trajectory group, in our case 2 (SR and aEEG), Y i
k denote a random vector of individual i’s 

longitudinal sequence of measurements of the kth biomarker measured over T=48 discrete 

time periods, and Pk(Y i
k | j; β j

k) denote the distribution of that vector. This distribution is 

conditional on group membership and an unknown parameter vector β j
k, which among other 

things determines the shape of the group-specific trajectory. GBTM assumes that, 

conditional on membership in the jth group, all Y i
k are independently distributed with 

P j(Y i
1, Y i

2, .., Y i
K) = P1 j(Y i

1)P2 j(Y i
2)..PK j(Y i

K). Thus, the likelihood for each individual 

conditional on number of groups J may be written as: 
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P j(Y i
1, Y i

2, .., Y i
K) = ∑ j = 1

J π j[Πk = 1
K Pk(Y i

k | j; β j
k)], where πj is the probability of membership in 

group j.

We scaled both SR and aEEG to range from 0 to 1 by censoring then dividing through by the 

maximum biologically plausible values and specified both qEEG measures to follow a beta 

distribution the parameters of which we allowed to vary by trajectory group. We then 

estimated dual-GBTMs of the evolution of both measures over time that ranged from 3 to 8 

groups. These GBTMs handled missing data in two ways. We considered intermittently 

missing qEEG data (i.e. data were available in at least one epoch before and one epoch after) 

to be missing at random. Data could also be missing due to nonrandom dropout (i.e. EEG 

monitoring was discontinued and never resumed). We did not impute any missing data and 

estimated models using maximum likelihood estimation, which yields asymptotically 

unbiased parameter estimates in the case of data missing at random. After dropout, patients 

did not contribute additional data to model estimation and patient-specific PPGMs were not 

updated further. We compared models using Bayesian and Akaike information criteria and 

their ability to identify prognostically important subgroups with predicted outcomes much 

lower (at or near 0%) or much higher (more than 2× the overall population average) than 

average.

We randomly selected 50% of our cohort as training data and withheld the other 50% of the 

cohort as test data. We estimated the GBTM parameters described above using the training 

cohort, then used these parameter estimates to calculate the posterior probability of group 

membership (PPGM) for each patient in the test data set. The PPGM is calculated according 

to Bayes’ Rule. For each patient, it estimates the probability of membership in each group j 

given the individual’s available data, in this case qEEG features available at or before the 

time of its calculation. We iteratively re-estimated the PPGM for each group j and patient i 

after each new epoch of data (i.e. each new hour of summarized qEEG features). We then 

reversed the sample, training a new GBTM using data from subjects previously in the test 

dataset and calculated PPGMs for subjects formerly in the training dataset. We combined the 

two subsets of test data for subsequent diagnostic exercises. The first model for which we 

evaluated performance characteristics was patient outcome estimates based on the hourly 

PPGMs and training data outcomes for each group, which we will refer to as the unadjusted 

GBTM model.

Next, we generated covariate-adjusted GBTM prognostic estimates as follows. In our final 

model, two trajectory groups had no patients awake and alive at discharge, which we felt 

was clinically useful but also posed a challenge for regression-based prognostication because 

in these groups’ covariates were irrelevant to outcome prediction. For the groups with non-

zero outcomes, we normalized their PPGMs by dividing through by the sum of PPGMs for 

all non-zero outcome groups: Pnorm( j |Y it
K) = P( j |Y it

K)/∑1
J*P( j |Y it

K), where J* is the number of 

the non-zero outcome groups. Using the training dataset, we then estimated a multivariable 

logistic regression model predicting awakening and survival at hospital discharge based on 

the normalized PPGMs for each non-zero outcome group for the predictor covariates age, 

GWR, initial rhythm, PCAC, and arrest location. Next, we applied the findings from the 

training cohort to the holdout sample. Based on the previously estimated GBTM parameters, 
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we calculated each individual’s PPGM for each trajectory group each hour, P( j |Y it
K) then 

calculated Pnorm for each group at each hour. Then, we calculated each individual’s 

probability of being awake and alive at hospital discharge conditional on membership in a 

non-zero outcome group, which we then rescaled back to account for the probability of 

membership in zero outcome groups as: 

pit = [(e
β0 + Σ1

J *βJ *Pnorm J + βage ∗ age + ⋯
)/(1 + (e

β0 + Σ1
J *βJ *Pnorm J + βage ∗ age + ⋯

))]

∗ ∑J*Pnorm( j)

 where 

βage…denotes the parameter estimate of each of the various adjustment covariates. We will 

refer to this model as the adjusted GBTM model. Finally, we used baseline covariates 

without any GBTM output to estimate a simple multivariable logistic regression model in 

each training cohort, and used this output to estimate each test subject’s outcome. We will 

refer to this model as the logistic model.

We tested the performance characteristics of our final models in three ways. First, we 

compared the calibration of predicted versus actual outcome at 6, 12, 18, 24, 36 and 48 

hours of observation for all three models. Second, we compared the proportion of patients 

for whom adjustment (logistic vs adjusted GBTM and unadjusted GBTM vs adjusted 

GBTM) increased the accuracy of the predicted outcome. We considered accuracy increased 

if adjustment reduced pit in patients who were deceased or unresponsive at discharge, or 

increased pit among those awake and alive at discharge. Finally, we compared the time to 

potentially actionable predicted outcome threshold for WLST-N by using Cox proportional 

hazards regression to compare time to pit less than 10%, less than 5%, less than 2% and less 

than 1% between unadjusted and adjusted models. We used Stata Version 14.2 (StataCorp, 

College Station, TX) for all statistical analyses and estimated GBTMs using the freely 

available traj package, which can be downloaded at https://www.andrew.cmu.edu/~bjones/

index.htm.

Results

During the study period, we cared for 2,081 patients after presumed cardiac arrest, of whom 

723 met inclusion and exclusion criteria for the present analysis (Figure 1). Mean (SD) age 

of included patients was 57 (16) years, 271 (37%) were female, 599 (83%) arrested out of 

hospital and 224 (31%) had an initial shockable rhythm. Most patients (58%) had PCAC IV 

(severe) illness severity, median GWR on initial brain CT was 1.33 [interquartile range 

(IQR) 1.27 – 1.39] and 121 (17%) had no baseline brain CT or uninterpretable images. At 

discharge, 198 (27%) patients were awake and alive. Overall, 1.4% of epochs had <15 

minutes data available and were treated as missing. Another 1.6% had incomplete data (15–

60 minutes). Remaining epochs reflected continuous periods of observation or appropriately 

missing after monitoring was discontinued. Using both training cohorts, we found a 7-group 

GBTM best fit the data (Figure 2). Group-specific percentages awake and alive at hospital 

discharge ranged from 0% to 75% at hospital discharge (Table 1).
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All models were generally well calibrated (Supplemental Figure 1), except for significant 

miscalibration of the unadjusted GBTM at hour 6 (calibration curve β-coefficient 0.89, P for 

Wald test vs 1.0 (perfect calibration) = 0.04) and hour 12 (calibration curve β-coefficient 

0.87, P = 0.01). At hour 48, adjustment of the GBTM improved the accuracy of predicted 

outcome in 574 (79%) of subjects compared to the unadjusted GBTM, and shifted the 

patient’s predicted outcome probabilities by a median of 6.8 [IQR 0 to 17] percent (Figure 

3). These findings were comparable at earlier time points assessed (Figure 4). Compared to 

the logistic model, the adjusted GBTM improved prediction accuracy in only 59% of 

subjects, but increased the proportion of subjects with <1% probability of favorable outcome 

from 0 to 233 (32% of the overall cohort). At a threshold of <10% and <5% probability of 

awakening and surviving to discharge, adjustment significantly reduced the time to 

actionable prognostic estimate (hazard ratio (HR) 0.48 (95%CI 0.37 – 0.64), P < 0.001 and 

HR 0.67 (95%CI 0.54 – 0.85), P = 0.001, respectively) (Figure 5). There was no difference 

in time to an actionable estimate assessed at a threshold of <2% or <1% between unadjusted 

and adjusted models.

Discussion

The evolution of continuous physiological data in critical illness is prognostic[6, 21] but has 

not been considered in most models to predict outcome after cardiac arrest.[3, 8–11] 

Conversely, previous studies using longitudinal data methods like GBTM have not leveraged 

the predictive capacity of this model or allowed covariates extrinsic to the trajectory model 

to alter outcome prediction.[22–25] In this work, we have described a method for combining 

both types of data to inform real-time, iteratively updated, statistically based prognostic 

estimates for individual patients. Compared to unadjusted GBTM-based prognostic 

estimates, adjustment improved early model calibration, improved prognostic accuracy in 

most patients, and shortened the time to an actionable prognostic estimate considered at a 

threshold of 10% or 5%. Compared to logistic regression based on time-invariant clinical 

predictors, addition of GBTM-derived information dramatically increased the number of 

subjects with near-zero probabilities of awakening and survival to discharge.

Comparing longitudinal models necessitated that we develop novel criteria to quantify their 

performance. To our knowledge, time to prediction is a performance metric not described 

previously. To a large extent, this is because most prior models provide a single time-

invariant prognostic estimate. Our rationale for dichotomizing patients’ estimated outcome 

probabilities at predefined thresholds is as follows. Generally speaking, predictive tools are 

easiest to understand at a population level. Among a group of 1000 individuals with 5% 

survival predicted by a well-calibrated model, on average 50 are expected to survive. Each 

individual patient will either live or die, and a clinician recommending WLST-N is not often 

interested in population-level estimates but rather the outcome of the individual patient in 

question.[26] With this in mind, an outcome prediction is only actionable if it falls below an 

individual physician or family’s tolerance for error. This threshold likely varies across 

physicians, families and individual clinical cases, so we compared models at several 

potentially useful thresholds.
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The clinical covariates we included in our adjusted model were assessed at baseline and 

therefore known prior to GBTM start. We note, however, that it would be trivial to allow 

these covariates to vary over time. For example, if CT imaging were completed at hour 12 of 

the trajectory model, an individual’s GWR could be categorized as “missing” during 

outcome estimation conducted prior to acquisition, then be updated to its measured value 

after imaging was acquired. This statistical flexibility is highly desirable when outcome 

prediction is updated as new data become available but the sequence in which new data are 

acquired varies because of real-world clinical considerations or random chance.

Although compared to the unadjusted GBTM the adjusted model improved the accuracy of 

most patients’ outcome estimates, for 1 in 5 patients adjustment actually worsened model 

performance. This occurred when a patient had a set of clinical predictors (e.g. young age, 

shockable rhythm and low PCAC, all of which were associated with favorable outcomes) but 

an outcome that was discordant with these predictors. In these circumstances, prediction 

based on qEEG trajectories alone was more accurate. Such errors highlight the challenges of 

applying population-based estimates to individual patients, and clinically emphasize the 

continued need for delayed, multimodal prognostication. Indeed, we do not propose the 

adjusted model presented here as ready for routine clinical use. Rather, we describe the 

methodological framework that may be used to build progressively more sophisticated 

models that ultimately may reach a point of having clinical utility.

Our work has important limitations. First, we chose predictors to include in our current 

models based on biological plausibility and availability of data, and overall these predictors 

performed well. However, it is virtually certain that there are other variables that could be 

modeled using GBTM or included as covariates that perform better. An interesting area for 

future research will be to develop methods for screening and selection of optimal features to 

include in this type of prognostic model. Second, data were collected at a single academic 

medical center and our findings may not be generalizable to other centers. Again, our aim 

was to describe a framework for prognosticating based on both trajectories of continuous 

data and time-invariant factors, not to develop a tool ready for immediate clinical use.

Broad clinical applicability would necessitate testing of a trained prognostic model on an 

external data set (for example, qEEG, clinical and outcomes data measured prospectively at 

multiple medical centers). From the perspective of real-time prediction, the technical 

infrastructure for qEEG signal processing, feature summarization and modeling would also 

need to be developed. For this reason, we focus on signals derived from clinically available 

software already used in routine practice, which can generate qEEG features in near real-

time on standard beside monitors without significant computational needs. Nevertheless, 

near real-time analysis of biomedical data can be logistically challenging. Clinical 

acquisition of EEG in the intensive care unit is also resource intensive, typically requiring 

trained EEG technologists and physician interpreters, bedside monitoring equipment, and an 

informatics backbone and storage capable of transmitting and archiving the large files that 

are generated.[27] Whether or not a limited montage requiring less costly infrastructure, for 

example EEG signal acquired by a bispectral index monitor, would perform similarly to a 

full EEG montage is unknown and requires further investigation. Finally, and perhaps most 

importantly, because the clinicians at our center were not blinded to the data we modeled 
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and also directed decisions about WLST-N, there is a real potential that our findings were 

influenced by self-fulfilling prophecies. As such, the estimate derived from our model 

cannot be interpreted as the probability that an individual could awaken and survive to 

discharge in the absence of WLST-N, but rather the probability of awakening and survival 

when WLST-N is applied similarly to that in this study.

In conclusion, we describe a novel methodology for real-time patient outcome prediction 

that accommodates information from both trajectories of continuous longitudinal data and 

other clinical covariates. We further propose several methods that allow head-to-head 

comparisons of the performance and clinical utility of these models. Future work will focus 

on refining methods for model building and external validation of our findings.
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Figure 1: 
Cohort selection and exclusion criteria.
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Figure 2: 
Final seven group multi-trajectory model of normalized suppression ratio (A) and aEEG (B) 

over time.
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Figure 3: 
Patient-specific differences between outcome models at hour 48. Prediction from the 

adjusted GBTM was improved among subjects with unfavorable outcomes when it was 

lower than that of the logistic (A) or unadjusted GBTM (C) estimates, points falling below 

the reference line in these panels. By contrast, prediction from the adjusted GBTM was 

improved among subjects with favorable outcomes when it was higher than the logistic (B) 

or unadjusted GBTM (D), points falling above the reference line. All axes are shown in a 

square root scale.
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Figure 4: 
Proportion of subjects each hour for whom accuracy of predicted outcome was improved in 

the adjusted GBTM compared to the logistic model (A) or unadjusted GBTM (B). 

Confidence bars show the exact binomial 95% confidence interval around the proportion 

point estimate.
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Figure 5: 
Compared to unadjusted models, with adjustment time to an actionable outcome estimate 

was shorter at a threshold of 10% (A) and 5% (B) but not 2% (C) or 1% (D). Time-invariant 

estimates from the logistic model are denoted with the solid reference line. Note, no subjects 

had a logistic model-based outcome estimate below the 1% threshold.
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Table 1:

Trajectory group-specific clinical characteristics and outcomes

Holdout cohort 1 (n = 360)

Characteristic Group 1 (n = 
59)

Group 2 (n = 
66)

Group 3 (n = 
57)

Group 4 (n = 
47)

Group 5 (n = 
47)

Group 6 (n = 
37)

Group 7 (n = 
50)

Age, years 61 ± 15 58 ± 18 58 ± 18 61 ± 15 62 ± 15 53 ± 19 57 ± 17

Female sex 32 (55) 17 (31) 16 (40) 16 (28) 16 (30) 22 (50) 23 (44)

Out-of-hospital arrest 49 (84) 43 (80) 32 (80) 46 (79) 43 (80) 38 (86) 49 (94)

Shockable rhythm 10 (17) 26 (28) 21 (52) 18 (31) 19 (35) 7 (16) 11 (21)

PCAC

 II 5 (8) 25 (46) 28 (10) 9 (16) 23 (43) 10 (23) 2 (4)

 III 0 (0) 10 (19) 4 (10) 10 (17) 6 (11) 2 (5) 5 (10)

 IV 47 (81) 13 (24) 5 (13) 36 (62) 23 (43) 30 (68) 41 (79)

 Unknown 6 (10) 6 (11) 3 (8) 3 (5) 2 (4) 2 (5) 4 (8)

GWR

 <1.2 26 (45) 0 (0) 1 (3) 5 (9) 0 (0) 1 (2) 7 (13)

 1.2 to <1.3 8 (14) 8 (15) 6 (15) 16 (28) 14 (26) 13 (30)) 12 (23)

 1.3 to <1.4 12 (21) 17 (31) 13 (33) 18 (31) 23 (43) 16 (36) 20 (38)

 ≥1.4 7 (12) 16 (30) 10 (25) 9 (16) 11 (20) 7 (16) 9 (17)

 Missing 5 (9) 13 (24) 10 (25) 10 (17) 6 (11) 7 (16) 4 (8)

Awaked and survived 0 (0) 39 (59) 39 (68) 6 (13) 21 (45) 7 (19) 0 (0)

Holdout cohort 2 (n = 363)

Characteristic Group 1 (n = 
58)

Group 2 (n = 
54)

Group 3 (n = 
40)

Group 4 (n = 
58)

Group 5 (n = 
54)

Group 6 (n = 
44)

Group 7 (n = 
52)

Age, years 60 ± 18 58 ± 14 49 ± 16 60 ± 18 58 ± 14 51 ± 15 56 ± 16

Female sex 22 (38) 20 (30) 22 (39) 13 (28) 15 (32) 16 (43) 21 (42)

Out-of-hospital arrest 54 (92) 49 (74) 47 (82) 32 (68) 36 (77) 35 (95) 46 (42)

Shockable rhythm 10 (17) 31 (47) 28 (49) 6 (13) 24 (51) 13 (35) 11 (22)

PCAC

 II 4 (7) 26 (39) 29 (51) 9 (19) 22 (47) 8 (23) 8 (16)

 III 3 (5) 17 (26) 11 (9) 8 (17) 8 (17) 3 (8) 0 (0)

 IV 49 (83) 19 (29) 10 (18) 25 (53) 15 (32) 25 (68) 37 (74)

 Unknown 3 (5) 4 (6) 7 (12) 5 (11) 2 (4) 1 (3) 5 (10)

GWR

 <1.2 15 (25) 1 (2) 3 (5) 10 (21) 7 (15) 7 (19) 5 (10)

 1.2 to <1.3 16 (27) 9 (14) 5 (9) 7 (15) 12 (26) 8 (22) 12 (24)

 1.3 to <1.4 13 (22) 30 (45) 17 (30) 14 (30) 16 (34) 16 (43) 19 (38)

 ≥1.4 5 (8) 12 (18) 19 (33) 10 (21) 9 (19) 4 (11) 8 (16)

 Missing 10 (17) 14 (21) 13 (23) 10 (21) 7 (15) 7 (19) 5 (10)

Awaked and survived 0 (0) 31 (57) 30 (75) 5 (9) 16 (30) 4 (9) 0 (0)

Data are presented as mean ± standard deviation or number (percent). Abbreviations: PCAC - Pittsburgh Cardiac Arrest Category; GWR - Grey 
matter to white matter ratio of Hounsfield units.
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