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Statistically downscaled climate 
dataset for East Africa
Solomon H. Gebrechorkos1,2, Stephan Hülsmann   1 & Christian Bernhofer2

For many regions of the world, current climate change projections are only available at coarser spatial 
resolution from Global Climate Models (GCMs) that cannot directly be used in impact assessment and 
adaptation studies at regional and local scale. Impact assessment studies require high-resolution 
climate data to drive impact assessment models. To overcome this data challenge, we produced 
a station based climate projection (precipitation and maximum and minimum temperature) for 
Ethiopia, Kenya, and Tanzania using observed daily data from 211 stations obtained from the National 
Meteorological Agency of Ethiopia and international databases. Moreover, 26 large-scale climate 
variables derived from the National Centers for Environmental Prediction reanalysis data (1961–2005) 
and second generation Canadian Earth System Model (CanESM2, 1961–2100) are used. Statistical 
Down-Scaling Model (SDSM) is used to produce the required high-resolution climate projection by 
developing a statistical relationship between the large- and local-scale climate variables. The predictors 
are analysed more than 16458 times and we provided 20 ensembles for the current (1961–2005) and 
future (2006–2100, under RCP2.6, RCP4.5, and RCP8.5) climate.

Background & Summary
Large-scale or global climate models are currently used to advance the scientific knowledge and understanding 
variabilities and changes in large-scale climate variables1. Information obtained from Global Climate Models 
(GCMs) supports a better understanding of the climate at a global scale2,3. The output from GCMs is too coarse 
(>100 km) to be used in impact assessment studies, adaptation planning, and decision-making process at local 
or regional scale4,5. In addition to the coarse resolution, biases and uncertainties associated with GCMs increase 
from global to regional and local scales, which limit the suitability and applicability of GCMs in local-scale 
impact assessment studies6–9. Therefore downscaling is required to increase the spatial resolution and reduce 
biases1,10 before climate projections can be used for impact assessment and adaptation planning. During the last 
few decades, two types of downscaling techniques have been introduced to reduce biases and improve the spatial 
resolution of GCMs. These are dynamical and statistical downscaling methods. Dynamical downscaling (e.g., 
CORDEX-Africa, http://www.cordex.org/domains/region-5-africa/) as a climate modeling process includes local 
information such as topographic features to produce a high-resolution climate projection, for example 50 km for 
Africa11,12. In addition to the complexity of models and high resource requirements, dynamical models still face 
biases and sensitivity to the boundary condition of GCMs, which limit their use in local-scale impact assessment 
and adaptation studies13–15. However, compared to dynamical models, statistical downscaling models are fast, 
simple, effective, and require less computational capacities and expenses.

Statistical models are designed to produce a location based weather series, equivalent to station data, by devel-
oping a statistical relationship between local-scale (predictands) and large-scale climate variables (predictors). 
Considering the overall advantages, statistical downscaling models are widely used in impact assessment studies 
at local and regional scale in sectors such as water resource and agriculture10,13,15,16. Statistical models are classified 
under three categories based on the statistical approaches used; stochastic weather generator17, weather typing18, 
and transfer function19.

The Statistical DownScaling Model (SDSM)19 is one of the most widely used statistical downscaling models, 
which is developed based on a transfer function and stochastic weather generator. The performance of SDSM 
was found to be higher than the conventional weather generators20,21. In addition, compared to other statistical 
downscaling models, SDSM possesses better capabilities in capturing rainfall characteristics and maximum and 

1United Nations University Institute for Integrated Management of Material Fluxes and of Resources (UNU-FLORES), 
01067, Dresden, Germany. 2Faculty of Environmental Sciences, Institute of Hydrology and Meteorology, Technische 
Universität Dresden, 01062, Dresden, Germany. Correspondence and requests for materials should be addressed to 
S.H.G. (email: gebrechorkos@unu.edu)

Received: 30 October 2018

Accepted: 14 March 2019

Published: xx xx xxxx

Data Descriptor

OPEN

https://doi.org/10.1038/s41597-019-0038-1
http://orcid.org/0000-0002-9569-7626
http://www.cordex.org/domains/region-5-africa/
mailto:gebrechorkos@unu.edu


2Scientific Data |            (2019) 6:31  | https://doi.org/10.1038/s41597-019-0038-1

www.nature.com/scientificdatawww.nature.com/scientificdata/

minimum temperature19,21. Therefore, SDSM is used to produce a location-based high-resolution climate pro-
jection for regions of East Africa (Ethiopia, Kenya, and Tanzania). Regions of Africa, particularly East Africa, 
are highly vulnerable to changes in climate and climate extremes and more extreme events such as frequent 
droughts, floods, and heavy rainstorms are projected in the future22. Therefore, considering the observed changes 
and vulnerability of the region to variability (e.g., seasonal rainfall variability) and changes in climate and climate 
extremes22,23 conducting in-depth impact assessment studies at local and regional scale is required to minimize or 
mitigate impacts in the future through sustainable adaptation measures. However, this type of information is not 
readily available and producing station based climate projections using SDSM requires observed data with high 
quality for model calibration and as input to the scenario generator, which is part of SDSM. It is used to generate, 
after model calibration and validation, an ensemble of synthetic weather series, using daily predictors supplied 
by a global climate model15.

Availability of observed data from ground-based meteorological stations is, however, limited in East Africa 
due to issues such as limited temporal and spatial coverage, quality, and accessibility (e.g., data sharing policies). 
For example, from Tanzania, only five stations with maximum coverage of five-years can be provided by the 
meteorological agency. Moreover, the Kenyan meteorological agency only provides monthly data, which cannot 
be used in statistical downscaling. Therefore, a combination of datasets, station data obtained from the National 
Meteorological Agency (NMA) of Ethiopia and daily data available at the National Centers for Environmental 
Information (NCEI) are used. For areas with no ground observation (remote and data sparse parts of the 
region), additional datasets from remote sensing and reanalysis based products with high accuracy (compared 
with ground station data) and covering a large part of the region are used24. Compared to previously developed 
datasets such as CCAFS (http://www.ccafs-climate.org/data_spatial_downscaling/), which, based on the Delta 
method, provides a monthly average of 30 years period at different spatial resolution, we provide point infor-
mation at a daily time scale. Moreover, compared to CCAFS our dataset can be used without restrictions. In this 
paper, we present statistically downscaled daily precipitation and maximum and minimum temperature for the 
current climate conditions (1961–2005) and future climate scenarios (2006–2100) under three Representative 
Concentration Pathways (RCPs; RCP2.6, RCP 4.5, and RCP 8.5). The data can be used for impact assessment and 
adaptation studies in Ethiopia, Kenya, and Tanzania (Fig. 1).

Methods
The observed daily precipitation and maximum and minimum temperature data used in this study are the most 
comprehensive to date in the statistical downscaling process and for this region. Here, we used only stations with 
higher quality (e.g., concerning missing values) and temporal coverage in order to identify the most dominant 
predictors and develop the most accurate future climate scenarios.

Data Acquisition.  Observed daily precipitation and maximum and minimum temperature during the period 
of 1961–2005 is obtained from the National Meteorological Agency (NMA) of Ethiopia and National Centers for 
Environmental Information (NCEI). For data sparse parts of the region, additional daily precipitation and max-
imum and minimum temperature (T-max and T-min), based on our earlier study on climate data evaluation for 
East Africa24, are used. For regions with limited availability of station data, climate data products with high spatial 
and temporal resolution can be used to bridge data gaps25. For East Africa, we evaluated different daily climate 
data sources based on climate models, remote sensing, and reanalysis data and the most accurate data sources 
are identified for application in climate and hydrological studies. From this study, the Climate Hazards Group 
InfraRed Precipitation with Station data (CHIRPS)26 and Observational-Reanalysis Hybrid27 were identified for 
precipitation and T-max and T-min, respectively (for more information see24). In addition, large-scale climate 
variables (predictors) for the current climate and future scenarios under the RCPs are used, which is available 
from the Canadian Climate Data and Scenarios (http://climate-scenarios.canada.ca/).

Fig. 1  Location map of ground stations and produced datasets (daily precipitation, maximum and minimum 
temperature) inside river basins (polygons in the map) of Ethiopia, Kenya, and Tanzania.

https://doi.org/10.1038/s41597-019-0038-1
http://www.ccafs-climate.org/data_spatial_downscaling/
http://climate-scenarios.canada.ca/


3Scientific Data |            (2019) 6:31  | https://doi.org/10.1038/s41597-019-0038-1

www.nature.com/scientificdatawww.nature.com/scientificdata/

Downscaling process.  SDSM is used to downscale the output from a GCM by developing a statistical 
relationship between the local (predictands) and large-scale climate variables (predictors) using a multi-linear 
regressions model and stochastic bias correction techniques10,15. Observed daily precipitation and maximum 
and minimum temperature from 211 stations and 26 predictors (Table 1) from the NCEP (National Centers for 
Environmental Prediction) reanalysis data and CanESM2 (second generation Canadian Earth System Model) are 
used. Both the NCEP (1961–2005) and CanESM2 (1961–2100) predictors are available at a spatial resolution of 
about 2.81°, with nearly uniform longitude and latitude. In a single GCM box, 2–17 ground stations are available 
for the downscaling process (Fig. 1). Compared to GCMs, the NCEP predictors are commonly used due to their 
accuracy (e.g., high correlation and Nash–Sutcliffe Efficiency) in representing the current climate15,28. Therefore, 
the NCEP and CanESM2 predictors are used for model calibration and validation and future projection, respec-
tively. The predictors derived from the CanESM2 are available under RCP2.6, RCP4.5, and RCP8.5 for downscal-
ing of future climate projections (2006–2100).

After data quality control, predictors are selected for each predictand as shown in Fig. 2. Selection of predictors 
for a predictand (e.g., maximum temperature) is based on the correlation matrix, partial correlation, and P-value. 
The selected predictor is further assessed for its accuracy using graphical methods such as a scatterplot. In general, 
the predictors are analysed more than 5486 (211 stations * 26 predictors) times for a single and 16458 (211*26*3) 
times for the three predictands (precipitation and maximum and minimum temperature) used in this study.

Using the selected predictors for each predictand, the model is calibrated under unconditional (temperature) 
and conditional (precipitation) processes on a monthly scale. For stations with a short length of observations, 
particularly for precipitation, the model is calibrated on seasonal and annual time scales to increase the number of 
wet days. The calibrated model, using the identified best performing predictors, produces up to 100 ensembles of 
daily time series and its output is the mean of the ensembles. The model output (ensemble mean) is used to assess 
the performance of SDSM in reproducing the observed data10. The performance is evaluated using a number of 
statistical parameters (generic and conditional tests) and graphical evaluation methods (e.g., bar plot) included 
in SDSM. In SDSM, stochastic techniques are included to improve the model performance in reproducing the 
observed data by artificially inflating the variance of the model output15. In addition, optimization techniques 
such as the ordinary least-square and dual simplex methods are provided in SDSM to control instabilities in 
regression coefficients10. As shown in Fig. 2, the calibrated model is used to generate future scenarios using the 
CanESM2 predictors available under RCP2.6, RCP4.5, and RCP8.5.

Data Outputs.  The statistically downscaled daily precipitation (Pr), maximum temperature (Tmax) and min-
imum temperature (Tmin) for the current climate (1961–2005) and future scenarios under the RCPs (RCP2.6, 

No. Long name Short name

1 Mean sea level pressure mslp

2 Surface airflow strength p1_f

3 Surface zonal velocity p1_u

4 Surface meridional velocity p1_v

5 Surface vorticity p1_z

6 Surface Wind Direction p1th

7 Surface divergence p1zh

8 500 hPa airflow strength p5_f

9 500 hPa zonal velocity p5_u

10 500 hPa meridional velocity p5_v

11 500 hPa vorticity p5_z

12 500 hPa geopotential height p500

13 500 hPa Wind Direction p5th

14 500 hPa divergence p5zh

15 850 hPa airflow strength p8_f

16 850 hPa zonal velocity p8_u

17 850 hPa meridional velocity p8_v

18 850 hPa vorticity p8_z

19 850 hPa geopotential height p850

20 850 hPa Wind Direction p8th

21 850 hPa divergence p8zh

22 precipitation prcp

23 Specific humidity at 500 hPa s500

24 Specific humidity at 850 hPa s850

25 Surface specific humidity shum

26 Mean temperature at 2 m temp

Table 1.  List of the large-scale climate variables (predictors) used for downscaling.

https://doi.org/10.1038/s41597-019-0038-1
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RCP4.5, and RCP8.5) are given in zipped boxes (Box_1 to Box_211). For instance in Box_1, there are 15 text files 
(.OUT and.PAR) for the three variables as follows;

	 1.	 Daily precipitation (Pr)

•	 Pr.PAR, list of selected predictors for daily precipitation at location one.
•	 Pr-syn. OUT, model output of daily precipitation for the current period (1961–2005) generated using the 

weather generator.
•	 Pr-rcp26. OUT, projected daily precipitation under RCP2.6 (2006–2100).
•	 Pr-rcp45. OUT, projected daily precipitation under RCP4.5 (2006–2100).
•	 Pr-rcp85. OUT, projected daily precipitation under RCP8.5 (2006–2100).

	 2.	 Daily maximum temperature (Tmax)

•	 Tmax.PAR, list of selected predictors for daily maximum temperature at location one.
•	 Tmax-syn. OUT, model output of daily maximum temperature for the current period (1961–2005) generated 

using the weather generator.
•	 Tmax-rcp26. OUT, projected daily maximum temperature under RCP2.6 (2006–2100).
•	 Tmax-rcp45. OUT, projected daily maximum temperature under RCP4.5 (2006–2100).
•	 Tmax-rcp85. OUT, projected daily maximum temperature under RCP8.5 (2006–2100).

	 3.	 Daily minimum Temperature (Tmin)

•	 Tmin.PAR, list of selected predictors for daily minimum temperature at location one.
•	 Tmin-syn. OUT, model output of daily minimum temperature for the current period (1961–2005) generated 

using the weather generator.
•	 Tmin-rcp26. OUT, projected daily minimum temperature under RCP2.6 (2006–2100).
•	 Tmin-rcp45. OUT, projected daily minimum temperature under RCP4.5 (2006–2100).
•	 Tmin-rcp85. OUT, projected daily minimum temperature under RCP8.5 (2006–2100).

In each file, for example, precipitation (Pr-syn. OUT) at Box_1, the model output contains 20 ensembles for 
the current period. The 20 ensembles produced for each predictand show the uncertainty in the projection and 
this depends on the selected predictors and predictand and length and quality of observed data. The parameter 
files (.PAR) only provide the short names of the predictors as shown in Table 1. The inclusion of the predictors 
selected for each station in this dataset enables researchers to identify the large-scale climate variable linked with 
the local climate. As East Africa is one of the most topographically complex parts of Africa, the predictors vary 
considerably from location to location. In addition to the data Zip file, location information (latitude (lat) and 
longitude (lon)) is given as an excel file (Box_location.csv) for each box.
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Fig. 2  Schematic overview of the Statistical Down Scaling Model (SDSM). Modified from Wilby et al.19.

https://doi.org/10.1038/s41597-019-0038-1


5Scientific Data |            (2019) 6:31  | https://doi.org/10.1038/s41597-019-0038-1

www.nature.com/scientificdatawww.nature.com/scientificdata/

Data Records
For Ethiopia, Kenya, and Tanzania, the daily precipitation and maximum and minimum temperature dataset for 
the current (1961–2005) and future periods (2006–2100, under the RCPs) are available as a zipped file for down-
load29. The zipped file contains 15 files for precipitation and maximum and minimum temperature as explained 
in the above section (data output). In order to make the data easier for reuse, the data is provided in a text format 
that can be easily read by different programming languages such as R and Python.
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Fig. 3  An example of the performance of SDSM compared to the observed monthly precipitation 
characteristics. (a) Mean. (b) Sum. (c) Monthly maximum. (d) Mean wet spell length. (e) Variance. (f) 95th 
Percentile. (g) Percentage of wet days. (h) Extreme range. (i) Maximum 5-day total precipitation.

Variable Values R2 RMSE Pbias

Precipitation

Mean 0.997 0.25 0.1

Maximum 0.90 18.15 6.1

Variance 0.99 17.66 4.7

Sum 0.998 18.99 7.8

Percentage 
of wet 0.999 0.012 −0.7

Wet spell 0.99 0.76 −17

95th Percentile 0.96 2.36 −0.5

Maximum temperature

Mean 0.99 0.03 0.01

Maximum 0.82 2.26 1.5

95th Percentile 0.95 0.88 2.6

Minimum temperature

Mean 0.99 0.1 −0.5

Maximum 0.67 1.66 5.7

95th Percentile 0.88 0.69 3.5

Table 2.  An example of model performance for monthly average precipitation and temperature values at station 
Nekemet during 1961–2005.
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Technical Validation
Evaluation of the model output for both precipitation and maximum and minimum temperature is carried out 
using the observed data for each station. In SDSM, multiple model evaluation methods (statistical and graphical) 
methods are included to assess the performance of the calibrated model in reproducing the observed data. As 
explained in the above section, the performance of the model depends on the selected predictors for the pre-
dictand at a given location. Even though a predictor shows a good correlation and low P-value (<0.05) during the 
screening process, this predictor might not really be the best in reproducing the observed data, which might be 
due to the presence of outliers. Therefore, a predictor has to be screened first using the correlation matrix, P-value, 
and scatterplots and the final output is evaluated using the model statistical (e.g., mean, variance and standard 
deviation) and graphical (bar and line plots) methods. In addition to the statistical parameters available in SDSM, 
additional methods such as the coefficient of determination (R2), Root Mean Square Error (RMSE), and Percent 
of bias (Pbias) are used30 to identify the most accurate predictors. Both R2 (Eq. 1) and RMSE (Eq. 2) are indicators 
of goodness of fit, while Pbias (Eq. 3) shows the tendency of the observed data to be over- or underestimated by 
the model.
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where Xi and X and Yi and Y are the observed and model monthly and average data, respectively, of the ith event 
in N number of events.

The overall evaluation methods enabled us to accurately identify the best fit predictor for the 211 stations used 
in this study. An explanatory example for one station in Ethiopia (Nekemt; latitude = 9.08°N, longitude = 36.46°E) 
is provided in Fig. 3. Figure 3 shows the performance of SDSM in generating some of the station based precipita-
tion characteristics such as the average monthly mean, sum, maximum, wet spell length, variance, 95th percentile, 
percentage of wet days, extreme range, and maximum 5-day precipitation. For precipitation at station Nekemt, 
the selected predictors are;

•	 Mean sea level pressure (mslp),
•	 Surface divergence (p1zh),
•	 850 hPa vorticity (p8_z), and
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Fig. 4  Performance of SDSM compared to the observed monthly temperature for station Nekemet. (a) Mean of 
maximum temperature. (b) Maximum of maximum temperature. (c) 95th Percentile of maximum temperature. 
(d) Mean of minimum temperature. (e) Maximum of minimum temperature. (f) 95th Percentile of minimum 
temperature.
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•	 Specific humidity at 850 hPa (s850). This shows that the day to day variabilities in mslp, p1zh, p8_z, and s850 
are useful predictors for precipitation occurrence at station Nakemet compared to the predictors provided 
in Table 1.

The results (Fig. 3 and Table 2) shows the accuracy of the model in reproducing the observed precipitation 
characteristics and shows a high R2 and lower biases and errors. Here, the ensembles mean is used to compare 
with the observed data. As shown in Table 2, the model shows high values of R2 (>0.96) for the selected precip-
itation characteristics. Modeling precipitation is one of the most challenging climate variables due to the low 
predictability of by regional climate forcing15 and in a topographically complex region.

In addition, the model shows high accuracy for maximum and minimum temperature (Fig. 4 and Table 2). 
Compared to the mean (R2 > 0.99), the maximum of maximum and minimum temperature are overestimated by 
1.5% and 5.7%, respectively (Table 2). For maximum and minimum temperature the selected predictors are mean 
sea level pressure (mslp), Surface divergence (p1zh), and 850 hPa vorticity (P8_z) and Surface meridional velocity 
(p1_v), 500 hPa geopotential height (p500), Specific humidity at 850 hPa (s850), and Surface specific humidity 
(shum), respectively. In general, the same approach is used to assess the performance of SDSM and to identify 
the best performing predictors for all the stations used in this study. For the 211 stations, after quality control, the 
predictors are evaluated more than 16458 times.

Overall, considering the complexity of the variable, particularly modelling of precipitation, the presence of 
data gaps, and topography of the region, the results are promising and can be used to drive impact assessment and 
adaptation studies in this region. In addition, SDSM was also identified as an accurate model in infilling missing 
values in data-sparse regions such as in Africa and the Middle East25. Using the new version of SDSM (SDSM 5.2), 
the data can be also used to assess the vulnerability of location-based adaptation measures and develop climate 
change scenarios without the dependency of GCMs31.

Code Availability
SDSM version 4.2, freely available (https://sdsm.org.uk/software.html), is used to statically downscale the 
projection from the second generation Canadian Earth System Model (CanESM2). The predictors derived from 
CanESM2 and the NCEP reanalysis data32 are exported into SDSM directory for model calibration and projection. 
The CanESM2 is one of the GCMs used in the Coupled Model Inter-comparison Project Phase 5 (CMIP5). A free 
code written in R (mean-R.txt) is provided to compute the ensembles mean for a single predictand.
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