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A B S T R A C T

The recent increase in user-generated content and social media adoption in developing countries offers an un-
precedented opportunity to better understand the accessibility and spatial distribution of financial services in
sub-Saharan Africa. Financial inclusion has been identified as a priority by multiple agencies in the region and
on-the-ground efforts are currently underway to identify previously unknown financial access points in nu-
merous developing African countries. Existing techniques for estimating the location of these access points rely
on spatial analysis of often outdated or unsuitable publicly available datasets such as population density, road
networks, etc., as well as expensive and time consuming surveys of locals in the region. In this work we propose
an approach to augment existing spatial data analysis techniques through the inclusion of user-generated geo-
content and geo-social media data. Through a comparison of standard regression models and machine learning
techniques, this work proposes the use of alternative data sources to build prediction models for identifying
financial access locations in countries where current estimation models are insufficient. With a better under-
standing of geospatial distribution patterns this work aims at reducing data acquisition costs and providing
decision makers with critical data more quickly and efficiently. Finally, we present a mobile application built on
the outcomes of this analysis that is currently being used to better inform on-the-ground data collection efforts.

1. Introduction

By current estimates, the number of individuals in sub-Saharan
Africa (SSA) with bank accounts at formal financial institutions is 25%
(European Investment Bank, 2016), a number that has remained rela-
tively stagnant, growing by only a couple of percentage points over the
past four years (Triki & Faye, 2013). By comparison, mobile money
accounts in East African countries, especially Kenya and Tanzania, have
increased dramatically. The term mobile money here represents the use
of mobile devices to transfer money between users, pay bills, or pur-
chase items. Mobile money providers are those companies through
which an individual deposits or withdraws local currency to or from
their mobile money account. Mobile money providers are typically
fixed-location, corner stores to which a customer can go to exchange
currency for mobile money (see Fig. 1 for an example). Safaricom, a
leading Kenyan mobile network operator, launched a mobile device-
based payment system called M-Pesa in 2007 that revolutionized fi-
nancial transactions across much of East Africa. In 2016, it was esti-
mated that mobile device penetration in Kenya surpassed 90%, an in-
crease of over 6% in one year (C. A. of Kenya, 2016). And while only a

small portion of the Kenyan population have traditional bank accounts,
over 58% percent of individuals in Kenya use mobile money (World
Bank, 2015) to transfer funds between people and/or businesses or
borrow money by way of a loan (Ochieng, 2016). Mobile money has
such a dominant role in the Kenyan economy that in 2014 M-Pesa, by
far the leading mobile payment system, accounted for over 60% of the
country's gross domestic product (Economist Intelligence Unit, 2014).

While the rise of mobile money has shown to reduce poverty rates
(Suri & Jack, 2016) and increased gender equality in many developing
nations (Sekabira & Qaim, 2017), there are concerns over economic
impact (Suri, 2017), taxation (Olingo, 2016), and the influence of a
single mobile network operator. The external focus on the striking
growth in usage of mobile money has also served to magnify the fi-
nancial divide within the country. During the FinAccess 2014 con-
ference Njuguna Ndung'u, Governor of the Central Bank of Kenya, gave
a keynote address in which he encouraged the expansion of financial
inclusion in Kenya (Ndung'u, 2014). In this keynote, Professor Ndung'u
reiterated that while a considerable portion of the Kenyan population
has access to mobile money infrastructure, a quarter of the population
remains entirely excluded. With the goal of increasing financial
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inclusion, the Central Bank of Kenya, specified that a first step should
include the identification of all Financial Touch Points (FTP)1 within
the country. While there are on going efforts to collect location in-
formation on FTP providers in Kenya (Brand Fusion, 2015a; FSD Kenya,
2015), the turn-over rate and movement of providers within the
country are high. In actuality, the locations of many FTP are still not
known.

Efforts to better understand the distribution of financial services in
Kenya are on-going. These are focused on the spatial distribution of
mobile money infrastructure to identify opportunities for business ex-
pansion, agricultural services, etc. (Hughes & Lonie, 2007; Kim, 2016;
Kirui, Okello, Nyikal, & Njiraini, 2013). On-the-ground data collection
efforts continue in SSA regions with the Humanitarian OpenStreetMap
Team (Uithol, 2015) following other teams such as Brand Fusion (Brand
Fusion, 2015a) in their data collection efforts. Most of these on-the-
ground efforts involve canvassing entire countries on motorcycles with
GPS units in an attempt to identify new FTP locations or view the
identification of FTP as a secondary goal to mapping a country. Col-
lectors focus their efforts on highly populated regions, surveying locals
and known FTP providers (Brand Fusion, 2015b). In general though,
there is a lack of informed strategy on where to look for these financial
touch points in the most efficient manner. Population density maps and
local knowledge are an important step and our goal is that the methods
proposed in this work can be used to augment existing ones. To this
end, this work aims to build a model for predicting the location of fi-
nancial touch points based not only on population densities, but other
publicly available datasets, both traditional authoritative (e.g., land
use, school locations) and user-contributed (e.g., volunteered informa-
tion and social media).

In the last year, the number of smartphone users in SSA has grown
substantially. The percentage of users in Kenya with smartphones was
roughly 44% in 2016, a substantial shift from the previous year of 27%
(Xylouris, 2016). This growth in smartphone access has also given rise
to a substantial increase in social media usage. Recent reports show
social media usage at 58% of the most popular activities conducted
with a mobile device followed by search engines at 39% and email at
30% (Xylouris, 2016). Facebook, one of the most popular social media
platforms in the world has recently focused their attention on SSA as a
region for expansion (Facebook People Insights, 2017). These efforts
are paying off with recent statistics showing that 170 million Africans
have joined Facebook, most of which connect through their mobile

device (Shapshak, 2017). Of these, 6.1 million are from Kenya. (B. A. of
Kenya, 2016). Twitter, has also seen an increase in adoption with
monthly active users counted at roughly 2.2 million (Kaigwa, Madung,
& Costello, 2015). As users interact with these platforms, they con-
tribute significant amounts of digital content. This content ranges from
photographs and opinions to restaurant reviews and group chats. The
fact that much of this interaction happens via mobile device is of im-
portance as well. Many smart devices contain high resolution location
sensors such as GPS or Wi-Fi and social media applications make use of
this information which lead to social contributions that contain geo-
graphic data such as places, local businesses and geotagged social posts.
Through the various application programming interfaces (APIs) offered
by these platforms, researchers now have access to much of this pub-
lished content. The resolution of these data both spatially and tempo-
rally offer unique insight into the behavior of individuals within the
region. Not only can these data be used to enhance low resolution (and
often outdated) population density maps but contributions such as
those that mention local businesses can be used to better predict the
location of previously unmapped entities, such as mobile money pro-
viders and other FTP.

Social media data are often defined as a subcategory of user-gen-
erated content (UGC), one that may contains geographic information,
but is often not contributed explicitly with the geographic content in
mind (McKenzie & Janowicz, 2014). Another source of UGC common to
the geography domain is volunteered geographic information (VGI)
(Goodchild, 2007). One of the popular platforms for this type of in-
formation is OpenStreetMap,2 a rich set of geospatial data contributed
to, and curated by, thousands of citizens worldwide. In recent years
there have been substantial efforts to increase coverage and quality of
geographic data and maps in SSA.3 These data in many cases are more
up-to-date and have greater coverage than many government or com-
mercial geographic datasets and knowing this, we propose their inclu-
sion in our approach to predicting financial access location in Kenya.

1.1. Research contribution

The purpose of this work is to develop a method for predicting fi-
nancial touch points in Kenya. Specifically, we are interested in de-
termining if at least one FTP can be identified within a specific set of
grid cells. Building on traditional authoritative datasets, we examine
the fitness of emerging data sources for inclusion in an FTP prediction
model and ultimately as a layer in a mobile application for data col-
lection. To this end we address the following four research questions
(RQ).

RQ1. With the goal of identifying financial touch points in Kenya, how
do geo-tagged social media and volunteered geographic information
fare in comparison to authoritative datasets? To address this question,
we explore the distribution and correlation of various datasets with
known FTP in Kenya. We report on the accuracy of using these data
independently for estimating FTP counts and locations.

RQ2. Can social media data and volunteered geographic information be
used in combination with existing authoritative datasets to produce
better FTP prediction models than those generated from the datasets
independently? Here we examine two traditional regression methods,
namely ordinary least squares and spatial lag as well as two machine
learning regression approaches, namely support vector regression and
random decision forest (RDF). The accuracy of these models are
reported via three measures.

RQ3. Provided a best fit model, can we validate this approach through
on-the-ground identification of previously unknown FTP? Secondly,

Fig. 1. An example of a mobile money provider in Uganda. Source: Wikimedia
Commons. License: CC 4.0.

1 These include mobile money providers, brick and mortar banks, etc.

2 http://openstreetmap.org.
3 https://hotosm.org/projects.
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how accurate is the best fit model in identifying FTP in Kenya's
neighboring country of Uganda? We assess and report on the
accuracy of the model and identify important differences between the
two countries that likely impact the accuracy of the model.

RQ4. Can the FTP prediction model provide the foundation of a mobile
application for FTP data capture and validation? We present a
prototype mobile application currently employed by users on-the-
ground to add, edit and delete FTP locations, driven by an FTP
prediction layer generated from our best fit model.

The remainder of this article is organized as follows. In Section 2 we
discuss existing research related to the topic and methods, and in Sec-
tion 3 we present the various datasets used in this work. The methods
used in predicting financial touch points are given in Section 4, with the
results of the analysis shown in Section 5. Two different approaches for
validating the data set are presented in Section 6 with an overview of
the mobile application in Section 7. Finally, conclusions and next steps
are stated in Section 8.

2. Related work

Existing work in this area has highlighted the importance of un-
derstanding mobile financial services in sub-Saharan Africa specifically
as it relates to poor populations (Porter, 2012; Tanle & Abane, 2017).
Some of this research has used data collected directly from mobile
devices (Dillon, 2012) while others have focused on the broader impact
of the technology (Asongu & Nwachukwu, 2016). Mobile money usage
is not unique to sub-Saharan Africa. Many other countries have adopted
mobile money systems, China being one of the leading proponents of
the technology (Guo & Bouwman, 2016). Recent reports have shown
that payment systems suck as Alipay and WeChat pay are having sig-
nificant impacts in shaping the country's economy (Armstrong & Wang,
2018). In recent years, the focus has shifted from the availability of
mobile devices to the actual usage patterns and applications. Short
messaging service (SMS) and social media usage have grown sub-
stantially and are having a sizable impact on the developing world for
everything from political movements (Howard & Parks, 2012) to
monitoring and tracking health epidemics (e.g., Ebola) (Wesolowski
et al., 2014).

As social media usage and user-generated content grows in devel-
oping countries, so does that availability of geotagged content
(Stefanidis, Crooks, & Radzikowski, 2013). The development of crowd-
sourcing crisis tools such as Ushahidi (Okolloh, 2009) and Missing Maps
(Palen, Soden, Anderson, & Barrenechea, 2015) have successfully de-
monstrated that geotagged social content can have a substantial impact
during crisis relief efforts. Recent work by Adams, McKenzie, &
Gahegan (2015) has also shown that user-generated geo-tagged content
from travel blogs and Wikipedia articles can be used to identify the-
matic regions around the world further emphasizing the power of
crowd contributions. Existing work by Linard et al. (2014, pp. 1–16) has
examined the inclusion of volunteered geographic information in en-
hancing the WorldPop dataset. Their efforts demonstrated that Open-
StreetMap vector data can be used to combination with satellite ima-
gery to further refine global population estimates. Further work has
used a combination of VGI-based gazetteer data and social media
‘check-ins’ to determine citizen locations (McKenzie & Janowicz, 2015)
and prioritize evacuation zones (Hu, Janowicz, & Couclelis, 2017).

From a methodological perspective, machine learning regression
models have been quite successful in a variety of scenarios. The range of
literature in this area speaks to the complexity and variety of models.
Previous work on the role of spatial autocorrelation in standard re-
gression (Anselin, 2001) is making it's way into machine learning (e.g.,
SVM, RDF, etc.) discussions (Cracknell & Reading, 2014). Existing work
from Song, Kwan, Song, & Zhu (2017) compared spatial econometric
models to a random decision forest approach in modeling fire occur-
rence and demonstrated the benefits and disadvantages of the different

approaches. Stevens, Gaughan, Linard, & Tatem (2015) employed a
RDF model in disaggregating census data for population mapping with
the goal of enhancing the WorldPop dataset and recent work on iden-
tifying landscape preferences determined that an RDF approach applied
to Flickr photos produced the best results (Chesnokova, Nowak, &
Purves, 2017).

3. Data

In this section, we provide an overview the datasets used in con-
structing the FTP identification models. The financial touch points are
introduced as well as the predictors classified as VGI, Social Media, and
Authoritative datasets.

3.1. Financial touch points

On-the-ground data collection efforts by Brand Fusion4 resulted in a
dataset of verified FTP in Kenya (Brand Fusion, 2015a). Brand Fusion
estimates that these data, collected in 2015, represent a high portion of
all FTP within Kenya but the data are non-exhaustive as FTP may have
been missed by data collectors, locations may have been established
since the last round of data collection, or FTP may have moved. The
purpose of this paper in this case is to use geospatial indicators near to
these known FTP to predict and identify previously unidentified FTP in
Kenya. This 2015 Brand Fusion dataset identified 83,273 FTP in Kenya
and these form the basis on which our prediction model is trained and
tested. Fig. 2 shows the distribution of these FTP in Kenya as green
markers. The Humanitarian OpenStreetMap Team (HOT) collected FTP
for neighboring Uganda (Uithol, 2015). In total, 45,417 verified FTP
were identified in Uganda and these points will form the basis of our
follow-on analysis. Visually, the highest density of FTP appear to occur
in densely populated regions around Nairobi, Nyanza (Kenya), Kampala
and Mbarara (Uganda). Spatial analysis of these FTP locations through
Moran's I (Moran, 1950) and Ripley's K (Ripley, 1976) functions confirm
this, indicating clear spatial clustering within these datasets. While the
high population areas show the highest numbers of FTP, it is the rural
regions that are of particular interest to government and non-govern-
ment agencies.

3.2. Predictors

We compare and contrast a number of different datasets from a wide
variety of sources with the purpose of determining how the inclusion of
these data aid in predicting FTP locations. Table 1 lists these datasets
along with their sources and our assigned category tag. These categories
consist of two types of user-generated content, namely volunteered
geographic information (VGI) and social media (SM) as well as more
traditional datasets which by comparison we label authoritative
(AUTH).

3.2.1. Authoritative datasets
We define the authoritative datasets in this work as those not created

through direct citizen contributions or social media data extraction.
These datasets were generated using more authoritative and controlled
mechanisms and are therefore, allegedly, less prone to user bias or
classification error. These data have been used in numerous other stu-
dies in estimating everything from population density and land use to
human mobility and predicting disease outbreak (Friedl et al., 2002;
Linard, Gilbert, Snow, Noor, & Tatem, 2012; Ruktanonchai et al., 2016;
Wesolowski et al., 2014).

The 2015 WorldPop data contains high resolution (∼100 m cell size)
human population distribution estimates. The data was generated from
a combination of remote sensed imagery, census and existing geospatial

4 http://www.brandfusion-africa.com/services/mobile-money.
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datasets (e.g., road networks) (Deville et al., 2014; Stevens et al., 2015).
The Socioeconomic Data and Application Center in NASA's Earth Ob-
servation System Data and Information System group produces the
Global Rural-Urban Mapping Project (GRUMP) data. Similar to the
WorldPop dataset, these data are produced through a combination of
census and satellite data (including night-time lights) at a resolution of
roughly 1 km. Version 1 of this dataset was produced in 2011 and
provides rural and urban population density estimates for the year 2015
(Balk et al., 2006; Freire, Kemper, Pesaresi, Florczyk, & Syrris, 2015).
Urban land cover type regions were also extracted from the 0.5 km
MODIS-based Global Land Cover Climatology dataset (Broxton, Zeng,
Sulla-Menashe, & Troch, 2014) generated in 2014.

Primary and Secondary school locations were accessed from
OpenAfrica, a web portal for open data in African countries. School
locations for Kenya were most recently updated in 2015 and con-
tributed by the Kenya Open Data Initiative (Rahemtulla et al., 2012).
Similarly, school locations for Uganda were collected by the Uganda
Bureau of Statistics and the Ministry of Education and Sports from 2004
to 2010. Places were downloaded from the GeoNames placename ga-
zetteer which is made up of a number of sources, most notably the
National Geospatial-Intelligence Agency and the U.S. Board on Geo-
graphic Names for regions outside of the United States. This point data
represents everything from mountain tops to water wells. Natural Earth
Populated Places data were used in this research which is based on
LandScan-derived population estimates (Dobson, Bright, Coleman,
Durfee, & Worley, 2000). Natural Earth devised the dataset based on
regional significance of places over population census, differentiating it
from the grid-based systems previously mentioned (Natural Earth,

2014). Counts of these datasets are shown in Table 2.

3.2.2. User-contributed data
User-contributed data are those created either via volunteered

geographic information (VGI) means or social media (SM) contribution.
Typically contributions to these data are made from non-experts and do
not rely on statistical models built from existing data sources. Anyone
can add a place, venue, road, or post (tweet) to one of these datasets
without requiring secondary approval.5

3.2.3. Volunteered geographic information
OpenStreetMap Points of Interest were downloaded for Kenya using

the OsmPoisPbf extraction tool.6 Table 2 lists the total number of POI
with roughly 2% (339) of these being tagged as MONEY BANK or
MONEY EXCHANGE. On examination of these tagged POI, the over-
whelming majority of these were brick-and-mortar bank branches with
few mobile money providers or lenders. These mobile money providers
and lenders are either corner stores/grocers or dedicated shops (e.g., M-
Pesa). The OpenStreetMap Road data was also extracted in January
2016 and consists of high resolution road network data contributed by
volunteers. These data are notably of a higher resolution and wider
spatial coverage than the road network datasets available from the
Kenyan government GIS web portal.

3.2.4. Social media data
Social media data for this research involved three sources of geo-

tagged content. Instagram and Foursquare both have digital gazetteers
of place locations contributed by individuals while twitter allows con-
tributors to geotag their posts with geospatial coordinates.

The Instagram locations API7 was used to extract Points of Interest
for Kenya. Instagram uses Facebook Places as its gazetteer, with the
purpose of allowing individuals to tag their photographs with a place
name. Their API offers limited access to this gazetteer. In total, 8107
places were accessed in Kenya. The Twitter Streaming API8 was used to
access geotagged tweets within Kenya over a 5 month time span from
January through May 2016. Only those tweets that included precise
geographic coordinates and sourced from the Android Twitter App or
iPhone Twitter App were employed here. In this work, only the geo-
graphic location of the tweets was relevant for this research though
future work may explore the content and language variation within the
text of the tweets. The Foursquare Venues Search API9 was employed to
access Points of Interest in the Foursquare gazetteer. Foursquare began
curating POI in March of 2009 and has been more transparent in how
they collect places (Perez, 2013) than Facebook. Notably Facebook has
a much larger user-base (2 billion vs. 45 million) however.

Fig. 2. Financial Touch Points (FTP) in Kenya (83,273) and Uganda (45,417).
Base map by ESRI.

Table 1
Datasets used in identifying financial touch points.

Dataset Description Source Year Category

Estimated persons per 3 arc-second (roughly
100 m) cell

Worldpop 2015 AUTH

Primary & Secondary School Locations OpenAfrica 2015 AUTH
0.5 km MODIS-based Global Land Cover

Climatology
USGS 2014 AUTH

Global Rural-Urban Mapping Project
(GRUMPv1)

NASA 2011 AUTH

GeoNames Places GeoNames 2016 AUTH
LandScan-based Populated Places Natural Earth 2016 AUTH
OSM Roads OpenStreetMap 2016 VGI
OSM POI OpenStreetMap 2016 VGI
Facebook Places Instagram API 2016 SM
Tweets Twitter API 2016 SM
Foursquare Venues Foursquare API 2016 SM

Table 2
Counts for the predictor datasets in Kenya and Uganda. Note that both the
WorldPop and GRUMPv1 data are not count based datasets and so are not re-
ported here.

Dataset Kenya Uganda

Facebook Places 8107 4377
Twitter Tweets 204538 156426
Foursquare Venues 4016 2075
OpenStreetMap POI 16739 44203
OpenStreetMap Roads (km) 98381 48676
Schools (Primary & Secondary) 37317 29372
GeoNames Places 26038 25978
NE Populated Places 56 42

5 Note that there is a community-based validation process in OpenStreetMap.
6 https://github.com/MorbZ/OsmPoisPbf.
7 https://www.instagram.com/developer.
8 https://dev.twitter.com/streaming.
9 https://developer.foursquare.com.
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4. Methods

To start, a spatial grid was generated over the entire country of
Kenya at a resolution of 0.02°, or approximately 2.2 km at the equator.
Selection of this resolution was based on trade off between reasonable
travel time within each grid (for on-the-ground collection efforts and
actual FTP users) and reduced computational complexity. This resulted
in 120,111 grid cells across Kenya. The grid was intersected with the
FTP data producing an FTP grid layer with aggregated count cells
ranging in value from 0 to 2402 (in Nairobi). Similar layers were
constructed for each of the predictor variables using the same grid
bounds and resolution. Finally, each gridded layer was normalized to
between 0 and 1. This was to ensure that each variable could be com-
pared to one another without one predictor overpowering the others.
While not essential in a linear or spatial regression model, it is parti-
cularly important for a random decision forest approach (Gislason,
Benediktsson, & Sveinsson, 2006).

4.1. Individual predictors

The goal in the initial analysis for RQ1 is to determine how accurate
each individual dataset is in identifying FTP. We first examine the
correlation between each gridded dataset and the gridded FTP layer.
Table 3 shows the Spearman's correlation matrix of all predictors. No-
tably, all datasets show positive correlation with the number of FTP per
cell. The Worldpop, Grump and School datasets show the highest cor-
relation with Facebook Places also showing a reasonably high value.
Interestingly tweets have a relatively low correlation with FTP (0.11)
and an even lower correlation with the other social media/user-gen-
erated content datasets (e.g., 0.05, 0.02) indicating that there is little
similarity between our social media places and the geotagged tweets.
On the other hand, GRUMP data are highly correlated with the
WorldPop dataset.

We then calculate the F-score for each predictor against the FTP. F-
score measures the relationship between the precision and recall of
these datasets (Equation (1)). Precision, in this case, is the number of
FTP locations correctly identified divided by the total number of loca-
tions identified whereas recall is the number of FTP locations correctly
identified divided by the total number of actual FTP locations.

=
+

F 2 precision recall
precision recall1 (1)

Assessing the accuracy of a predictor via the F-score involves a
trade-off. Fig. 3 shows precision versus recall for each of the predictor
variables. Notably, the authoritative datasets show a steeper decrease in
recall as precision drops below 0.4 whereas the user-contributed data-
sets tend to show fairly low trade-offs between the precision and recall.
The highest F-score of 0.49 is found with the WorldPop data and a low
of 0.07 with the Natural Earth Populated Places location data (Table 4).
While these F-scores in combination with the correlation matrix show

that the predictor datasets are of value in estimating FTP locations, on
their own they only correctly identify a limited number of FTP in
Kenya.

4.2. Weighted combination of variables

Provided the accuracy of the predictors independently, we next
explore a number of methods for combining the predictors in order to
better identify the location of financial touch points in Kenya.
Specifically, to address RQ2 we test four approaches to FTP identifi-
cation, namely ordinary least squares regression, spatial lag regression,
support vector regression, and random decision forest. The purpose of
examining all of these methods is to determine which approach most
accurately predicts the location of known FTP and produces a model on
which to base further investigation into unknown FTP locations. To be
clear, the regression approaches produces probability values that are
used to in a prediction task of FTP in a grid cell or not. These probability
values are later used in the generation of a prediction layer for inclusion
in a mobile data collection application.

4.2.1. Ordinary least squares model
A standard linear regression model was executed as a first step to

determine the impact of each independent variable (predictor dataset)
on identifying FTP. The data were separated by category as shown in
Table 1, namely VGI, SM, or AUTH. Linear regression models were
constructed for each category independently as well as combined. The
independent variables, coefficients, R2, and residual standard error
(RSE) for each model are shown in Table 5. Regarding multicollinearity
between the independent variables, we note some small changes in the
regression coefficients as predictors are added to the model. The most
notable change here is in the OpenStreetMap POI dataset changing to
having a negative influence on FTP identification when combined with
all other datasets. Similarly, we see the tweets dataset change from
having a significant impact on the model to not longer being significant.
We calculated the condition indices (condition number test), measures
of ill-conditioning in the predictor matrices and found that the regres-
sion models did not have significant multicollinearity. The conditional
index values for the respective regression models are 5.87 (AUTH), 1.53
(SM), 1.77 (VGI), 7.43 (Combined).

The AUTH -based regression produced an R2 value of 0.412 with all
coefficients being significant (P < 0.001). Based on the coefficients, the
WorldPop density values had the highest positive influence on the de-
pendent FTP variable with GRUMP data also showing a high value of
influence. The GeoNames places dataset had a small, but negative in-
fluence on the model. The SM -based regression model produced a lower
R2 value meaning that less of the known FTP locations could be ex-
plained by our place-based and geotagged social media data. All coef-
ficients were deemed significant with Facebook places and Tweets
producing larger positive coefficients than Foursquare venues. The
VGI -based linear regression models produced the lowest R2 value with

Table 3
Spearman's correlation between Kenya dataset cell counts. All <p 0.01.

FTP Facebook Foursquare Twitter OSM POI OSM Roads Schools GRUMP WorldPop Land. Urban GeoNames NE

FTP 1.00 0.50 0.29 0.11 0.33 0.08 0.50 0.55 0.57 0.38 0.27 0.29
Facebook Places 0.50 1.00 0.38 0.05 0.13 0.14 0.39 0.27 0.29 0.39 0.15 0.37
Foursquare Venues 0.29 0.38 1.00 0.02 0.05 0.08 0.22 0.12 0.14 0.24 0.05 0.21
Twitter Tweets 0.11 0.05 0.02 1.00 0.02 0.01 0.08 0.19 0.18 0.07 0.03 0.02
OSM POI 0.33 0.13 0.05 0.02 1.00 0.03 0.32 0.54 0.52 0.20 0.63 0.04
OSM Roads 0.08 0.14 0.08 0.01 0.03 1.00 0.26 0.17 0.15 0.09 0.14 0.03
Schools 0.50 0.39 0.22 0.08 0.32 0.26 1.00 0.71 0.72 0.38 0.43 0.12
GRUMP 0.55 0.27 0.12 0.19 0.54 0.17 0.71 1.00 0.92 0.45 0.52 0.07
WorldPop 0.57 0.29 0.14 0.18 0.52 0.15 0.72 0.92 1.00 0.44 0.52 0.10
Landuse Urban 0.38 0.39 0.24 0.07 0.20 0.09 0.38 0.45 0.44 1.00 0.16 0.19
GeoNames Places 0.27 0.15 0.05 0.03 0.63 0.14 0.43 0.52 0.52 0.16 1.00 0.03
NE Pop. Places 0.29 0.37 0.21 0.02 0.04 0.03 0.12 0.07 0.10 0.19 0.03 1.00
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OpenStreetMap POI having a much larger influence on the model than
OpenStreetMap Roads. Combining all independent variables in one OLS
linear regression model produced the highest R2 value with all coeffi-
cients having a significant impact with the exception of tweets and the
lowest residual standard error of the OLS models. As a first, but im-
portant, step, these results are encouraging and indicate that a combi-
nation of social media, VGI and authoritative data produce better re-
sults for predicting financial touch points than each data type
independently.

4.2.2. Spatial lag model
Using the Jarque-Bera test (Jarque & Bera, 1980), the variables in

the OLS models were assessed for normality of the distribution of errors.
All probability values for the tests were very low indicating non-normal
distribution of the error terms. Our next step was to geospatially map
the residuals of our best-fit linear regression model in order to test for

spatial autocorrelation in our predictors. Visually, the residuals ap-
peared to show a clear spatial pattern with underestimation occurring
near major cities such as Nairobi and overestimating in more rural re-
gions to the North. Moran's I analysis of the residuals supported this
assessment with significant global values of 0.305, 0.266, and 0.100 for
SM, VGI, and AUTH models respectively, with a distance threshold of
0.02° (distance to the nearest grid cell). Local Moran's I analysis also
found highly significant spatial clustering around the high density FTP
regions, predominantly major cities. These results, combined with low
probability values from Breusch-Pagan tests (Breusch & Pagan, 1979)
for heteroskedasticity indicate a need to account for spatial auto-
correlation in our regression analysis.

A spatial lag (Anselin, 2013) regression model (Equation (2)) was
constructed relying on a Euclidean distance weighted matrix using
Queen contiguity at a threshold of 0.02°. Y represents the vector of
response variables, ρ the coefficients of spatial regression terms, making
WY the spatial lag weighted response. X is the matrix of independent
predictors, β the coefficient matrix of X and ε the random error vector.
The results of the Spatial Lag regression models for the 3 groups of
predictor variables and the combined model are shown in Table 5.

= + +Y WY X (2)

In all cases, there was an increase in the amount of variance ex-
plained (R-squared) over the OLS regression models, and a relative
decrease in the standard error of the residuals. The WorldPop popula-
tion dataset still had a large influence in the combined dataset model
(based on the coefficient value) while Tweets remained low in con-
tribution and significance. The spatial lag (Rho) coefficients all had
significant impacts on the respective models demonstrating that ac-
counting for spatial dependency in such a model positively influenced
the ability to predict FTP in Kenya. These results again indicate that
combining datasets from various user-generated and authoritative

Fig. 3. Precision vs. recall graphs for all independent variables.

Table 4
Maximum F-score values for each of the predictor variables
independently.

Dataset Max F-score

Schools 0.38
GRUMP 0.44
WorldPop 0.49
Landuse Urban 0.12
GeoNames Places 0.31
NE Populated Places 0.07
Facebook Places 0.40
Foursquare Venues 0.23
Twitter Tweets 0.33
OSM POI 0.29
OSM Roads 0.21
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sources positively influence the ability to predict FTP and that the in-
clusion of a spatial lag term positively contributes to an explanation of
the variance in our model.

4.2.3. Support vector regression
Support vector machine (SVM) analysis takes a different approach

to prediction than the previous two analyses. SVM is nonparametric and
approaches regression through a kernel function (Cortes & Vapnik,
1995; Drucker, Burges, Kaufman, Smola, & Vapnik, 1997). To start, we
used an epsilon (ε = 0.1) type of regression with a linear kernel.10 This
approach attempts to find a separating hyper-plane between the two
classes, in our cases occurrence of FTP in a grid cell or not, with a
maximum gap between. In general, SV regression perform better with a
higher number of dimensions, or predictor variables in our case, and
really only if the combination of these variables almost certainly leads
to a known FTP. In our cases, neither of these conditions hold true as
the number of datasets (dimensions) is relatively small and based on
our previous OLS and spatial lag analysis, the variance explained is low.
While this form of analysis was tested on our dataset, it primarily acts as
a first comparison step in a machine learning approach to this problem.

4.2.4. Random decision forest
Random decision forests (RDF) (Ho, 1995) are an ensemble learning

method for regression, in our case, that construct a set of decision trees
for the purpose of prediction. An optimal threshold value for identifying
the occurrence of an FTP or not in a grid cell is calculated. A random
forest aims to correct for overfitting, known to happen in a standard

decision tree approach (Friedman, Hastie, & Tibshirani, 2001).
The R RandomForest package11 was used to fit a random decision

forest regression model to the FTP data based on each of the category
predictor variables independently as well as all together. This resulted
in a ×1.39 105 mean of squared residuals explaining 55% of the var-
iance. This approach used 500 trees with 4 variables tried at each split.
The incremental node purity for the model is shown in Table 6 and
reports on the average change of impurities of a tree node (in which the
variable was used) before and after a split. Plotting the percentage in-
crease in mean square error (MSE) for the combined approach (Fig. 4)
we find that many of the authoritative datasets are the most important
to the regression fit. Tweets, OSM POI and Facebook places all posi-
tively contribute to the model, with OSM Roads, NE Populated Places
and Foursquare venues having little impact on the RDF fit.

Given the known spatial dependency of the predictor variables
(based on global and local Moran's I measures), we elected to construct
a separate RDF model which included latitude and longitude co-
ordinates as covariables. There is some evidence in the existing litera-
ture that the inclusion of geospatial variables in such a model can in-
fluence the accuracy of prediction (Cracknell & Reading, 2014). Given
the non-parametric nature of RDF, these variables could be included in
the model and used in the prediction assessment. This led to a slightly
higher percentage explained variance (0.56 vs. 0.55) and latitude was
found to be the second most important contributing variable as de-
termined by the percentage increase in mean square error. Again,
though the prediction method has changed substantially, the findings
again support the fact that user-contributed data are important in lo-
cation prediction.

5. Results

In this section we present the results of the analyses performed in
the previous sections. Running each of the regression models (OLS,
Spatial Lag, SVM, and RDF) with datasets from each of our categories
(VGI, SM, AUTH) as well as a combination of all datasets (COMBO)
produced a set of FTP prediction values for each cell in our Kenya grid,
16 different FTP prediction grids. These regression-based prediction grids
were each then compared to our known FTP grid and three measures of
accuracy were calculated for each prediction. Table 7 shows a com-
parison of the four regression techniques used in this work along with
values for assessing accuracy of prediction including maximum F-score,
Spearman's Correlation and root mean square error (RMSE). The SVM
and RDF methods also show results for regression models that included
all predictor variables as well as latitude and longitude centroids of the
grid cells.

In general, the random decision forest regression model approach
produced the best results across most categories. The RDF model that
included variables of all data categories, including latitude and long-
itude (LL) coordinates, produced the most accurate predictions as re-
ported across all three measures. A maximum F-score of 0.74 is quite
high considering the multitude of factors that may contribute to es-
tablishing an FTP. Similarly, a Spearman's correlation of 0.96 is ex-
tremely high but should by understood in the context of the sparsity of
the FTP locations and predictions (most grid cells are 0). Lastly, the
reported RMSE is low relative to the comparable RMSE values from all
other methods and data categories.

Fig. 5 further explains the F-scores for highest performing RDF
model by plotting precision versus recall for the random decision forest
models split by data category. In comparison to Fig. 3, the combined
approach of all datasets produces a much better trade-off between
precision and recall, specifically addressing RQ2 as stated in the in-
troduction.

Next, the residuals of the best-fit RDF regression model are mapped

Table 5
Results of the OLS and Spatial Lag regression models with four combinations of
predictor variables. All coefficients are significant ( <p 0.001) except for Twitter
OLS* which is not significant and Twitter SLM* with <p 0.05.

Dataset OLS Model Coefficient Spatial Lag Model Coefficients

Authoritative Datasets (AUTH) Model
Schools 3.80E-02 6.09E-02
GRUMP 9.56E-02 4.76E-02
WorldPop 2.23E-01 1.77E-01
Landuse Urban 1.06E-02 7.59E-03
GeoNames Places −4.58E-02 −3.45E-02
NE Populated Places 5.54E-02 5.70E-02
Spatial Lag (Rho) NA 2.33E-01

R20.412, RSE 4.32E-03 R20.425, RSE 4.265E-03
Social Media Datasets (SM) Model
Facebook Places 1.58E-01 1.33E-01
Foursquare Venues 5.55E-02 5.24E-02
Twitter Tweets 1.41E-01 3.39E-02
Spatial Lag (Rho) NA 5.48E-01

R20.267, RSE 4.82E-03 R20.423, RSE 4.27E-03
Volunteered Geographic Information Datasets (VGI) Model
OSM POI 3.54E-01 2.34E-01
OSM Roads 8.57E-04 4.28E-04
Spatial Lag (Rho) NA 5.52E-01

R20.116, RSE 5.29E-03 R20.285, RSE 4.76E-03
Combined (All data) Model
Schools 2.78E-02 3.05E-02
GRUMP 9.25E-02 5.22E-02
WorldPop 1.94E-01 1.60E-01
Landuse Urban 2.00E-03 −8.92E-04
GeoNames Places −9.83E-02 −8.23E-02
NE Populated Places 3.04E-02 3.21E-02
Facebook Places 9.55E-02 9.59E-02
Foursquare Venues 4.30E-02 4.38E-02
Twitter Tweets 3.08E-02* −8.72E-03*
OSM POI −6.13E-04 1.02E-01
OSM Roads 1.05E-01 −6.23E-04
Spatial Lag (Rho) NA 2.49E-01

R20.489, RSE 4.02E-03 R20.502, RSE 3.97E-03

10 R package: https://cran.r-project.org/web/packages/e1071. 11 https://cran.r-project.org/web/packages/randomForest/.
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back to the location data. Visual inspection identifies very little clus-
tering within the residuals and a Moran's I analysis confirms this with a
bootstrapped observed value of less than 0.001 implying a high degree
of spatial randomness in these RDF-based residuals.

6. Validation

6.1. Ground-truthing in Kenya

One primary goal of this work was to build a prediction model that
would allow researchers in the field to identify previously unidentified
FTP in Kenya. With this goal in mind we used the best fit random de-
cision forest model (reported in the previous section) to predict FTP
locations across Kenya. The predicted number of FTP locations was
subtracted from the previously known number of FTP per cell to pro-
duce a residuals map showing the difference between known and pre-
dicted FTP. Of these residual cells, we further investigated 47 that
contained no known FTP and showed large negative values (indicating
high probability of finding FTP). Identifying these locations with high
potential is important as a single, previously unknown, FTP could po-
tentially be servicing a number of inhabitants; Inhabitants that were
thought to be without access to financial services.

These 47 potential FTP cells were ranked based on the size of the
residual and the latitude and longitude coordinates of the centroids
were shared with researchers on the ground in Kenya (see Fig. 6). The
selection of these specific locations was also based on availability of
data collection personnel in the region around Eldoret city in eastern
Kenya. Data collectors traveled to these high-FTP-potential locations and
recorded the presence and location of any FTP they found within 1 km
radius of the cell centroid (represented as square markers in Fig. 6). In
essence, the data collectors used the ranking of residuals for binary
classification (decision to travel to location or not) and then counted
the total number of FTP found within the vicinity of the marked loca-
tion. In total, 203 previously unidentified FTP were recorded within the
vicinity of these locations. In total, 41 of the 47 locations reported at
least one previously unknown FTP location within a 1.1 km radius.
Assigning the count of identified FTP to their nearest marked location
(again, see Fig. 6) allowed us to compute the correlation between es-
timated FTP potential and count of actual FTP identified. The resulting
Spearman's correlation was 0.233 ( <p 0.01), a small but positive cor-
relation indicating that the magnitude of the residuals, not just the
binary threshold, have a role to play in FTP identification. It should be
noted that a 1.1 km cell radius is quite a large distance to explore and
while quite a few new FTP were identified, it is likely that other FTP
may existed in the area but were not identified.

The identification of these previously unidentified FTP offers vali-
dation to the RDF machine learning approach suggested in this re-
search, and addresses RQ3. This approach presents a data-driven based
method for uncovering previously unidentified FTP locations and has
the potential to significantly reduces the on-the-ground efforts of in-
dividuals that previously relied on qualitative assessment and brute
force search methods.

6.2. Applicability to neighboring countries

In order to test the limits of our RDF prediction approach, the best-
fit regression model constructed from numerous datasets in Kenya was
applied to datasets collected in the neighboring country of Uganda. The
countries of Kenya and Uganda, while similar in many ways, also differ
substantially. We are currently in the process of collecting further on-
the-ground data to test the transferability of this model to the neigh-
boring country of Uganda.

In the mean time, our naive approach was again to rely on the same
publicly available datasets and use the best-fit model from the Kenya
data to predict locations and number of FTP in Uganda. Fig. 7 graphs
the precision versus recall for three data categories independently as

Table 6
Incremental Node Purity of the variables in the random
decision forest model.

Dataset IncNodePurity

GRUMP 2.32E-02
WorldPop 2.29E-02
Schools 2.22E-02
Landuse Urban 5.23E-03
Twitter 1.06E-02
OSM POI 9.62E-04
Geonames 4.27E-03
Facebook 1.69E-02
OSM Roads 5.98E-05
NE Major Towns 1.00E-03
Foursquare 4.75E-03

Fig. 4. Percentage increase in mean square error of prediction as a result of
variable shuffling. In essence, the higher the value, the more important that
variable is to the RDF regression model.

Table 7
Prediction results of the regression methods split by category of dataset. The
maximum F-score, Spearman's Correlation and root mean square error are re-
ported. Note that all Spearman correlation values are significant ( <p 0.01).

Method Category Max F-Score Correlation RMSE

OLS VGI 0.31 0.340 5.29E-03
SM 0.43 0.516 4.82E-03
AUTH 0.49 0.678 4.32E-03
COMBO 0.51 0.699 4.02E-03

Spatial Lag VGI 0.36 0.429 5.13E-03
SM 0.42 0.518 4.82E-03
AUTH 0.49 0.637 4.34E-03
COMBO 0.51 0.694 4.05E-03

SVM VGI 0.28 0.301 5.35E-03
SM 0.35 0.417 5.17E-03
AUTH 0.47 0.582 5.21E-03
COMBO 0.55 0.590 5.17E-03
COMBO & LL 0.56 0.587 5.17E-03

RDF VGI 0.31 0.606 4.69E-03
SM 0.43 0.849 3.20E-03
UGC 0.46 0.855 3.32E-03
AUTH 0.57 0.930 2.25E-03
COMBO 0.62 0.955 1.85E-03
COMBO & LL 0.74 0.960 1.79E-03
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Fig. 5. Precision vs. Recall for Kenya RDF predictions.

Fig. 6. Previously unknown FTP location (47) identified by the prediction model. Blue color density indicates rank based on probability of finding at least one FTP
within 1.1 km of the marked location. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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well as the combined RDF regression model. Not surprisingly, the RDF
model trained on Kenya data produces poorer results in Uganda than
Kenya. The F-scores for the three data categories of SM , VGI and AUTH
are 0.43, 0.44 and 0.36 respectively with a combined F-score of 0.44.
The best Spearman's correlation value was 0.69 for the combined model
with a RMSE of 6.08E-03. In fact, just using OpenStreetMap POI data
produced accuracy values (F-score, Correlation and RMSE) similar to
the combined RDF model built from Kenya data.

There are numerous reasons for the drop in accuracy scores com-
pared to Kenya. The most obvious answer is that these are different
countries with unique economic, information & communications tech-
nologies (ICT), and socio-demographic properties. It is naive to assume
that a model built on data from one country could be applied to a
completely different country without a loss of accuracy. Second, the
FTP location data were collected and reported by a different provider in
Uganda than in Kenya (Humanitarian OpenStreetMap vs. Brand
Fusion). There are likely differences in the data collection techniques,
number of people involved and technology employed. Future work will
explore these differences with the purpose of identifying key ways in
which a model can be altered to account for regional differences.

7. Mobile application

One of the outcomes of this research, and the focus of RQ4, is an
Android-based mobile application for identifying, creating, editing and
deleting financial touch points within sub-Saharan Africa. The current
prototype application functions both with and without a stable Internet
connection and currently focuses on Kenya.

7.1. Prediction overlay

Based on the best-fit RDF prediction model developed in Section

4.2.4, a raster layer containing FTP location predictions was con-
structed at a resolution of 0.02°. This raster layer was styled on a white
to green color ramp using natural break classification and tiled to allow
efficient data transfer and visualization on the mobile mapping appli-
cation (Fig. 8a).

7.2. Financial touch point locations

Upon loading, the mobile application prompts the user to download
known FTP locations for one or more of Kenya's 70 districts. The pur-
pose of this is to allow a user to download only the data required, thus
reducing data usage and device storage. Before leaving an area of stable
connectivity, the user will download the known FTP locations for the
district(s) in which they will be traveling.

Users are invited to zoom and pan the map as they would on any
standard mobile mapping application (Fig. 8b). The FTP locations are
shown as point markers on the map and clustered depending on zoom
scale. When the user selects a marker on the map, they are presented
with the Details interface. This interface shows information collected
about the FTP by the original party. The user can choose to edit this
information (Fig. 8c) or delete the FTP entirely. Finally, the user has the
option of zooming into their current location on the map, either
through panning/zooming or selecting the locate me button. Once the
map is at a reasonable scale, the user can tap the map to add a new FTP.
In this case, the unpopulated Edit interface is presented to the user.
Once the user is finished editing, adding and deleting FTP, they have
the option (selection from the context menu) to upload the changes to
the database. Again, this allows for offline editing and reduces overhead
of constant communication with the server whenever a FTP is edited.
The application is currently in use by data collection teams in Kenya.

Fig. 7. Precision vs. recall for Uganda RDF Predictions.
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8. Conclusions & future work

In this work we present a novel approach to identifying financial
touch points in Kenya through combined use of geosocial media data,
volunteered geographic information, and authoritative geospatial da-
tasets (RQ1 and RQ2). We showed that we can significantly increase the
ability to identify FTP locations by including both spatial and platially
tagged social media posts in our analysis. Current state-of-the-art ma-
chine learning techniques were compared to existing ordinary least
squares and spatial regression models and it was shown that a random
decision forest model using combined data from all three sources best
identified existing financial touch points and can be used to identify the
location of previously unknown FTP (RQ3). With this goal in mind, we
developed a mobile application for on-the-ground data collection that
uses the results of the RDF model as a geospatial estimation layer
through which users are be better informed on where to locate FTP
(RQ4).

The application is currently in use in Kenya and has aided in the
identification of previously unknown financial touch points. Data col-
lection done using this application (with the inclusion of the prediction
layer) has the potential to substantially impact financial services in
countries such as Kenya and Uganda. Provided detailed maps of access
to financial services in sub-Saharan Africa, local government and in-
ternational agencies are better informed when formulating policies and
regulating financial services. The goal of this work is to facilitate this
discussion by providing access to the most up-to-date geospatial data.

This analysis does come with some limitations. Given the country-
level analysis that was executed, a trade off was made when de-
termining the cell size for analysis. Increasing or decreasing this cell
size would understandably impact the accuracy of the identification
model. Access to known FTP locations is another limiting aspect of this
type of analysis. Two different data sets were collected from two dif-
ferent organizations in two different countries. The methods of data
collection varied and there is likely bias in how the data was collected
(e.g, accessibility of roads, daylight restrictions,etc.). While these biases
potentially impacted the final results of the analysis, they had little
influence on the methods of analysis that were employed. A limitation

of the validation approach lies in the lack of collected information re-
lated to true and false FTP negatives. Data collection teams in Kenya did
not report on the lack of FTP in regions that were identified as not
having FTP as it was not their primary mandate. Future data collection
campaigns will aim to collect these data.

Future work in this area will continue to focus on refining the
identification model through inclusion of additional datasets, updating
known FTP locations, and feedback from on-the-ground data collection
efforts. Though this work is primarily focused on leveraging the re-
lationship between external datasets and FTP, the role of nearby FTP
within a known touch point dataset could potentially have an impact on
the identification of new FTP as well. Additionally, we are in the midst
of assessing the accuracy of our existing model and refining new models
based on data from neighboring countries in the region. Further ex-
amination of neighboring country-specific datasets will lead to a better
understanding of the impact that socio-economics, demographics, ICT
adoption, etc. have on the ability to successfully identify FTP locations
at a broader scale.
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