Table 4.
Model | m. | m. | m. | m. | m. | m. |
---|---|---|---|---|---|---|
VGGNet (Simonyan and Zisserman, 2014) | 78.54 | 80.17 | 79.06 | 82.30 | 86.02 | 80.21 |
VGG-RBFNN (Zeggada et al., 2017) | 78.80 | 81.14 | 78.18 | 83.91 | 81.90 | 82.63 |
CA-VGG-LSTM | 79.57 | 80.75 | 80.64 | 82.47 | 87.74 | 75.95 |
CA-VGG-BiLSTM | 79.78 | 81.69 | 79.33 | 83.99 | 85.28 | 76.52 |
GoogLeNet (Szegedy et al., 2015) | 80.68 | 82.32 | 80.51 | 84.27 | 87.51 | 80.85 |
GoogLeNet-RBFNN (Zeggada et al., 2017) | 81.54 | 84.05 | 79.95 | 86.75 | 86.19 | 84.92 |
CA-GoogLeNet-LSTM | 81.78 | 85.16 | 78.52 | 88.60 | 86.66 | 85.99 |
CA-GoogLeNet-BiLSTM | 81.82 | 84.41 | 79.91 | 87.06 | 86.29 | 84.38 |
ResNet-50 (He et al., 2016) | 79.68 | 80.58 | 80.86 | 81.95 | 88.78 | 78.98 |
ResNet-RBFNN (Zeggada et al., 2017) | 80.58 | 82.47 | 79.92 | 84.59 | 86.21 | 83.72 |
CA-ResNet-LSTM | 81.36 | 83.66 | 79.90 | 86.14 | 86.99 | 82.24 |
CA-ResNet-BiLSTM | 81.47 | 85.27 | 77.94 | 89.02 | 86.12 | 84.26 |
m. and m. indicate the mean and score.
m. and m. indicate mean example-based precision and recall.
m. and m. indicate mean label-based precision and recall.