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Abstract

Risk-adjustment is critical to the functioning of regulated health insurance markets. To date, 

estimation and evaluation of a risk-adjustment model has been based on statistical rather than 

economic objective functions. We develop a framework where the objective of risk-adjustment is 

to minimize the efficiency loss from service-level distortions due to adverse selection, and we use 

the framework to develop a welfare-grounded method for estimating risk-adjustment weights. We 

show that when the number of risk adjustor variables exceeds the number of decisions plans make 

about service allocations, incentives for service-level distortion can always be eliminated via a 

constrained least-squares regression. When the number of plan service-level allocation decisions 

exceeds the number of risk-adjusters, the optimal weights can be found by an OLS regression on a 

straightforward transformation of the data. We illustrate this method with the data used to estimate 

risk-adjustment payment weights in the Netherlands (N=16.5 million).

1. Introduction

Health insurance markets are vulnerable to market failures related to adverse selection 

(Einav, Finkelstein, and Cullen 2010; Glazer and McGuire 2000; Geruso and Layton 2017). 

Risk adjustment (aka “risk equalization”) of payments to health plans is a widely used 

policy intended to counter adverse selection problems and is a fundamental component of 

the regulated private health insurance markets that serve as the basis of national health 

policy in Germany, Israel, the Netherlands, Switzerland, and other countries, as well as of 

key sectors in the U.S., including the Medicare Advantage program for Medicare 

beneficiaries and the state-level Marketplaces created by the Affordable Care Act (2010). 

Each of these individual health insurance markets includes a payment system, which, 

depending on the country, adjusts plan payments to age, gender, geographic area, past or 

current medical diagnoses, past spending, and other characteristics of enrollees.

To date, the payment weights attached to the different individual characteristics included in a 

risk adjustment model used in a given health plan payment system have been generated 
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using regression techniques, typically via an individual-level ordinary least squares (OLS) 

regression of total annual health care spending on the variables included in the model (risk 

adjustors). The payment to the insurer for a given enrollee is then effectively set equal to the 

predicted value the regression model generates for that enrollee. Such a method chooses 

payment weights that maximize the statistical “fit” (i.e., the R-squared) of plan revenues to 

costs at the individual level. However, as has been pointed out in previous work, it is unclear 

whether a statistical measure such as the R-squared is the “correct” objective function to 

maximize given the goals of either the regulator or the social planner (Glazer and McGuire 

2002).

Indeed, empirical studies evaluating different risk adjustment models imply that maximizing 

the R-squared is not the regulator’s objective. Such studies tend to emphasize group-level fit 

of plan revenues to costs rather than individual-level fit. For example, Kautter et al. (2014) 

first estimated the federal model proposed for the U.S. Marketplaces using OLS, and then 

evaluated it by creating subgroups of individuals with particular characteristics and 

simulating average fit for each of these groups. McGuire et al. (2014) performed a similar 

evaluation of the Marketplace model. With data from the Netherlands, Van Kleef et al. 

(2016) first estimated a risk adjustment model, and then merged survey information with 

health claims to check fit for various groups of people, including those with low physical 

self-rated health status and those reporting chronic conditions. As far as we know, however, 

no explicit underlying framework describes insurer behavior and market efficiency 

underlying the evaluation methods and measures used in these papers and by researchers and 

policymakers generally. In other words, there has been no explicit objective function for risk 

adjustment design.

In this paper we attempt to develop a framework to describe how insurer behavior and 

market efficiency relate to the risk adjustment payments and the payment weights that 

underlie them. We then use this framework to derive an objective function that can be used 

to estimate risk adjustment payment weights that produce efficient market outcomes 

according to our framework. We start with Glazer and McGuire (2002) which uses a model 

of the behavior of a profit-maximizing insurer to (1) study incentives faced by insurers to 

inefficiently ration certain services and (2) develop a method for estimating risk adjustment 

weights that neutralize these incentives when the number of services for which plans make 

separate decisions in terms of allocation is smaller than the number of variables in the risk 

adjustment model. Our key innovations are to (1) move beyond incentives and solve for the 

equilibrium service-level allocations insurers will offer in a symmetric competitive 

equilibrium under a given plan payment system and (2) extend the model to relate these 

(distorted) allocations (as well as the payment system that generated them) to consumer 

utility and social welfare. These innovations allow us to make a number of novel and 

important advances. First, we are able to transparently show the set of (implausible) 

conditions under which the R-squared is the correct objective function to be maximized by 

the regulator. Second, we are able to relax some (but not all) of the implausible assumptions 

underlying the use of the R-squared as an objective function and derive a new, more welfare-

grounded objective function. Even under our new objective function implausible 

assumptions remain in order to make the function computationally feasible under standard 

data constraints. However, we still believe this objective function represents a major 
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contribution because under our framework these assumptions are now both transparent and 

fewer in number than when using the R-squared, representing a first step toward truly 

“optimal” risk adjustment. Finally, we are able to develop simple, general, and easy-to-

implement methods for deriving risk adjustment payment weights that maximize our new 

objective function, even in the entirely plausible, but previously unexplored, case where the 

number of services exceeds the number of risk adjusters.

These methods can effectively replace the conventional two-step “estimate-then-evaluate” 

approach, where policymakers and researchers first estimate payment weights for a given 

risk adjustment model using a statistical objective function and then second evaluate the 

weights using a different set of criteria, with a relatively simple one-step “estimate-to-

maximize-the-objective” approach, where the regulator’s true objective function is used to 

estimate the payment weights. For any risk adjustment model for which the number of risk 

adjustor variables exceeds the number of decisions plans make about service allocations, a 

simple constrained regression of healthcare spending on the risk adjustors in the model 

produces the payment weights that maximize the objective function. In other, typically more 

common cases, where the risk adjustment model includes fewer risk adjustors than services, 

there is typically no set of payment weights that fully eliminate incentives for service-level 

distortion. Under these circumstances the optimal (second-best) payment weights can be 

found via a standard OLS regression on a transformation of the data and the risk adjustors. 

Thus, while our methods are not perfect and still rely on strong assumptions, they improve 

on both the status quo and the more sophisticated methods developed in the academic 

literature (i.e., Glazer and McGuire 2002) while maintaining the simplicity and minimal 

computational burden of those methods.

In addition to providing a new approach for deriving risk adjustment payment weights, our 

analysis turns up a fundamental issue in the economics of health plan payment. In order to 

construct measures of welfare loss, we need, unsurprisingly, a characterization of the 

efficient allocation of health care services with which to compare the equilibrium allocation. 

In the theoretical parts of the paper, we distinguish between efficient and equilibrium 

allocations, but when it comes to the empirical application, we need additional assumptions 

about an efficient allocation to apply our welfare metrics. Some of these assumptions are 

implicit in existing methods for estimating risk adjustment weights, and there is value to 

making them explicit. Specifically, we model our initial empirical analyses on the presently 

used assumption that does not distinguish between the efficient and the observed allocations. 

Later in the paper we propose an alternative approach to defining efficiency that makes use 

of researcher knowledge of areas of pre-existing distortions of health care services in the 

market.

Following our modeling exercise in Section 3, we use data from the Netherlands to illustrate 

the use of our welfare-grounded measure of payment system performance (the value of the 

new objective function given a set of payment weights) and to demonstrate the 

implementation of our new optimal payment weight estimation methods. We note that this is 

an illustrative demonstration and not an attempt to make any inferences about the Dutch 

health insurance market which involves more complexity (e.g. finer relevant service 

categories) than that which is captured in our data. The data for our empirical demonstration, 

Layton et al. Page 3

J Health Econ. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



described in Section 4, are the actual data used to estimate risk adjustment payment weights 

in the Netherlands, and include multiple years of information on medical care use and 

individual demographic and risk characteristics, on the full 16.5 million Dutch population. 

We replicate the payment weights used in the 138-variable risk adjustment model in place 

for 2015, and compare these weights, and the welfare implications of the weights, to the 

weights produced by our efficiency loss-minimizing approach. For estimation, we take the 

set of risk adjustor variables as given, using the actual risk adjustors employed in the Dutch 

model.1 In Section 4 we also describe how we operationalize assumptions about the level at 

which plans make allocation decisions, how (expected) individual spending relates to total 

spending on a service, and how we interpret the data in terms of efficiency of the current 

system.

Empirical methods to estimate risk adjustment payment weights and results are described in 

Section 5 (and an associated appendix). We describe model fit, equilibrium service-level 

allocations, and overall welfare loss according to our framework associated with the weights 

generated by the current methods and the weights generated by the welfare-maximizing 

methods. Section 6 contains what we believe to be a promising extension suggested by our 

model of insurer behavior and market efficiency. As noted above, an estimation approach 

based on efficiency calls for an explicit statement of what is meant by efficiency and how 

this is manifest in the data. In Sections 4 and 5 we assume that the levels of spending 

observed in the data are efficient, which we show to be a key implicit assumption underlying 

the use of the R-squared as the objective function in the existing risk adjustment literature. 

In Section 6 we modify our procedure for deriving payment weights by allowing the 

regulator or researcher to specify an efficient level of spending for each service for each 

individual that differs from what is observed in the data. The idea is very simple and 

operational. Suppose a public authority believes that plans currently (and in the data) spend 

too much on inpatient care for certain disease groups and too little on office-based care for 

the same conditions. Our analysis shows that the public authority can use the risk adjustment 

component of a health plan payment system to achieve its desired goals for spending targets 

due to the explicit link between risk adjustment payment weights and service-level spending 

revealed under our framework. First, the regulator should modify individual-level spending 

in the data to be equal to the desired level. Then, the regulator should use modified spending, 

rather than actual spending, to estimate the payment weights. In simple terms, we propose 

that regulators risk adjust for the system they want, not the system they’ve got. We introduce 

this idea and leave its further development for future research. Section 7 comments on some 

additional directions for research and policy.

1A risk adjustment model involves choice of risk-adjustor variables as well as the weights to be assigned to these variables. Economic 
criteria, primarily “game-ability” and clinical criteria, primarily “meaningfulness,” are typically considered together with incremental 
contributions to statistical fit when selecting the risk adjustor variables. See Kautter (2014) for discussion of this in the case of 
Marketplace risk adjustment, and Kronick and Welch (2014) and Geruso and Layton (2015) for empirical studies of “upcoding” in the 
case of Medicare Advantage plans. The loss functions we propose here could substitute for the use of “fit” in the decision about 
variables to include.
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2. Objectives for Health Plan Payment

Although risk-adjustment researchers acknowledge that risk adjustment is intended to reduce 

incentives for risk selection, in practice, statistical, not economic, criteria are used in 

estimation of payment weights used in risk adjustment models. In the two-step “estimate-

then-evaluate” method of risk adjustment design referred to above, when done for policy, the 

first, “estimate” step is universally an OLS regression of individual-level spending on a set 

of risk-adjustor variables, with the estimated coefficients becoming the payment weights 

used in the risk adjustment component of the health plan payment system.2 Researchers 

have studied alternatives to maximizing R-squared with an OLS regression, with the most 

commonly proposed alternative being minimizing the Mean Absolute Prediction Error 

(MAPE) which applies a linear rather than a quadratic loss function to the actual-prediction 

gaps.3 Arguments for the less-common alternatives to R-squared, however, are generally 

made on statistical rather than economic grounds, and none, so far as we know, have been 

put into practice.4

Research papers concerned with the economics of health insurance markets and the 

inefficiencies due to adverse selection tend not to draw explicit implications for risk 

adjustment payment weights.5 In one strand of this literature, building on earlier work by 

Cutler and Reber (1998), Einav and Finkelstein and colleagues study the adverse selection 

inefficiency which results from sicker individuals tending to join more generous plans.6 This 

type of adverse selection forces the more generous plans to increase premiums in order to 

cover costs of the sicker enrollees, not just to cover costs due to more generous benefits. 

Consequently, the premium for the generous plan is “too high” and too few consumers 

choose it.

One option to deal with this form of adverse selection is risk rating of the premiums faced 

by enrollees, for example, charging sick people their full incremental costs (Bundorf, Levin, 

Mahoney, 2012). From a social point of view, however, this is often regarded as undesirable 

due to objectives related to affordability of health plans for the sick, equity in health plan 

pricing, and a desire to provide insurance against the “reclassification risk” of deteriorating 

health status (Handel, Hendel, and Whinston 2015). It is common in regulated competition 

policy settings to strictly limit allowed premium groups, sometimes even requiring each plan 

to charge only a single premium, as is true in the Dutch national health insurance system, 

and the Medicare Advantage program.7

2There are some minor qualifications to this statement: coefficients in some of the Dutch risk adjustment models are constrained to 
avoid negative predicted spending. In the U.S., the Hierarchical Cost Categories (HCC)-based estimates, some coefficients are 
changed, post-estimation, so that clinical “hierarchies” are maintained.
3For example, see Van Barneveld et al. (2001) and Ettner et al., (2001). Van Veen et al. (2015) document that the MAPE is the second-
most commonly used fit criterion in the research literature on risk adjustment. Note, however, that while the MAPE is often used in the 
“evaluate” step, it is not used for payment weight estimation, again implying that estimation methods maximize an objective function 
that differs from true policy objectives.
4Van Veen et al. (2015) summarize fit measures used in this literature, and document that the vast majority of papers use an R-squared 
statistic (or closely related) measure of fit of the risk adjustment model and/or predictive ratios with predicted values from the risk 
adjustment model in the numerator.
5A more extensive review of the literature on the inefficiency in health insurance due to adverse selection is contained in Layton, Ellis 
and McGuire (2015). That paper also proposes efficiency metrics for comparing health plan payment systems. It does not, however, 
use these metrics to derive estimators for risk adjustment payment weights.
6Einav and Finkelstein (2011); Einav, Finkelstein and Levin (2010); Einav, Finkelstein and Cullen (2010).
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Another option is risk adjustment. By transferring funds to the more generous plan when 

sicker individuals enroll, risk adjustment dampens the component of plan premium 

differences due to selection. The optimal policy transfers a set amount of funding to the 

more generous plan so as to offset the selection effect on the incremental premium. Given 

that the number of risk adjustor variables exceeds the number of plans and given that the risk 

composition of health plans is known when the risk adjustment model is estimated, there are 

innumerable combinations of risk adjustment payment weights that would succeed in 

effecting this transfer. A well-chosen simple subsidy set in advance for the generous plan 

would solve the problem – risk adjustment is not required to solve the Einav-Finkelstein 

sorting inefficiency.8

The second strand of the literature on adverse selection, and the one relevant here, is 

concerned with plans distorting their products to attract/deter individuals who are financial 

winners/losers, an activity referred to as “cream-skimming,” “service-level selection,” or 

“indirect selection.” Even when nominal coverage is regulated, plans, through network 

structure, provider payment, managed care algorithms and other measures, can favor or 

disfavor certain population groups or service areas. Theoretical papers in health economics 

have “solved” this problem in simple cases by finding payment weights to correct for 

selection incentives.9 We make two advances in relation to previous research. First, we 

specify an explicit loss function that can guide choice of payment weights when selection 

incentives cannot be fully eliminated. Second, our solution can be implemented empirically 

in a real-world risk adjustment payment context.

In this paper we follow the second strand of the literature on adverse selection – the strand 

where risk adjustment is necessary to improve efficiency – and assume the goal of risk 

adjustment is to incentivize plans towards first-best service-level allocations. A crucial 

difference with the existing literature is that the one-step method proposed in this paper 

supplies the efficiency loss function to be minimized to find the second-best risk adjustment 

payment weights when the first best is infeasible.

3. Risk Adjustment Payment Weights to Minimize the Welfare Loss from 

Health Plan Payments

In the presence of premium regulation, incentives related to selection may lead health plans 

to distort their contracts away from the efficient allocation of health care services, 

undermining welfare. Our framework for measuring welfare loss due to inefficient 

allocations of health care spending is based on costs and benefits of health care. Welfare loss 

is driven by the gap between the efficient allocation to an individual and the allocation the 

individual would receive in equilibrium under a given health plan payment system. The 

measure thus applies to inefficiencies related to the services offered by health plans, and not 

7In the Netherlands premiums must be the same for all consumers opting for the same health plan. There are some options for rebates 
(see Section 4), but these are community-rated as well. Explicit risk-rating is not allowed.
8The risk adjustment fix must only be partial (second-best) because no single premium is capable of capturing the efficient set of 
incremental premiums necessary for fully efficient sorting among plan types. Risk adjustment (or subsidies) cannot overcome 
inefficiencies in plan choice due to limited premium categories. Bundorf, Levin and Mahoney (2012) and Geruso (2016) treat this 
issue in detail. See also Layton, Ellis and McGuire (2015).
9See Glazer and McGuire (2000, 2002).
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to inefficiencies related to advertising or other plan actions distinct from the distortion of the 

health insurance contract itself and the benefits and costs of health care under that contract.
10 Throughout this paper, we maintain the assumption that health plans compete in a market.
11 We also assume that consumer participation in the market is mandatory.12

After presenting the welfare metric, we start with a (very) special case of plan behavior 

where a plan can decide how much of a homogenous service, “health care,” to provide to 

each enrollee. While this case is clearly overly simplistic – health care is more than one 

product – and unrealistic – plans cannot set spending person-by-person – it provides 

intuition for how we approach the problem. Furthermore, this case establishes a set of 

assumptions under which a conventional OLS regression provides the efficient risk 

adjustment payment weights. We then consider the more general (and realistic) case where a 

plan can make spending decisions at the service level.

3.1 Welfare Loss

We envision a setting in which health insurance contracts are annual and plan premiums and 

demand-side cost sharing are regulated, and do not vary with the alternative risk adjustment 

payment weights we consider. This setting exactly matches many state Medicaid Managed 

Care markets in the U.S., and it comes close to fitting the Dutch national health insurance 

system, U.S. Marketplaces and other health insurance markets in which premiums and 

demand-side cost sharing are also highly regulated.13 The efficiency issue we focus on is the 

allocation of resources across various services provided to plan enrollees as a function of the 

risk adjustment payments.

In our model, each plan offers an annual health insurance contract consisting of N vectors of 

individual-level annual allocations of health care services measured in dollars. Individuals 

are indexed by i, with i = 1,…, N, and services by s, with s =1, …, S. A contract or 

allocation specifies the spending each person receives for each service:

X =

x11 ⋯ x1S
⋮ ⋱ ⋮

xN1 ⋯ xNS

10Lorenz (2015) considers how profit/loss incentives to plans affect wasteful marketing activities, and how these incentives can be 
ameliorated by risk adjustment.
11We acknowledge that the markets in which risk adjustment is used are unlikely to exhibit perfect competition in practice. We 
therefore justify our assumption of perfect competition by pointing out that the bulk of the previous economic literature on adverse 
selection and health plan payment also makes this assumption (see Glazer and McGuire (2000); Einav, Finkelstein, and Cullen (2010); 
and Bundorf, Levin, and Mahoney (2012). We extend that literature while maintaining its basic framework.
12This assumption holds in the Netherlands, the market we study in the empirical application below. It also largely holds in the U.S. 
Medicaid Managed Care and Medicare Advantage markets. It may not hold, however, in the U.S. Health Insurance Marketplaces 
created by the ACA. In these markets, service-level distortions may be caused by (extensive margin) selection into the market as well 
as (intensive margin) selection across plans within the market. While risk adjustment is meant to address distortions caused by 
intensive margin selection, it is not meant to address distortions caused by extensive margin selection. Therefore, the methods we 
develop below for estimating risk adjustment payment weights may not be appropriate for markets where extensive margin selection is 
relevant.
13Risk adjustment can affect the differences in premiums across plans by mitigating any adverse selection contribution to plan 
premium differences. In a symmetric equilibrium in the health plan market, as we will assume below, this effect will not be present in 
equilibrium.
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Let xi = ∑sxis be the sum of spending across all services for person i. Individuals value 

service s according to vis(xis), with vis′ (xis) > 0 and vis′′(xis) < 0.14,15 Let xis
∗  be the first-best 

level of xis such that vis' xis* = 1. Also let xis
e  be the level of xis the insurer provides individual 

i in equilibrium, partly in response to the risk-adjusted plan payment. Thus, xi
e = ∑sxis

e  and

Xe =

x11
e ⋯ x1S

e

⋮ ⋱ ⋮

xN1
e ⋯ xNS

e

Net welfare for individual i under equilibrium contract Xe is then Wi Xe = ∑svis xis
e − xi

e. 

Define ΔWi(X
e) = ∑svis xis

e − xi
e − ∑svis xis* − xi*  as the welfare loss for individual i in 

equilibrium relative to the first-best. To make ΔW operational, we take a (second-order) 

Taylor-series expansion of ΔWi(X
e) around xis*  to yield

ΔWi(Xe) ≈ 1
2 s

vis′′ xis* xis
e − xis*

2
(1)

We can then sum the welfare loss described by (1) across the entire population as follows:

ΔW(Xe) ≈ 1
2 i s

vis′′ xis* xis
e − xis*

2
(2)

Approximation (2) describes the total welfare loss given the equilibrium contract Xe. 

Welfare loss is proportional to the weighted sum of squared differences between the 

equilibrium and the first-best allocations where the weight is the second-derivative of the 

individual’s valuation function of service s at the optimal level of service s for person i.

Equilibrium spending, as described by Xe, results from plan decisions to maximize profit. 

Consumers choose plans on the basis of plan choices about services, but consumers do not 

choose the services directly. Plan choices of the elements of Xe are a function of the 

payments received by the plan. The payment system generates payment ri for person i, 

14When we later take a second-order Taylor series expansion of the welfare loss, we also (implicitly) assume that the third derivative 
of the value function (the rate at which the rate at which an individual’s valuation of a service changes), vis′′′ xis , is small or equal to 

zero for all services. We also assume that i’s valuation of a given service s is unaffected by the amount of service s′ allocated to i. In 

other words, we assume that there are no cross-derivatives in the valuation of each service s, 
vis′ (xis)

xis′
= 0, in order to eliminate the 

“cross terms” of the Taylor-series expansion. These assumptions would hold under a standard quadratic utility function such as:

vis = ais + bisxis + cisxis
2 . In practice, this would rule out things like drugs being valued only if accompanied by primary care office 

visits where a patient is instructed on how to use the drugs, or vice versa.
15We also implicitly assume here that there are no income effects, a common assumption in this literature.
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determined by the payment weights, βk, on the k risk adjustors, zk, included in the risk 

adjustment model taken as given. Thus, ri =  ∑kβkzik, where zik is the value of risk adjustor 

k for individual i. In this section we explain how we solve for each element of Xe, xis
e , 

(noting the necessary assumptions) given the risk adjustment model and its associated 

payment weights, using conditions of profit maximization and market equilibrium. In 

Section 4 below we explain how we use observed patterns of spending to define the optimal 

spending targets.

3.2 One Homogenous Service, Perfect Foresight and Individual-level Discrimination: an 
OLS Regression Selects Optimal Payment Weights

The risk-adjustment payment weights βk that minimize (2) depend on what actions plans 

take; specifically, on the level at which health plans can set spending allocations. We begin 

with the unrealistic but instructive case in which there is one homogeneous service, 

consumers have perfect foresight (i.e. know exactly which line of the contract applies to 

them) and plans can discriminate at the individual level (e.g. shift a dollar of spending from 

individual 1 to individual 2). Specifically, assume a health plan can set the level of “health 

care spending” for each individual, xi. In this case, competition forces each insurer to profit 

maximize at the zero-profit contract person-by-person, so in equilibrium, xi
e = ri. Applying 

the welfare metric (2),

ΔW(Xe) = 1
2 i

vi′′ xi* ri − xi*
2 (3)

If we substitute ri =  ∑kβkzik we get

ΔW(Xe) = 1
2 i

vi′′ xi*
k

βkzik − xi*
2

(4)

It is straightforward to see that the coefficient estimates from a weighted least squares 

regression of xi
∗ on zik, βk, where the individual-level regression weights are given by vi′′ xi* , 

minimize (4) and, thus, minimize the welfare loss. Furthermore, if we make the assumption 

that vi′′ xi*  is the same for all individuals, (4) further reduces so that the risk adjustment 

payment weights estimated from an (unweighted) ordinary least squares regression 

minimize the welfare loss.16 This implies that with one service, individual-level 

discrimination, and constant vi′′ xi*  across individuals the coefficients that minimize the sum 

of squared errors minimize welfare loss. These coefficients can be found with an OLS 

16The constant vi′′(xi*) means, in effect, that the welfare loss of the squared deviation from efficiency is weighted equally across 

individuals. With one service, a constant second derivative assumes that the slope of the demand curve around the optimal spending is 
the same for each person. In the case of the quadratic utility function presented above, cis =cs would be a sufficient condition for this 
assumption to hold.
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regression in which xi
∗ is the dependent variable. This also implies that under these 

assumptions the R-squared statistic is an appropriate metric for assessing the performance of 

a risk adjustment model and its associated payment weights. While some of these 

assumptions may seem implausible, it is not our goal here to defend a set of assumptions; 

rather, our goal is to make transparent the set of assumptions, plausible or implausible, 

underlying the use of the R-squared as an objective function, and to then relax some of the 

less plausible assumptions while leaving others in place to take a first step toward a more 

realistic and welfare-founded objective function. We proceed by relaxing the “one 

homogeneous service” and “individual-level” discrimination assumptions, as well as the 

assumption that consumers have perfect foresight, and then derive a more general loss 

function and methods for minimizing that function.

3.3 Risk Adjustment and Equilibrium Service-Level Plan Allocations

This section relaxes some assumptions from Section 3.2. Specifically, we make the more 

realistic assumption that plans discriminate over a variety of services rather than at the 

individual level and that consumers no longer have perfect foresight (i.e., they no longer 

know with certainty which line of the contract applies to them). Discrimination at the service 

level is general in that plans might have a large or a small number of service decisions to 

make. It is also general in the sense that a “service” could be defined not only on the basis of 

the type of health care (e.g., office-based care) but also on the basis of diagnosis within that 

type, or even on the basis of groups of patients, such as those living in a certain city, or on 

the basis of providers, such as mental health specialists or a particular specialty cancer 

hospital. Thus, a “service” could in principle be office-based care by nephrologists in 

Rotterdam. The right definition of “service” in a particular application depends on what 

level of discrimination is open to plans, where discrimination may be limited by regulation, 

information constraints, and the set of tools available to insurers. For example, if a plan can 

increase/decrease funding to primary care, but is unable to differentiate between pediatric 

and adult primary care in its contracts, then although pediatric and adult care are distinct 

services in a clinical sense, they can be aggregated and funding considered as one “decision” 

in terms of efficiency and the effect of risk adjustment on equilibrium spending.

Plan decisions about resource allocation at the service level flow down to services received 

by individuals. As with the special case described in Section 3.2, here we want to again 

describe the individual-by-service allocations, xis
e , an insurer will offer in a competitive 

equilibrium as a function of the risk adjustment payments. Finding the equilibrium 

allocations as a function of the risk adjustment payments requires characterization of a 

plan’s profit maximizing decision with respect to spending on particular services. Profit 

maximization takes into account the costs of spending on a particular service as well as the 

net revenue of members that are expected to enroll in a plan as a function of service-level 

spending (i.e., selection). Some services attract members whose revenue exceeds their cost, 

incentivizing the plan to fund these services more generously. Other services attract 

members whose cost exceeds their revenue, incentivizing the plan to tighten rationing for 

these services. We maintain the assumption that competition enforces zero profits among 

plans.17
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We also relax the assumption that consumers have perfect foresight of their healthcare 

spending under a particular contract. Given the spending decisions of all other plans, the 

probability that a particular consumer enrolls in plan j is a function of the individual’s 

valuation of the services the consumer expects to be provided by plan j. We assume that an 

individual’s valuation of a plan depends additively on the sum of the valuations of the s 

services, vi(X) = ∑svis(Xis), where the “hat” indicates this is spending they expect to receive. 

Then, the probability of membership in plan j is Pri
j(vi(X)). In the empirical applications 

below, consumers’ predictions about what they receive will be service-specific and based on 

patterns of prior spending. We assume equilibrium in the health plan market is symmetric so 

that in equilibrium all plans make the same decision about service-level spending and each 

plan has the same probability of enrolling each individual.18 Symmetry allows us to 

suppress plan j superscripts.19

In terms of the effect of a plan’s decision about spending on service s, we distinguish 

between what a consumer actually gets, which determines plan costs, profitability of 

individuals, and welfare, and what a consumer expects to get, which determines the 

consumer’s enrollment decisions. We introduce a parameter σis ∑sσis = 1 , that defines the 

share of total spending on service s allocated to individual i such that xis = σisxs where xs is 

the total spending on service s across all consumers, xs = ∑ixis. However, enrollment 

decisions do not depend on what consumers actually get (xis) but on what they expect to get 

(xis). To deal with this we introduce a second parameter, σis(∑sσis = 1), that defines the share 

of total spending on service s that individual i expects to be allocated to her such that 

xis = σisxs.
20 To maintain tractability, we make the assumption that σis and σis are fixed 

given all relevant insurer choices about total service-level allocations, xs. We note that σis is 

not determined by the insurer nor by equilibrium, but is instead set by outside forces. The 

assumption that σis is fixed effectively implies that an increase in the overall level of 

spending on a service is distributed across consumers according to the observed distribution 

of service-level spending across consumers. Therefore, if an insurer increases mental health 

spending by $100, then most of the additional $100 will go to consumers who were already 

consuming high levels of mental health care and none of the $100 will go to consumers who 

were previously consuming no mental health care. This assumption seems reasonable in a 

world where contracts consist of service-specific coinsurance rates that do not vary across 

17Zero profitability could involve a small fixed cost for each enrollee and a small marginal profit for each enrollee to cover the cost. 
This component of any payment for an enrollee will not affect selection incentives.
18The service-level selection case raises the possibility of a competitive equilibrium with separating contracts of the type proposed by 
Rothschild and Stiglitz (1976). When the equilibrium is separating, risk adjustment moves the contracts closer together, toward the 
pooling equilibrium, and “optimal” risk adjustment in the presence of service-level selection leads to pooling (Glazer and McGuire, 
2000).
19While this assumption may seem restrictive, it is common in the economics literature on service-level selection and provides 
tractability to our model that allows us to derive empirically implementable methods of estimating the optimal risk adjustment 
payment weights. See Frank, Glazer, and McGuire (2000); Glazer and McGuire (2002); Ellis and McGuire (2007); Carey (2017); 
Layton, Ellis and McGuire (2015).
20This framework is similar to the “shadow price approach” introduced by Frank, Glazer, and McGuire (2000). Under the shadow 
price approach, the insurer sets a shadow price for each service which combines with an individual’s demand-response to determine 
the quantity of a service the individual consumes under the contract. Here, the insurer sets the overall quantity of a service, and then 
that service is distributed according to σis, which is assumed to reflect the consumer’s preferences. While the two frameworks differ 
somewhat, as shown below the empirical implementations of the frameworks are very similar.
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individuals, as a decrease in the coinsurance rate for a particular service will (1) lead to 

higher overall spending on the service which will (2) likely be distributed across consumers 

according to the prior distribution of spending on that service across consumers. This would 

also be consistent with a contract that consists of a provider network that varies at the 

service level but not the service-by-individual level. We also note that while fixed, σis is in 

reality flexible in that the researcher can define services in whatever way she believes 

insurers can manipulate spending. For example, if the researcher believes that the insurer can 

use some tool to modify mental health spending for males independently from females, then 

the researcher can just define mental health services for males and mental health services for 

females as separate services.

Given these assumptions, profits for a representative plan are

π =
i

Pri vi X ri − xi (5)

Plans choose xs to maximize profits leading to S first-order conditions of the form

i
Pri′ vi X vis′ σis ri − xi −

i
Pri vi X σis = 0 (6)

Denote αis = Pri′ vi X vis′ σis, so that the S equations become

i
αis ri − xi =  1J (7)

where J is the number of plans competing in the market.21 Equation (7) implies that under 

profit maximization, the following S-1 equations will hold. With service s′ as a numeraire, 

for s ≠ s′:

i
αis ri − xi =

i
αis′ ri − xi (8)

Following Glazer and McGuire (2002) and subsequent papers in the literature on service-

level selection, we assume a symmetric equilibrium so that (8) holds for each 

(representative) plan. In addition, competition implies that plans make zero profit in 

equilibrium:

21We get the 
1
J  because of the symmetric equilibrium.
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i
ri =

i
xi (9)

The S equations in (8) and (9) describe equilibrium as a function of the risk adjusted plan 

payment.

Substituting in for the risk adjusted payment, the S-1 service equations can be re-written as 

follows:

β1
i

zi1 αi1 − αis + β2
i

zi2 αi1 − αis + ⋯ + βK
i

ziK αi1 − αis = x1
e

i
σi1 αi1 − αis

+ x2
e

i
σi2 αi1 − αis + ⋯ + xS

e
i

σiS αi1 − αis

(8′)

And the budget constraint can be written as:

i k
βkzik =

s
xs

e (9′)

These S equations can, in turn, be re-written as matrices as follows: 

izi1 αi1 − αi2 izi2 αi1 − αi2 ⋯ iziK αi1 − αi2

izi1 αi1 − αi3 izi2 αi1 − αi3 ⋯ igziK αi1 − αi3
⋮ ⋮ ⋱ ⋮

izi1 αi1 − αiS izi2 αi1 − αiS ⋯ iziK αi1 − αiS

izi1 izi2 ⋯ iziK

β1
β2
⋮

βK

iσi1 αi1 − αi2 iσi2 αi1 − αi2 ⋯ iσiS αi1 − αi2

iσi1 αi1 − αi3 igσi2 αi1 − αi3 ⋯ iσiS αi1 − αi3
⋮ ⋮ ⋱ ⋮

iσi1 αi1 − αiS iσi2 αi1 − αiS ⋯ iσiS αi1 − αiS
1 1 ⋯ 1

x1
e

x2
e

⋮
xS

e

 Or, in matrix notation,

Ωβ = ΓXe

Note that given knowledge of the α terms, all elements of Ω and Γ are either known or found 

in the data. For now, we will leave the α terms general. In the empirical section of the paper, 

we will make a set of assumptions that allows us to determine the αs from the data. 

Multiplying both sides by Γ−1, the equilibrium values of the group-by-service-level 

allocations can be expressed as a linear function of β and data:
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Γ−1Ωβ = Xe (10)

The left hand side of this equality will be an S × 1 vector where each element of the vector 

consists of the summation of the product of each risk adjustment payment weight times the 

element determined by the multiplication of Γ−1 and Ω. This summation can be written as:

xs
e =

k
βkzsk

where zsk is the transformed value of zk determined by the matrix product. This implies that 

the individual-level equilibrium allocation of service s for individual i can be written as

xis
e = σisxs

e = σis k
βkzsk

This can be plugged into Equation (2) above to produce an expression for the welfare loss as 

a function of the risk adjustment payment weights, βk:

ΔW(Xi
e) = 1

2 i s
vis′′ σis

k
βkzsk − xis*

2
(11)

The task is to find the risk adjustment coefficients βk that minimize (11). As noted earlier, 

the solution can take one of two forms depending on whether the number of services on 

which a plan makes decisions, S, is greater or less than the number of risk adjustors, K. We 

proceed by describing each case.

3.4 More Risk Adjustors than Services: Constrained Least-Squares Hits First Best

In this case, the regulator’s goal for risk adjustment is to induce insurers to offer the levels of 

service-level spending that result in optimal individual allocations. Thus, the regulator 

desires to set the payment weights, βk, so that in equilibrium plans provide service level 

allocations xs
∗ that satisfy xi* = ∑sxis* = ∑sσisxis* .22

Equilibrium conditions (8) and (9) can be regarded as a system of S unknowns, xs, with K 

variables, βk. When S < K, the βks that lead plans to set service allocations efficiently in 

equilibrium can be characterized by substituting xi* = ∑sxis* = ∑sσisxs* and ri =  ∑sβkzik into 

(8) and (9) yielding the following S equations:

22Note that the definition of σis implies that if the insurer sets the overall service-level allocation equal to xs
∗, the individual-by-

service-level allocations will also be optimally set, i.e. equal to xis
∗ .
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i
αis k

βkzik −
s

σisxs* =
i

αis′ k
βkzik −

s
σisxs*

i k
βkzik =

i
xi* (12)

If the αis terms are independent from the overall service-level allocations xs (as they would 

be if the marginal consumer valuation of services is constant in the level of the service, 

which we assume is true in the empirical illustration below), then the S equations in (12) are 

linear in the payment weights, βk.23 Payment weights that satisfy (12) ensure that when 

plans can only discriminate on the basis of services the first-best allocations will be offered 

in equilibrium. If there are more risk adjustors than there are services (i.e., K>S), there will 

be an infinite number of combinations of payment weights that satisfy (12).

One practical method for choosing payment weights to satisfy the S equations is a 

constrained least-squares regression, fitting a linear regression of xi
∗ on zik, with the S 

equations in (12) as constraints. This is first-best because the constraints are satisfied. The 

solution also has the property of maximizing fit at the person level subject to the first-best 

allocation. Finally, least-squares guarantees the zero-profit constraint is satisfied. We apply 

this method in Section 5. Note that in this case, the full set of α terms are necessary for 

estimation of the optimal risk adjustment payment weights. Given estimates of all the 

components of α (Pri′ vi x , vis′ , and σis), estimation is straightforward. In the absence of 

estimates of these parameters, assumptions are necessary. We discuss in Section 4.6.1 the 

specific assumptions we use to operationalize α in our setting. Again, we leave σis and σis
general for now, and we will introduce the assumptions we use to produce values for σis and 

σis when we apply this method in Section 5.24

3.5 More Services than Risk Adjustors: OLS with Transformed Data Minimizes Welfare 
Loss

When there are more services than risk adjustors, the regulator’s objective is unchanged: to 

induce insurers to offer the service-level allocations that minimize welfare loss. When K < 

S, however, the regulator has too few “instruments” to achieve first-best allocations, 

implying that typically only a “second-best” set of allocations can be achieved and some 

welfare loss will remain. This presents a more difficult problem in that the regulator needs to 

23Independence is necessary only to make the αis terms independent of the risk adjustment payment weights, βk. If they are not 
independent, then the equations may not be linear in βk, and alternative methods may be necessary to ensure the constraints are 
satisfied.
24Note that we have effectively assumed that the regulator is not only capable of knowing the optimal spending allocations but that 
she also has ex ante perfect information about how payments will map to allocations. Effectively, we assume that the regulator 
perfectly knows the consequences of modifications to any dimension of the health insurance contract that is assumed to be modifiable 
by the insurer. While this assumption may seem strong, it is present in most counterfactual simulations in the economics literature, 
though, admittedly, here we are assuming perfect knowledge over more contract dimensions than in most other papers.
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choose the risk adjustment payment weights that efficiently trade off the welfare losses 

across services.

Equation (11) shows the way forward. It is straightforward to see that if the αis terms are 

independent of the overall service-level allocations xs (as they would be if the marginal 

consumer valuation of services is constant in the level of the service, which we assume is 

true in the empirical illustration below) a weighted least squares regression at the individual-

by-service (is) level of xis
∗  on σiszsk where the individual-by-service regression weights are 

equal to vis′′ will generate the set of risk adjustment payment weights that minimize ΔW(Xe).

25 Making the simplifying assumption that vis′′(xis
∗ ) = v′′ for all is (the same simplifying 

assumption made when using R-squared as the objective function) so that (11) can be 

rewritten as ΔW(Xe) = 1
2v′′∑i ∑s (σis∑kβkzsk − xis*)2, the welfare-minimizing risk adjustment 

payment weights can be estimated by unweighted rather than weighted least squares. Thus, 

for the S>K case, with a straightforward transformation of the data, researchers or regulators 

can estimate the efficiency-maximizing risk adjustment payment weights using either 

weighted or unweighted least squares. If the αis terms are not independent of the overall 

service-level allocations xs, then other optimization methods can be used to find the set of 

payment weights that minimize the welfare loss function.

Policymakers can often “choose” the number of risk adjustor variables so as to exceed the 

number of service dimensions (in order to make first-best payment weights feasible). We 

consider the S<K to be the more relevant case, at least in a setting like the Netherlands with 

an extensive set of risk-adjustor variables. The S<K case is the one we implement for 

purposes of illustration with data from the Netherlands.

3.6 Imperfect Information about Xis*

So far, we have implicitly assumed that the Regulator knows the optimal spending 

allocations,xis
∗ . As shown in Section 3.2, this assumption is also implicit in the use of the R-

squared as an objective function when estimating risk adjustment payment weights. Here, 

we briefly discuss the possibility that the Regulator only observes xis
∗  with error, leaving a 

more thorough examination of this assumption for Section 6 and a separate paper (Bergquist 

et al. 2018).

Let ẍis = xis* + ϵis be the level of spending for person i on service s assumed by the Regulator 

to be the optimal level of spending for the person-service combination. ϵis represents the 

“error” in the Regulator’s assumed optimal level of spending. In the S>K case, our proposed 

method involves using xis
∗  as the dependent variable in an OLS regression where the 

independent variable is the transformed service-level spending,σiszsk. This implies that error 

in xis
∗  is analogous to measurement error in the dependent variable. Thus, as long as the error 

25Independence of αis and xs is necessary for zsk to not be a function of the equilibrium service-level allocation xs.
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is “classic” measurement error with E[ϵ] = 0 and with ϵ being orthogonal to variation in the 

transformed service-level spending, this type of error will not bias the risk adjustment 

payment weights (though it will make the estimates of the weights less precise). If the error 

is not classic and is in some way correlated with the transformed service-level spending, 

σiszsk, bias will be introduced to the risk adjustment payment weights, with the extent of the 

bias related to the strength of the correlation. It is conceivable that in some cases the bias 

could be severe enough that the welfare loss under the risk adjustment payment weights 

estimated by OLS on the non-transformed data (the conventional method) would be closer to 

the optimal weights than the weights estimated by the method described in Section 3.5.

4. Demonstration of Methods Using Data from the Netherlands

National health insurance in the Netherlands has been operating in roughly its current form 

since 2006. Health insurance is mandatory for all residents and based on principles of 

regulated competition. In 2015 about 60 plans were offered by about 25 insurers who 

compete on price and quality within a regulatory framework intended to promote individual 

affordability of health plans both for the healthy and the chronically ill. The regulatory 

framework includes a standard benefit package, premium rating restrictions, and risk 

adjustment. Open enrollment provisions ensure that plans accept every applicant.

Risk adjustment is used in the Dutch system in an attempt to weaken insurer selection 

incentives. The risk adjustment model provides a prediction of total annual spending for 

each individual; the risk adjustment payment from the health insurance fund to a health plan 

for an enrollee then equals that enrollee’s predicted spending minus a fixed amount (set by 

the government) that must be covered by the enrollee’s premium together with the loading 

fee.

In our empirical application we first replicate the Dutch risk adjustment model and its 

associated payment weights for 2015 and characterize the incentives for service-level 

distortion. Because we employ an explicit model of plan behavior as a function of the risk 

adjustment payment weights, we can derive the gaps between first-best and equilibrium 

spending that would occur under profit maximization and perfect competition. We next 

apply a constrained least-squares regression to find the payment weights that eliminate these 

gaps (and the welfare loss). In the remainder of this section, we briefly describe the Dutch 

risk adjustment model of 2015, the data available for this study, the way we operationalize 

“services,” how we interpret the data in relation to the first-best allocations (xis
∗ ), how 

individuals’ (expected) spending on a service relates to the total spending on that service (σis 

and σis) and the measures we use to evaluate alternative risk adjustment models. We note 

throughout that this is an illustrative demonstration based on the data currently used for risk 

adjustment in the Netherlands. Effective application of our measures and methods should 

likely take place with many more than the ten services we use here.

4.1 Risk Adjustment Model 2015

The basic Dutch risk adjustment model of 2015 includes risk adjustors based on age, gender, 

region, source of income, socioeconomic status, and health indicators. The latter include 
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disease groups based on prior utilization of specific pharmaceuticals (PCGs), diagnostic 

groups based on prior utilization of inpatient and outpatient hospital care (DCGs), groups 

based on prior utilization of durable medical equipment (DMECGs) and groups based on 

high health care spending in multiple prior years (MYHCGs). In total, the 2015 model 

contains 138 indicator variables, i.e., 40 classes for an interaction between age and gender, 

10 regions, 19 classes for an interaction between age and source of income, 12 classes for an 

interaction between age and socioeconomic status, 25 PCGs, 16 DCGs, five DMECGs, 

seven MYHCGs, and four classes for an interaction between age and a dummy indicating 

whether PCG+DCG+DMECG+MYHCG>=1. The model is “prospective” in that the data for 

the health indicators (i.e. PCG, DCG, DMECG, and MYHCG) comes from years prior to the 

payment year. In practice, the payment weights for these 138 indicators are estimated by a 

least-squares regression of medical spending on the 138 dummy variables.26 Predicted 

spending for an enrollee equals the sum of the product of the dummy-values and the 

regression coefficients for the 138 indicators. We note that in spite of years of research and 

model refinement, Van Kleef et al. (2017) have shown that the current risk adjustment model 

undercompensates insurers for particular groups of unhealthy consumers and 

overcompensates them for some healthy groups, leaving incentives for risk selection.

4.2 Data

To stay close to the actual Dutch health plan payment system we use exactly the same data 

as was used by the regulator for estimation of the risk adjustment model of 2015. These data 

include individual-level health care spending in 2012 and risk indicators for the Dutch 

population of approximately 16.5 million. The three-year time lag between the data and the 

year to which the risk adjustment model applies is due to the fact that when risk adjustment 

payment weights for year t are estimated (i.e. late summer t-1) t-3 is the most recent year for 

which complete spending information is available. The indicators for age/gender, region, 

source of income and socioeconomic status are based on information from 2012, whereas 

the PCGs, DCGs, DMECGs and MYHCGs are based on information from 2009–2011. 

Table 1 provides the population frequency of some risk indicators and the distribution of 

medical spending. Overall average medical spending equals 1,848 Euro per person per year. 

Not surprisingly, average spending is relatively high for people age 65 or older, those 

receiving a disability benefit, people living at an address with more than 15 residents (a 

proxy for being in an institution for long-term care) and those in a PCG, DCG, DMECG 

and/or MYHCG. Nearly 23 percent of the population is classified by at least one PCG, 

DCG, DMECG or MYHCG.

4.3 Defining Services

In the Dutch data used for risk adjustment medical spending is categorized according to ten 

types of medical services, with information on spending per person shown in Table 2.27 

26The basic risk adjustment model of 2015 applies to about 83 percent of the total medical spending under the national health 
insurance. For the remaining 17 percent, including spending on mental health care and home care, supplemental risk adjustment 
models are applied. The empirical application here is for the basic model only. For technical details on the Dutch risk adjustment 
model, see Eijkenaar et al. (2014).
27This categorization is given in the data available to estimate risk adjustment payment weights. Data used by the Ministry of Health 
for this purpose is a compilation of data feeds from health plans via an intermediary institution that is required to submit data in a 
certain format.
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Hospital care (which includes both facility and professional in-hospital costs) is by far the 

largest category at 61 percent, followed by pharmaceuticals (14 percent) and primary care (8 

percent). Not surprisingly, for each service the distribution of spending is skewed. While 

these ten services are plausible levels of discrimination available to plans through their 

provider contracting decisions, ultimately, practical implementation of our methods would 

likely require a more refined categorization when health plans are believed to discriminate 

within some of these categories. For example, the large category of hospital care might be 

disaggregated into particular services, such as care for patients with cancer or kidney failure, 

and other services. However, in the data available to us, we are unable to disaggregate 

services beyond the ten shown in Table 2.

4.4 Defining First-Best Spending

The empirical methods for deriving the optimal risk adjustment payment weights described 

in Section 3 call for specification of the efficient spending levels, denoted xis* . The data 

available, however, are the actual spending patterns by person and service under the risk 

adjustment model and corresponding weights applicable at the time, which may or may not 

be regarded as optimal. Before we discuss our approach to this issue, it is worth noting that 

the statistics and simulations applied in existing approaches to risk adjustment implicitly 

treat the existing patterns in the data as the target for desired spending.28

Highlighting the implicit assumption about the optimality of current spending patterns 

exposes a logical problem with risk adjustment methodology. If the current spending pattern 

is optimal, and it is also an equilibrium response to the current payment system, why change 

the payment system? This status-quo logic would lead to the obviously incorrect conclusion 

that the payment system should never be changed.

If the optimal service-level allocations, xs*, differ from the observed service-level allocations, 

we propose that before estimating or evaluating a risk adjustment model we should first alter 

the observed allocations so that they reflect the desired rather than the observed distribution 

of spending across services. 29 In other words, we propose that the risk adjustment model be 

estimated using a regression of a modified spending variable on the risk adjuster variables. 

Suppose, for example, that there were a consensus that the health care system should spend 

more on primary care for persons with a set of chronic illnesses, possibly with the idea of 

offsetting some institutional care.

28The commonly used R-squared measures “fit” of a payment model in relation to the data on spending used to estimate the model. A 
“predictive ratio” computed to check revenues in relation to costs for groups of interest uses observed spending as the standard against 
which to assess payments for a particular group. See, for example, Kautter et al. 2014) for evaluation of the U.S. federal risk 
adjustment model or Van Kleef et al. (2016) for evaluation of the Dutch model according to fit against the existing data and over and 
undercompensation by group against costs observed in the data.
29Sometimes, risk adjustment models are estimated using data on spending patterns from a different setting than the market where the 
risk adjustment policy will be implemented. This is true in the U.S. for Medicare and Medicaid, where risk adjustment models are 
estimated using data from the fee-for-service programs but risk adjusted payments are used only in the Medicare Advantage or 
Medicaid managed care programs, and in the state and federal Health Insurance Marketplaces, where models are estimated using data 
from employer-sponsored insurance (ESI) plans but risk adjusted payments are used to pay Marketplace plans. In these settings, it 
could be the case that the observed spending patterns are both optimal and in equilibrium in the context where the data come from 
(FFS or ESI), but they represent optimal but not equilibrium spending in the context where risk adjustment is being used. In these 
particular settings, optimal spending may be similar while equilibrium spending is different due to the fact that selection incentives 
affect equilibrium allocations in the Marketplaces, Medicare Advantage, and Medicaid Managed Care but not in FFS or ESI.
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For the basic empirical analyses in Section 5 we follow conventional practice of risk 

adjustment and estimate the payment weights based on the data “as-is,” thereby invoking the 

implicit assumption that the observed patterns of spending are, in fact, optimal. In Section 6 

below, we illustrate how this assumption can be relaxed by estimating payment weights “for 

the system we want rather than the system we have” by transforming the data before 

estimation of the payment weights.

4.5 Assumptions Regarding σis and σis

In order to apply the methods described in Section 3 to derive the optimal set of risk 

adjustment payment weights in the case where S<K, we need to know the values of σis and 

σis. As discussed above, we assume that σis is fixed across all relevant service-level 

allocations and use the observed share in the data to determine what an individual actually 

gets in terms of a share of the total service-level allocation:σis =
xis
xs

, ∑iσis = 1. For example, 

if we observe that an individual receives $100 of diabetes-related care in the claims data and 

that the total allocation of diabetes-related care across all individuals is $10,000, then 

σis = 100
10, 000 = 0.01. We then assume that if the plan chooses to increase spending on 

diabetes-related care overall by $5,000 to $15,000, the individual’s allocation of diabetes 

care will increase in proportion such that her new allocation of diabetes-related care will be 

xis = σis xs = (0.01)(15,000) = $150. Thus, given σis we can determine what an individual 

gets as a function of the plan’s decision about the total service-level allocation, xs.

In addition to the actual allocation of spending across individuals, our method also requires 

each consumer’s expected allocation,xis. In the empirical illustration, we determine xis in 

two steps. First, we estimate a prediction equation for each service, under the assumption 

that individuals can use information about past spending to predict future spending on a 

service.30 In these prediction equations we require the sum of predicted spending to be equal 

to the sum of observed spending, i.e.∑ixis = xs. The empirical model for xis then determines 

the fixed allocation rule that distributes plan-level spending on service s, xs, to individuals. 

Specifically, define σis =
xis
xs

 at the observed spending levels. In a second step, with σis fixed, 

we can state how xis varies with different levels of xs.31 For example, if the individual from 

the previous example expects $500 spending on diabetes-related care then 

σis = 500
10, 000 = 0.05. If the plan chooses to increase spending on diabetes-related care overall 

by $5,000 to $15,000, the individual’s expected allocation of diabetes care will increase in 

30We explain how we model xis in more detail in Section 5.
31Under this conceptualization of expected spending, we assume that each consumer observes the full set of ex post spending 
allocations assigned to each individual and service. Thus, they observe the true allocation rules, σis, including those that apply to other 
individuals. The uncertainty enters because each individual does not know ex ante which line of the contract X from Section 3.1, and 
thus which allocation rule, applies to them (i.e., they don’t know which i they are). Under the specification of σis outlined above, we 

effectively group individuals into “types” based on demographics and prior spending, and we assume that an individual’s expectation 
of the allocation they will receive under contract X is the rational expectation, or the average of the allocations assigned to individuals 
of the same type.
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proportion such that xis = σisxs = (0.05)(15, 000) = $750. Thus, given a σis we can determine 

what an individual expects to get as a function of the plan’s decision about the total service-

level allocation, xs.

4.6 Measures

We use several measures to compare conventional risk adjustment and the constrained 

regression method outlined in Section 3.4. These measures follow from our model of plan 

profit maximization and are thus model-driven and motivated by efficiency. We also report 

the conventional R-squared measure for each set of risk adjustment payment weights. 

Finally, in Appendix A we report measures of selection incentives (predictability and 

predictiveness) from the prior literature on service-level selection.

4.6.1 Equilibrium vs. Optimal Spending Allocations—Our model of consumer and 

plan behavior allows us to go beyond the incentives to the implications for equilibrium 

spending, and to compare this to the spending patterns specified as optimal, but this requires 

an additional assumption (this assumption is also necessary for implementing our proposed 

estimation method). Recall that (10) provides the equilibrium service-level allocations as a 

linear function of the risk adjustment payment weights, βk:

Γ−1Ωβ = Xe

As discussed in Section 3, this expression shows that given knowledge of αis equilibrium 

service-level allocations can be calculated from the data. Recall that αis = Pri′(vi(X))vis′ σis. In 

order to illustrate the implementation of the methods we describe above, we make the 

assumption that αis = Pri′(vi(X))vis′ σis = γσis for all individuals and services.32 This 

assumption effectively implies that consumer-choice of health plans is driven entirely by the 

expected total healthcare spending allocation the consumer expects to receive under a given 

plan. While this assumption may be inconsistent with some evidence from behavioral 

economics that consumers make poor health plan choices (Abaluck and Gruber 2011; 

Ericson and Sydnor 2017), absent empirical estimates of the relationship between demand 

for a health plan and service-specific allocations, this seems like the most reasonable 

assumption we could make.33 It is also consistent with the prior literature on service-level 

distortions to health insurance contracts (Frank, Glazer, and McGuire 2000). We also point 

out that even if consumer health plan choices are biased in some way, as long as choices are 

at least partially determined by service-level allocations, service-level distortions will exist, 

even if they are not as severe as our model may suggest.

It is straightforward to show that given this assumption, αis reduces to γσis. Because γ is 

constant across individuals and services, it can be pulled out of the summation on each side 

of equation (8‘) and cancels out, allowing us to replace αis with σis in the matrices Γ and Ω. 

33We also note that heterogeneity in risk aversion that varies with consumer use of services could also break the connection between 
demand and expected healthcare spending (Cutler, Finkelstein, and McGarry 2008).
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Given our assumption that σis =
xis
xs

, where xis and xs are the expected individual-by-service- 

and actual service-level allocations, the elements of Γ−1 and Ω are now all observable in the 

data except for xis. In order to determine xis we estimated an individual0-level least-squares 

regression with actual spending for service s as the dependent variable and the following two 

independent variables: prior-year spending on service s (continuously) and the sum of prior-

year spending on all services other than s (also continuously).34,35 Finally, for a given 

payment system the full vector of risk adjustment weights, β, is also known. This implies 

that for any payment system, we can calculate the full vector of service-level equilibrium 

allocations, xe.

In Section 5, we form the matrices, Γ−1, Ω, and β, and apply them to solve for xe. We 

compare those allocations for different sets of payment weights to illustrate how patterns of 

equilibrium service-level spending compare across different risk adjustment models.

4.6.2 Welfare Loss Metric—The expression for welfare loss in (11) provides a natural 

metric to use to compare risk adjustment models:

ΔW(Xi
e) = 1

2 i s
vis′′ σis

k
βkzsk − xis*

2
(11)

If we assume that vis′′ = v′′ for all i and s (the same assumption necessary for interpretation of 

an R-squared as a welfare measure in the context of individual-level discrimination) this can 

be re-written as

ΔW Xi
e = 1

2v′′
i s

σis k
βkzsk − xis*

2

Note that this measure relies on the solution for equilibrium spending by service derived in 

the previous section. Expression (11) for welfare loss is non-positive with a lower bound that 

depends on the covered population, the number of services, as well as the properties of the 

risk adjustment system in terms of risk adjustor variables and their coefficients.36 In order to 

compare alternative risk adjustment payment weights, and to put our measure in a form 

analogous to the familiar R-squared statistic, we measure the efficiency properties of a given 

set of payment weights in terms of the improvement gained over a payment system with no 

risk adjustment, that is, when a plan is paid the simple population average for each member. 

34One exception was “obstetrics and maternity care” for which we estimated a model with just age and gender as independent 
variables since (not surprisingly) prior-year spending had hardly any explanatory power.
35We found the following R-squared values for the ten regression models: 0.11 for hospital care, 0.71 for pharmaceuticals, 0.19 for 
primary care, 0.47 for durable medical equipment, 0.02 for geriatric physical therapy, 0.03 for dental care, 0.38 for paramedical care, 
0.16 for sick transport, 0.09 for obstetrics and maternity care and 0.01 for other care. Additional explanatory variables (such as the 
morbidity classes in the Dutch risk adjustment model) did not result in substantial improvement of explanatory power.
36The expression is non-positive due to v′′ < 0. As we define it, welfare “loss” is a negative number and expresses the difference 
between equilibrium welfare and optimal welfare.
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This case is identical to the case where there is only one risk adjustment variable z1i which is 

equal to 1 for all individuals. In this case the matrix Ω becomes a S-by-1 vector:

Ωnora =

i
zi1 σi1 − σi2

i
zi1 σi1 − σi3

⋮

i
zi1 σi1 − σiS

i
zi1

Thus, the equilibrium service-level allocations, xe,nora, can be expressed as

Γ−1Ωnoraβnora = Xe, nora

Now, define zs
nora such that xs

e,nora = zs
nora. Then, we can write the welfare loss for the “no 

risk adjustment” case as

ΔW Xi
e = 1

2v′′
i s

σiszs
nora − xis*

2

We thus define our loss measure as:

ϕ = 1 −
1
2v′′∑i ∑s σis∑kβkzsk − xis*

2

1
2v′′∑i ∑s σiszs

nora − xis*
2 = 1 −

∑i ∑s σis∑kβkzsk − xis*
2

∑i ∑s σiszs
nora − xis*

2

Note that ϕ mimics an R-squared statistic. ϕ will equal zero in the extreme case of no risk 

adjustment and it will equal one when the welfare loss is fully eliminated.

5. Empirical Methods and Results

This section presents our illustrative demonstration of the potential practical implementation 

of the methods and measures derived in Sections 3 and 4. We estimate two sets of payment 

weights using data on the entire Dutch population (N=16.5 million). For each set of weights, 

we use the same set of 138 risk adjustor variables but different estimation methods. The first 

payment weight estimates replicate the conventional estimation method used to derive 

payment weights in the Dutch risk adjustment model for 2015: a least-squares regression 

(OLS) of total spending on the 138 risk indicators plus an intercept.37 The coefficient 

estimates for this model can be found in the Appendix.

37The only difference between the model we estimate here and the Dutch risk adjustment model is that the actual model has no 
intercept and includes a set of constraints to make sure that for age/gender categories the product of payment weights and prevalence 
equals the average per person spending in the population and that for each of the other seven sets of risk adjuster variables (regional 
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The second set of weights is estimated using the methods we developed in Section 3. Recall 

that when plans discriminate at the service level, a set of equilibrium equations describes 

plan allocation decisions as a function of the risk adjustment payment weights. Substituting 

the efficient level of spending in these equations transforms them into a system of S 

equations and K unknowns. Because S < K, there exist an infinite number of solutions to this 

system of equations, all maximizing the social welfare function. We use a constrained OLS 

regression to find the solution that maximizes the conventional R-squared conditional on 

achieving the optimal service-level allocations.38 Coefficient estimates for this model can 

also be found in the Appendix.

The two sets of payment weights differ in important and interesting ways. Compared to the 

base set of weights, the constrained regression method leads to an increase of mean 

predicted spending for people 65 or older and those in a PCG, DCG, DMECG and/or 

MYHCG (i.e., those with a chronic condition) and a decrease of mean predicted spending 

for the complementary groups. This can be seen in Figure 1.39 The figure shows the 

payments for 5 stratifications of the population. For each stratification, the average payment 

for the healthier of the two groups is shown on the left while the average payment for the 

sicker group is shown on the right. The figure shows average payments under the 

conventional Dutch risk adjustment model (orange bars) and the constrained model (blue 

bars). Generally, the constrained model tends to encourage more spending on sick people. 

This is consistent with Glazer and McGuire’s (2000) analytic result that an optimal risk 

adjustment model will “overpay” (i.e. pay more than average spending) for individuals with 

a “sick signal” and underpay for individuals with a “healthy” signal. Nonetheless, the 

correlation in individual-level predicted spending between the base model and the 

constrained model is high at 0.94. This suggests that at least in this illustrative application, 

shifting payments to sicker people in the way suggested by the constrained regression would 

not be a highly disruptive change with respect to the flow of funds across insurers.

Table 3 compares the two models in terms of R-squared and our welfare loss measure ϕ. 

Compared to the base model, the constrained model led to a drop in R-squared, which of 

course must be true since the constraints will bind. However, as we showed in Section 3, the 

R-squared is the appropriate measure of payment system performance only in a very special 

case. In terms of our alternative welfare loss measure, the constrained model completely 

eliminates the welfare loss remaining from the base model. This also must be true, given that 

the estimation method used for the constrained model can fully solve the resource allocation 

problem with only ten service-level spending targets and 138 risk adjustor variables. From 

these results we can conclude that if the ten services we use here to illustrate these methods 

categories, SES categories, categories based on source of income, PCGs, DCGs, DMECGs and MYHCGs) this product also equals 
zero.
38Though this solution requires an additional data step to construct the constraints, the constrained regression itself can be easily 
implemented in SAS, using the RESTRICT option in PROC REG. In order to use equation (8) as a constraint on the estimated betas 

(8) can be split into the following components:∑kβk∑iσiszis − ∑iσis∑sσisxs
∗ = ∑kβk∑iσis′zis − ∑iσis′∑sσisxs

∗. All 

components (except for the betas) can be found by making initial passes through the data. See Van Kleef et al. (2017) for more 
explanation of the construction of the constraints. In fact, this constraint equalizes the selection index (Figure 3) across services.
39For all empirical measures presented in this paper, we calculated confidence intervals using bootstrapping. Since the confidence 
intervals turned out to be extremely tight we decided not to present them.
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and measures were the relevant dimensions on which plans could discriminate, the 

constrained model clearly outperforms the base model.

5.1 Equilibrium Service-level Allocations Implied by Plan Profit Maximization

In addition to a measure of overall payment system performance, our model from Section 3 

allows us to derive equilibrium service-level allocations implied by the different payment 

models. We interpret our predictions about service-level allocations under the alternative set 

of risk adjustment payment weights as indicating the general pattern of mismatches between 

equilibrium spending and optimal spending as well as the direction in which profit 

maximization is pushing health plans to distort service-level spending. The gaps between the 

“optimal” and “equilibrium” allocations we present below should be interpreted as rough 

measures of the force of the distortionary incentive.

Figure 2 presents the equilibrium service-level allocations under the two payment models, 

the conventional Dutch model (blue bars) and the constrained model (orange bars) along 

with the optimal level of service-level spending (purple bars), which, as we explained above, 

we assume in this section to be equal to the spending observed in the data. All allocations 

are presented as a percent of total spending, which is constrained to be constant across 

payment models. The purple bars show that the optimal (and observed) level of spending on 

primary care is less than 10%. Our model, however, implies that under the conventional 

Dutch risk adjustment model, plans have incentives to drive the level of spending on primary 

care above 30%. This suggests that plans are incentivized to distort substantial resources 

toward primary care and away from other services as they compete for low-cost (and 

profitable) enrollees.40 This distortion is largely due to the fact that an individual’s use of 

primary care does not predict unprofitability as strongly as their use of hospital care (as 

shown in Figure 3 below). On the other hand, our model implies that the conventional Dutch 

risk adjustment model pushes plans to allocate “too few” resources to hospital care.41

Finally, Figure 2 confirms that equilibrium service-level allocations are moved to match the 

optimal allocations by the constrained risk adjustment model. As expected, the orange and 

purple bars are equal, indicating that the constrained model completely solves the service-

level distortion problem by inducing plans to offer the optimal allocations of spending across 

services.

40One might note that this finding does not seem to hold in real health insurance markets. Typically, policymakers and researchers 
argue that primary care is underprovided relative to other services. We make two comments regarding this seeming discrepancy. First, 
our model obviously paints an incomplete picture of an insurer’s choice of service-level allocations. While our model captures insurer 
incentives related to adverse selection appropriately, it does not account for incentives related to other factors such as the short-term 
nature of many insurance contracts. Second, much of the discussion of the underprovision of primary care comes from the United 
States, where the vast majority of individuals get health insurance either through their employer or through the FFS Medicare 
program. In both of these settings, insurers face no or very weak selection incentives, implying that the implications of our model 
should not be compared to empirical facts in those settings. Instead, our model should have implications for insurer behavior in 
markets where selection is more prevalent such as the Medicare Advantage program, the state and federal Health Insurance 
Marketplaces, and state Medicaid Managed Care programs.
41Despite the fact that the conventional Dutch model leaves plans with incentives to distort service-level spending away from optimal 
levels, in results not presented here, we find that the Dutch model significantly improves insurer incentives when compared to the case 
of no risk adjustment. In that extreme case, distortionary insurer incentives are very strong relative to under the conventional Dutch 
model.
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In Appendix A we present results on other measures of insurer selection incentives, namely 

the predictability and predictiveness introduced by Ellis and McGuire (2007). Again, these 

measures indicate that the constrained model represents a marked improvement over the 

base model in terms of providing insurers with appropriate incentives for offering efficient 

insurance contracts.

6. Redefining Efficient Spending for Purposes of Risk Adjustment: An 

Illustration

As discussed in Section 4.4, to implement our methods and measures we assume that the 

patterns of spending observed in the data represent the optimal levels of spending. This 

assumption, implicit in much of the risk adjustment literature, is problematic for a variety of 

reasons described above. We now illustrate how this assumption can be (and sometimes is) 

relaxed, more thoroughly examining this question in a separate paper (Bergquist et al. 2018).
42

In the Netherlands, regulators already effectively partially relax this assumption. Prior to 

estimating the payment weights for the Dutch risk adjustment model, data for risk 

adjustment are modified in order to more accurately capture trends in costs. Risk adjustment 

payment weights in the Netherlands for year t are estimated prospectively using medical 

spending from year t-3 as the dependent variable. Anticipated changes in spending levels 

between year t-3 and year t (e.g. due to changes in demography), are taken into account by a 

linear correction of the original service-level spending from t-3. This linear correction may 

vary across services at the discretion of the analyst. In addition, the data are corrected for 

changes in the benefit package between year t-3 and year t, which could mean, for instance, 

that if a certain drug was introduced in year t-1, spending on that drug is added to the risk 

adjustment data. These modifications are an example of regulators re-defining first-best 

optimal spending, xis* , to account for differences between observed spending patterns and the 

spending patterns regulators believe to be optimal.

In addition to altering the data because of changes in the benefit package or in anticipation 

of exogenous trends in service use and cost, the data might also be modified prior to 

estimation to improve the performance of the health care system. Suppose that for reasons 

unrelated to adverse selection the regulator believes that overall levels of primary care are 

inefficiently low relative to overall levels of hospital care.43 In this setting, the regulator 

would want to move money from the overall hospital care allocation to the overall primary 

care allocation, allowing the individual-specific allocation rules to determine how this shift 

in funds affects each individual. Our insight is that the regulator can encourage this 

reallocation of funds via the risk adjustment model when using the constrained regression 

42In addition to the discussion here about ways to make ad hoc adjustments to the data, there is an alternative way to modify this 
assumption. In this paper, we follow the previous literature by assuming observed spending is optimal and using a model to derive 
equilibrium spending. Alternatively, it may be possible (and perhaps more reasonable) to assume that observed spending is 
equilibrium spending and use a model to derive optimal spending. Exploring this possibility is beyond the scope of this paper but may 
represent a promising area for future research.
43For example, primary care may be underprovided if health insurance contracts tend to be short-term and consumers switch contracts 
often.
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model. Instead of estimating the risk adjustment payment weights using observed spending 

levels as the outcome variable, the regulator can alter the overall levels of spending for each 

service, use the allocation rules (the σiss) to map from the overall service-level allocations to 

individual spending, and then use the modified individual spending variable in a constrained 

regression to estimate the payment weights. Such an adjustment would result in higher 

payments for groups of individuals more likely to use primary care at the cost of payments 

for groups more likely to use hospital care.

As a demonstration we implement this method by shifting 900 million Euros (3% of total 

spending) from hospital care to primary care and then re-estimating the constrained 

regression model. Figure 3 shows how this affects payments for various groups of 

individuals. The figure presents the same five stratifications of the population from Figure 1. 

The bars represent the change in payments for each group with the red bars showing changes 

in payments for the sicker group and the green bars showing changes in payments for the 

healthier group for each stratification. Note that in all cases, when the data are adjusted to 

shift resources from hospital care to primary care, payments for the sick go down while 

payments for the healthy go up. This type of shift in payments implies a shift in incentives, 

where plans will provide more primary care and less hospital care in order to attract more of 

the healthy groups who are now more profitable than before.

Under estimation methods that take into account health plans’ decisions on health care 

spending, transforming the data prior to deriving risk adjustment payment weights would 

likely improve incentives for resource allocation. When paired with a constrained regression, 

transformation of data can ensure that the payment model provides incentives to supply 

exactly the desired pattern of care in equilibrium.

7. Discussion

In this paper, we have developed new estimation methods and performance measures for risk 

adjustment models that generate optimal payment weights according to an explicit economic 

model of insurer behavior and social welfare as alternatives to the conventional estimation 

methods and measures that generate payments based on statistical criteria. We assumed the 

objective is efficiency of resource allocation across medical services. We showed that in this 

context the only case in which the R-squared is the “right” welfare measure is when 1) 

health care is regarded as one homogeneous service and 2) health plans can discriminate at 

the individual level. Since these assumptions are unrealistic, we have proposed a more 

general welfare measure and alternative estimation methods. Specifically, we have proposed 

to replace the two-step “estimate-then-evaluate” approach in risk adjustment for health plan 

payment with a one-step “estimate-to-maximize-the-objective” approach. Since this one-step 

approach forces regulators to make their objective regarding health plan payment explicit, 

we believe it is less vulnerable to subjective judgments about the “performance” of a risk 

adjustment model than the conventional two-step approach.

Our methodology is an application of the principal-agent or mechanism design approach 

using concepts of economic equilibrium and efficiency. In order to evaluate the performance 

of a policy tool like health plan payment, it is necessary to anticipate how it will affect 
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market behavior. This calls for a model relating the risk adjusted payments to economic 

equilibrium. We have adapted approaches from the literature on health plan and consumer 

behavior to construct a workable model relating the payment weights to equilibrium service 

allocations decided by plans. Our paper proposes what we argue is a plausible and practical 

metric for welfare loss. Our methods for deriving payment weights minimize welfare loss 

subject to equilibrium behavior by plans in an empirically operational fashion. In each of the 

two major cases, when the number of available risk adjustors exceeds or falls short of the 

number of potential plan actions, we show that the solution to this problem can be found 

using relatively straightforward variants on the conventional least-squares regression: the 

addition of constraints to the regression model in the case of few plan actions and a 

straightforward transformation of the data in the case of many plan actions.

We have empirically illustrated the case where the number of adjustors exceeds the number 

of plan actions (few plan actions), using data from the Netherlands. Our empirical results are 

consistent with earlier papers, indicating that under our economic model the Dutch risk 

adjustment model (of 2015) and its corresponding weights leave substantial incentives for 

service-level distortions. We show that by adding a set of linear constraints when estimating 

the payment weights of the Dutch risk adjustment model, incentives for service-level 

distortion can be eliminated so that the risk adjustment payments push plans toward first-

best service allocations.

The solution illustrated in our empirical illustration applies to any setting where the number 

of adjustors exceeds the number of plan actions. This may be the case for the Dutch risk 

adjustment model, the German risk adjustment model and the U.S. federal risk adjustment 

models used in Medicare Advantage and the Marketplaces, which all include over 100 risk 

adjustor variables. When the number of relevant services exceeds the number of risk adjustor 

variables this first-best allocation cannot be achieved. In that case the risk adjustment 

payment weights that minimize, but do not necessarily eliminate, the welfare loss can be 

found by a linear regression of first-best allocations, xis* , on the K-by-S transformed z 

variables (risk adjustors), ∑sσiszgsk, derived in our analytical framework. Switzerland, with 

its simple risk adjustment model is a potential candidate for implementing this method 

empirically.

In a setting where regulators are concerned with service-level distortions the concepts of 

“equilibrium” and “efficiency” applied in this paper are powerful tools not only for 

estimating risk adjustment payment weights, but also for guiding the choice of risk-adjustor 

variables to include in the payment model. Presently, risk adjustor variables are included or 

excluded based on considerations of clinical meaningfulness, game-ability and contribution 

to fit (Kautter et al., 2014). There are several reasons to reconsider the specification of a 

risk-adjustment model. Recent research and policy experience implies that, in the US at 

least, “upcoding” clinically related variables is a serious and costly issue (Geruso and 

Layton, 2015). Furthermore, application of alternative estimation techniques based on 

machine learning indicates that statistical fit as measured by R-squared may be achieved 

with many fewer variables than presently in use (Rose, 2016). Our analyses add an 

additional reason to reconsider the specification. With a measure of efficiency in hand, the 
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contribution of an additional set of risk adjustors can be evaluated in relation to its ability to 

improve economic efficiency. A simple and direct way to do this would be to supplement the 

R-squared fit criteria with the welfare loss criteria in evaluating the contribution of a set of 

variables. The contribution of a new set of variables will depend on the present set of 

adjustors and how well they do in directing incentives for each of the services plans can 

discriminate on. Our framework implies that – in the case of service-level distortion – risk 

adjustors should not be evaluated only by the extent to which they reduce “under/

overcompensations”, but also by their potential to reduce variation in predictability and 

predictiveness across services. The stronger a risk adjustor variable correlates with spending 

on a particular service, the larger will be its potential to mitigate the welfare loss from 

allocative inefficiency.

When it comes to a practical implementation of our approach it will be important for 

regulators to carefully reconsider the assumptions made in this paper. More specifically, the 

beliefs on how health plans and consumers act in a particular setting may differ from those 

adopted here. For example, this paper assumes plans set service spending in response to 

incentives, whereas there might be other limits on service-level spending, such as when 

regulators require a minimum level of access to health care. Additionally, our economic 

model is based on assumptions of perfect competition, profit-maximization, a fixed premium 

and symmetric equilibrium. For several reasons these assumptions may deviate from how the 

market operates in a particular setting. Furthermore, the regulator’s objective may differ 

from the one adopted here. In the Netherlands, for instance, the regulator is not only 

concerned with service-level distortions but also with other types of selection actions such as 

specific marketing strategies of health plans. Finally, regulators are concerned with 

objectives other than economic efficiency, including “fairness” (i.e. premium differences 

between plans should not reflect differences in health risk), and “quality of care” (e.g. the 

risk adjustment payments should encourage plans to invest in the quality of care for 

particular treatments), among others. A formal incorporation of these objectives within a 

single social welfare function is probably unrealistic. Despite all of the additional objectives, 

however, regulators still use the R-squared as the primary metric for payment model 

performance, a measure which also ignores these other objectives and, as we’ve shown here, 

has the additional disadvantage that it does not accurately assess the objective it is intended 

to capture: incentives for service-level selection. Thus, a metric for economic efficiency with 

respect to service-level allocations of health care spending, such as one constructed here, can 

still be useful as a way to help policymakers assess the performance of different payment 

models.
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Appendix A:: Predictability and Predictiveness

A profit-maximizing health plan has incentives to skimp on services that are predictable by 

enrollees and predictive of financial losses. As shown by Ellis and McGuire (2007), profit 

maximization implies that the combination of measures of predictability and predictiveness 

is a summary index for service-level selection incentives. Our model produces a similar 

result. Equation (12) shows that an insurer’s incentive to ration a service is described by the 

following expression:

i
σis k

βkzik −
s

σisxs*

This expression can be written as:

i

σis
σis

σis k
βkzik −

s
σisxs*

This expression can be divided into two components, one representing “predictability” and 

the other representing “predictiveness.” We operationalize these two components as follows. 

The first component, 
σis
σis

, captures the “predictability” of the service. Predictability measures 

how well consumers can anticipate what spending, xis, they will receive, given the plan’s 

decision about total spending on a service, xs. We follow Ellis and McGuire (2007) and use 

the correlation between σis and σis as a measure of predictability:

Predictabilitys = Corr(σis, σis)

Recall that σis represents the portion of the total spending allocated to service s that is 

actually allocated to individual i.σis, on the other hand, represents the portion of the total 

spending allocated to service s that individual i expects to be allocated to her. Given these 

definitions of σis and σis, this correlation is the correlation between an individual’s actual 

spending on a service and her expected spending on that service. If the service is strongly 

(weakly) predictable, the correlation between actual and expected spending will be high 

(low). Predictability does not vary across payment systems since the expected portion of 

spending (σis) as well as the actual portion of spending (σis) spending are independent of 

payment weights (see Section 3).

The second component, σis(∑kβkzik − ∑sσisxs*), represents the “predictiveness” of the 

service. Predictiveness is related to the correlation between an individual’s share of spending 

on a service and her overall profitability to the plan. We find it more intuitive to depict 

predictiveness in terms of the correlation of service-level spending with losses rather than 

profits. We again follow Ellis and McGuire (2007) and use this correlation as our measure of 

predictiveness:
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Predictivenesss = Corr σis,
s

σisxs* −
k

βkzik

In contrast to predictability, predictiveness will vary as risk adjustment payment weights 

vary. We report our measures of predictability and predictiveness in order to show that our 

new method for estimating risk adjustment payment weights improves performance not only 

on the metrics derived from our model but also on metrics derived in the previous literature 

on service-level selection.

Figure A1 shows our measures of predictability (left panel) and predictiveness (right panel) 

for each of the ten services. As described above, predictability is calculated as the 

correlation between individuals’ expected spending on service s and their actual spending on 

that service. The figure reveals substantial heterogeneity in predictability across services 

with pharmaceutical spending being the most predictable and “other” and geriatric physical 

therapy spending being the least predictable. Since actual spending (as reflected in σis) and 

expected spending (as reflected in σis) are independent of payment weights, the 

predictability of services is independent of the payment model.

The right panel of Figure A1 shows our predictiveness measure for each of our ten services 

under two payment models: the conventional Dutch risk adjustment model and the new 

constrained model. The bars show the correlation between an individual’s spending on 

service s and their overall unprofitability to the plan. Bigger bars signify a higher 

correlation. Risk adjustment, by transferring funds to more costly enrollees should cause 

some convergence among these service-specific correlations such that spending on service s 

has a similar relationship with total profitability as spending on service s’.44 It is clear from 

the figure that the constrained model improves on the conventional Dutch model, driving 

down the correlation between spending on a service and unprofitability to the plan for all 

services.

Note that predictiveness only matters for selection incentives if the service is also 

predictable. Unless a potential enrollee anticipates their level of utilization of a given 

service, her demand for a given insurance contract is unlikely to respond to changes in the 

level of rationing of that service. In other words, if a service is not predictable, tight or loose 

rationing of that service should have no effect on enrollment and profitability. This implies 

that the results in the right and left panels of Figure A1 combine to form the overall selection 

incentives faced by insurers, with services that score high on both predictability and 

predictiveness being the most vulnerable to service-level distortions.

44A complete convergence will not occur, nor is it desirable, because it is plan incentives that should be consistent across services and 
those incentives depend on both predictability and predictiveness.
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Figure A1: 
Predictability and Predictiveness

Appendix B:: Estimated Coefficients for Two Models

Risk adjustor variables Population frequency Base model Constrained model

Intercept 100.00% 203 −790

Male. 0 0.55% 3716 5898

Male. 1–4 2.27% 425 −85

Male. 5–9 2.96% 289 −72

Male. 10–14 3.11% 172 410

Male. 15–17 1.81% 192 629

Male. 18–24 4.29% −15 −38

Male. 25–29 2.94% −42 −58

Male. 30–34 2.95% −39 −34

Male. 35–39 3.08% 0 0

Male. 40–44 3.83% 75 114

Male. 45–49 3.89% 187 263

Male. 50–54 3.67% 333 499

Male. 55–59 3.33% 584 936

Male. 60–64 3.19% 813 1364

Male. 65–69 2.73% 1278 1643

Male. 70–74 1.90% 1661 2041

Male. 75–79 1.37% 2104 2401

Male. 80–84 0.89% 2248 2351

Male. 85–89 0.43% 2364 2105

Male. 90+ 0.15% 2542 1433
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Risk adjustor variables Population frequency Base model Constrained model

Female. 0 0.52% 3069 5207

Female. 1–4 2.17% 199 −154

Female. 5–9 2.82% 153 158

Female. 10–14 2.97% 142 514

Female. 15–17 1.72% 324 416

Female. 18–24 4.18% 305 145

Female. 25–29 2.96% 774 985

Female. 30–34 2.99% 935 1549

Female. 35–39 3.14% 546 977

Female. 40–44 3.83% 309 439

Female. 45–49 3.86% 352 387

Female. 50–54 3.68% 463 578

Female. 55–59 3.34% 573 773

Female. 60–64 3.18% 733 1110

Female. 65–69 2.78% 1043 1162

Female. 70–74 2.07% 1362 1534

Female. 75–79 1.71% 1703 2019

Female. 80–84 1.37% 1955 2296

Female. 85–89 0.89% 2165 2341

Female. 90+ 0.48% 2125 1181

No PCG 
a

82.03% 201 637

Glaucoma 0.85% 279 346

Thyroid disorders 1.64% 83 −181

Mental disorders 0.53% 95 1243

Depressive disorder 2.67% 184 −636

Peripheral neuropathy 0.38% 1159 157

Hypercholesterolemia 5.30% 178 −620

Diabetes II without hypertension 0.63% 531 −1868

COPD / severe asthma 1.16% 1565 1165

Asthma 2.16% 573 643

Diabetes II with hypertension 1.40% 845 −1511

Epilepsy 0.48% 834 −245

Crohn’s disease / Colitis ulcerosa 0.20% 818 2881

Heart diseases 2.21% 1500 1242

Rheumatoid arthritis (TNF-α) 0.19% 14164 14623

Rheumatoid arthritis (other) 0.32% 1478 2813

Parkinson’s disease 0.14% 2176 3527

Diabetes type I 1.29% 1361 649

Transplantations 0.15% 89 6361

Cystic fibrosis / Pancreatic disease 0.04% 3021 15999

Disorders of brain/ spinal cord 0.07% 1511 4128
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Risk adjustor variables Population frequency Base model Constrained model

Cancer 0.09% 3697 9279

Hormone-sensitive tumors 0.35% −712 −2226

HIV/AIDS 0.08% 2826 29936

Kidney disorders 0.07% 7201 15969

No DCG 
b

91.00% 0 0

DCG1 0.67% 391 400

DCG2 1.49% 560 750

DCG3 1.11% 635 659

DCG4 1.80% 1011 3436

DCG5 1.16% 1618 2657

DCG6 1.26% 2002 3813

DCG7 0.55% 3225 9061

DCG8 0.12% 3989 9721

DCG9 0.30% 3847 6950

DCG10 0.33% 7307 14332

DCG11 0.04% 8722 14286

DCG12 0.07% 8608 20788

DCG13 0.04% 15876 32097

DCG14 0.04% 65152 63374

DCG15 0.01% 51005 140811

ZIP-code cluster 1 9.91% 169 479

ZIP-code cluster 2 9.88% 124 351

ZIP-code cluster 3 9.97% 101 254

ZIP-code cluster 4 9.86% 84 215

ZIP-code cluster 5 10.01% 68 203

ZIP-code cluster 6 9.91% 64 171

ZIP-code cluster 7 9.98% 50 129

ZIP-code cluster 8 9.98% 38 78

ZIP-code cluster 9 10.17% 24 44

ZIP-code cluster 10 10.32% 0 0

Age = 0–17 or 65+ 37.67% 0 0

Disability beneficiaries. 15–34 0.91% 647 −969

Disability beneficiaries. 34–44 0.77% 803 −50

Disability beneficiaries. 45–54 1.30% 720 88

Disability beneficiaries. 55–64 2.02% 596 362

General beneficiaries. 15–34 0.57% 267 −260

General beneficiaries. 34–44 0.55% 353 −214

General beneficiaries. 45–54 0.60% 412 43

General beneficiaries. 55–64 0.48% 368 327

Students. 18–34 3.20% −238 −233
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Risk adjustor variables Population frequency Base model Constrained model

Self-employed. 15–34 0.78% −116 −155

Self-employed. 34–44 1.27% −111 −112

Self-employed. 45–54 1.32% −146 −156

Self-employed. 55–64 0.79% −152 −148

Other. 15–34 14.84% 0 0

Other. 34–44 11.29% 0 0

Other. 45–54 11.88% 0 0

Other. 55–64 9.75% 0 0

No MYHCG 
c

94.24% 0 0

2x costs in top-10% 1.01% 2661 6082

3x costs in top-15% 2.30% 2318 3155

3x costs in top-10% 1.05% 3680 4370

3x costs in top-7% 0.78% 5692 6085

3x costs in top-4% 0.46% 9661 9066

3x costs in top-1.5% 0.15% 25836 37142

No DMECG 
d

99.17% 0 0

Insulin pumps 0.12% 422 −3319

Catheters 0.39% 1308 −1212

Stoma 0.31% 1801 −929

Trachea-stoma 0.02% 6546 2464

Address >15 residents. 0–17 0.06% 244 −1059

Address >15 residents. 18–64 0.38% 169 480

Address >15 residents. 65+ 0.72% 321 5820

Income deciles 1–3. 0–17 6.25% 27 −110

Income deciles 1–3. 18–64 18.57% 53 12

Income deciles 1–3. 65+ 4.81% 200 −269

Income deciles 4–7. 0–17 8.34% −5 −115

Income deciles 4–7. 18–64 24.79% 48 23

Income deciles 4–7. 65+ 6.41% 44 −166

Income deciles. 8–10. 0–17 6.25% 0 0

Income deciles. 8–10. 18–64 18.59% 0 0

Income deciles. 8–10. 65+ 4.81% 0 0

65-. no morbidity 
e

70.38% 0 0

65-. morbidity 12.86% 618 1541

65+. no morbidity 6.89% 0 0

65+. morbidity 9.88% 642 2272

a
PCG = Pharmacy-based Cost Group

b
DCG = Diagnostic-based Cost Group

c
MYHCG = Multiple-Year High Cost Group

d
DMECG = Durable Medical Equipment Cost Group
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e
Morbidity is operationalized as having at least one PCG, DCG, MYHCG or DMECG.
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Figure 1: 
Average Payments for Enrollees with Selected “Healthy” and “Sick” Indicators in Two 

Models
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Figure 2: 
Equilibrium Service Level Allocation
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Figure 3: 
Difference in Payments for Enrollees with Selected “Healthy” and “Sick” Indicators with 

and without Changing the Data
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Table 1:

Population frequency and medical spending (in Euros, 2012) at aggregated levels of risk characteristics 

(N=16.5 million)

Population frequency Mean spending

Male, <65 42% 1,207

Male, >=65 8% 4,612

Female, <65 41% 1,487

Female, >=65 9% 4,123

Region, clusters 1–5 50% 1,979

Region, clusters 6–10 50% 1,719

Source of income if 18≤age<65: disability benefits 5% 3,817

Source of income if 18≤age<65: social security benefits 2% 2,321

Source of income if 18≤age<35: student 3% 588

Source of income if 18≤age<65: self-employment 4% 1,012

Source of income if 18≤age<65: other (e.g. employment) 48% 1,282

Other (i.e. age<18 or ≥65) 38% 2,477

Socioeconomic status, street address with >15 residents 1% 4,507

Socioeconomic status, income deciles 1–3 30% 1,842

Socioeconomic status, income deciles 4–7 40% 1,869

Socioeconomic status, income deciles 8–10 30% 1,721

Pharmacy-based Cost Group (PCG) No 82% 1,212

Yes 18% 4,751

Diagnoses-based Cost Group (DCG) No 91% 1,353

Yes 9% 6,855

Durable Medical Equipment Cost Group (DMECG) No 99% 1,772

Yes 1% 10,933

Multiple-year High Cost Group (MYHCG) No 94% 1,378

Yes 6% 9,536

PCG, DCG, DMECG and/or MYHCG No 77% 984

Yes 23% 4,784

Total population 100% 1,848

Note: the risk adjustor variable “Source of income” only applies to people with ages 18 to 65. PCGs, DCGs and DMECGs are based on prior-year 
use of selected of drugs, hospital treatments and durable medical respectively.
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Table 2

Average per person spending per service category (in Euros, 2012; N=16.5 million)

Mean Std Dev 75th Pctl 95th Pctl Share of total spending

Hospital care 1132 5612 608 4779 61%

Pharmaceuticals 267 1309 186 1163 14%

Primary care 139 148 160 315 8%

Durable medical equipment 91 581 2 368 5%

Geriatric physical therapy 46 1145 0 0 3%

Dental care (18-) 44 238 2 197 2%

Paramedical care 42 242 0 127 2%

Sick transport 35 331 0 8 2%

Obstetrics and maternity care 29 283 0 0 2%

Other 
a 23 503 0 27 1%

Total 1848 6595 1392 7342 100%

a
Including very small categories of spending such as ‘ambulatory care for people with auditive or visual impairments’.
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Table 3.

R-squared and welfare loss measure for two models in relation to no risk adjustment

Measure No risk adjustment Base model Constrained model

R-squared 0,000 0,226 0,129

Welfare loss measure (ϕ) 0,000 0,828 1,000
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