Skip to main content
. 2019 Mar;149:188–199. doi: 10.1016/j.isprsjprs.2019.01.015

Table 4.

Quantitative results on UCM multi-label dataset (%).

Model m.F1 m.F2 m.Pe m.Re m.Pl m.Rl
VGGNet (Simonyan and Zisserman, 2014) 78.54 80.17 79.06 82.30 86.02 80.21
VGG-RBFNN (Zeggada et al., 2017) 78.80 81.14 78.18 83.91 81.90 82.63
CA-VGG-LSTM 79.57 80.75 80.64 82.47 87.74 75.95
CA-VGG-BiLSTM 79.78 81.69 79.33 83.99 85.28 76.52



GoogLeNet (Szegedy et al., 2015) 80.68 82.32 80.51 84.27 87.51 80.85
GoogLeNet-RBFNN (Zeggada et al., 2017) 81.54 84.05 79.95 86.75 86.19 84.92
CA-GoogLeNet-LSTM 81.78 85.16 78.52 88.60 86.66 85.99
CA-GoogLeNet-BiLSTM 81.82 84.41 79.91 87.06 86.29 84.38



ResNet-50 (He et al., 2016) 79.68 80.58 80.86 81.95 88.78 78.98
ResNet-RBFNN (Zeggada et al., 2017) 80.58 82.47 79.92 84.59 86.21 83.72
CA-ResNet-LSTM 81.36 83.66 79.90 86.14 86.99 82.24
CA-ResNet-BiLSTM 81.47 85.27 77.94 89.02 86.12 84.26

m.F1 and m.F2 indicate the mean F1 and F2 score.

m.Pe and m.Re indicate mean example-based precision and recall.

m.Pl and m.Rl indicate mean label-based precision and recall.