Skip to main content
. 2019 Mar 21;10(3):242. doi: 10.3390/genes10030242

Table 2.

The performance of the McTWO feature selection algorithm in comparison with four other feature selection algorithms.

Method ACC SENS SPEC PRE F1 MCC AUC
Boruta 0.65 0.603 0.733 0.733 0.634 0.337 0.730
mRMR 0.667 0.661 0.663 0.726 0.662 0.347 0.760
RFE 0.692 0.671 0.702 0.725 0.678 0.366 0.768
RF 0.708 0.698 0.727 0.767 0.711 0.435 0.821
Two-step 0.733 0.732 0.770 0.797 0.743 0.505 0.889

mRMR: Minimum redundancy maximum relevance, RFE: Recursive feature elimination, RF: Random forest, ACC: Accuracy, SENS: Sensitivity, SPEC: Specificity, PRE: Precision, F1: F1-score, MCC: Matthew’s correlation coefficient, AUC: Area under the ROC curve.