Skip to main content
. 2019 Apr;105:25–36. doi: 10.1016/j.apgeog.2019.02.005

Table 5.

Results of the OLS and Spatial Lag regression models with four combinations of predictor variables. All coefficients are significant (p<0.001) except for Twitter OLS* which is not significant and Twitter SLM* with p<0.05.

Dataset OLS Model Coefficient Spatial Lag Model Coefficients
Authoritative Datasets (AUTH) Model
Schools 3.80E-02 6.09E-02
GRUMP 9.56E-02 4.76E-02
WorldPop 2.23E-01 1.77E-01
Landuse Urban 1.06E-02 7.59E-03
GeoNames Places −4.58E-02 −3.45E-02
NE Populated Places 5.54E-02 5.70E-02
Spatial Lag (Rho) NA 2.33E-01
R20.412, RSE 4.32E-03 R20.425, RSE 4.265E-03
Social Media Datasets (SM) Model
Facebook Places 1.58E-01 1.33E-01
Foursquare Venues 5.55E-02 5.24E-02
Twitter Tweets 1.41E-01 3.39E-02
Spatial Lag (Rho) NA 5.48E-01
R20.267, RSE 4.82E-03 R20.423, RSE 4.27E-03
Volunteered Geographic Information Datasets (VGI) Model
OSM POI 3.54E-01 2.34E-01
OSM Roads 8.57E-04 4.28E-04
Spatial Lag (Rho) NA 5.52E-01
R20.116, RSE 5.29E-03 R20.285, RSE 4.76E-03
Combined (All data) Model
Schools 2.78E-02 3.05E-02
GRUMP 9.25E-02 5.22E-02
WorldPop 1.94E-01 1.60E-01
Landuse Urban 2.00E-03 −8.92E-04
GeoNames Places −9.83E-02 −8.23E-02
NE Populated Places 3.04E-02 3.21E-02
Facebook Places 9.55E-02 9.59E-02
Foursquare Venues 4.30E-02 4.38E-02
Twitter Tweets 3.08E-02* −8.72E-03*
OSM POI −6.13E-04 1.02E-01
OSM Roads 1.05E-01 −6.23E-04
Spatial Lag (Rho) NA 2.49E-01
R20.489, RSE 4.02E-03 R20.502, RSE 3.97E-03