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Abstract
1.	 Uncovering	the	roles	of	biotic	interactions	in	assembling	and	maintaining	species-
rich	communities	remains	a	major	challenge	in	ecology.	In	plant	communities,	in-
teractions	 between	 individuals	 of	 different	 species	 are	 expected	 to	 generate	
positive	or	negative	spatial	interspecific	associations	over	short	distances.	Recent	
studies	using	individual-based	point	pattern	datasets	have	concluded	that	(a)	de-
tectable	interspecific	interactions	are	generally	rare,	but	(b)	are	most	common	in	
communities	with	fewer	species;	and	(c)	the	most	abundant	species	tend	to	have	
the	highest	frequency	of	interactions.	However,	it	is	unclear	how	the	detection	of	
spatial	interactions	may	change	with	the	abundances	of	each	species,	or	the	scale	
and	intensity	of	interactions.	We	ask	if	statistical	power	is	sufficient	to	explain	all	
three	key	results.

2.	 We	use	a	simple	two-species	model,	assuming	no	habitat	associations,	and	where	
the	 abundances,	 scale	 and	 intensity	 of	 interactions	 are	 controlled	 to	 simulate	
point	pattern	data.	In	combination	with	an	approximation	to	the	variance	of	the	
spatial	summary	statistics	 that	we	sample,	we	 investigate	the	power	of	current	
spatial	point	pattern	methods	to	correctly	reject	the	null	model	of	pairwise	spe-
cies	independence.

3.	 We	show	the	power	to	detect	interactions	is	positively	related	to	both	the	abun-
dances	of	the	species	tested,	and	the	intensity	and	scale	of	interactions,	but	nega-
tively	 related	 to	 imbalance	 in	 abundances.	 Differences	 in	 detection	 power	 in	
combination	with	the	abundance	distributions	found	in	natural	communities	are	
sufficient	to	explain	all	the	three	key	empirical	results,	even	if	all	pairwise	interac-
tions	are	identical.	Critically,	many	hundreds	of	individuals	of	both	species	may	be	
required	to	detect	even	intense	interactions,	implying	current	abundance	thresh-
olds	for	including	species	in	the	analyses	are	too	low.

4. Synthesis.	The	widespread	failure	to	reject	the	null	model	of	spatial	interspecific	
independence	could	be	due	to	low	power	of	the	tests	rather	than	any	key	biologi-
cal	process.	Since	we	do	not	model	habitat	associations,	our	results	represent	a	
first	step	in	quantifying	sample	sizes	required	to	make	strong	statements	about	
the	 role	 of	 biotic	 interactions	 in	 diverse	 plant	 communities.	 However,	 power	
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1  | INTRODUC TION

Understanding	the	contribution	of	biological	interactions	to	the	as-
sembly	and	regulation	of	natural	communities	remains	a	key	goal	in	
ecology.	The	continual	development	and	refinement	of	methods	to	
detect	interactions	from	spatial,	temporal,	and	spatio-temporal	data	
have	therefore	been	a	mainstay	of	the	literature	on	the	subject.

A	particular	 focus	on	 the	 role	of	competition	can	be	 found	 in	
plant	ecology,	not	 least	because	plants	seem	to	require	the	same	
few	nutrients	(Silvertown,	2004),	but	also	because	their	sessile	na-
ture	might	permit	an	understanding	of	processes	from	the	spatial	
pattern	 of	 individuals	 (Murrell,	 Purves,	 &	 Law,	 2001),	 and	 allow	
for	 easier	 experimental	manipulation	 (Goldberg	&	Barton,	 1992).	
Multiple	methods	exist	 to	detect	 interspecific	 interactions	but	 in	
non-manipulative	field	conditions	there	are	often	only	two	choices,	
both	of	which	rely	upon	data	where	the	location,	identity,	and	often	
size	 of	 every	 individual	 is	 recorded	 (Wiegand	 et	 al.,	 2017).	 The	
first	option	 is	 to	 fit	growth	and/or	survival	models	 that	 take	 into	
account	 the	 identity	 and	 size	 of	 nearby	 neighbours	 (e.g.	 Comita,	
Muller-Landau,	Aguilar,	&	Hubbell,	2010;	Stoll,	Murrell,	&	Newbery,	
2015;	Stoll	&	Newbery,	2005;	Uriarte,	Condit,	Canham,	&	Hubbell,	
2004).	However,	this	requires	repeated	sampling	over	time	in	order	
to	track	the	fate	of	every	 individual	and	very	often	such	data	are	
not	available.	Another	issue	is	that	because	all	interaction	parame-
ters	are	fitted	at	once,	considering	all	pairwise	interactions	is	very	
difficult	 due	 the	 large	 number	 of	 parameters.	 As	 a	 consequence	
neighbouring	 individuals	 are	 sometimes	 lumped	 into	 conspecifics	
and	 heterospecifics	with	 the	 potential	 problem	 that	 interspecific	
interactions	 are	 “lost”	 due	 to	 cancelling	 out	 of	weak	 and	 strong,	
and/or	positive,	 and	negative	effects	of	different	 species.	An	ex-
tension	 that	 has	 been	 recently	 explored	 is	 to	 model	 survival/
growth	as	functions	of	the	phylogenetic	or	functional	similarity	of	
neighbours	 (Fortunel,	Valencia,	Wright,	Garwood,	&	Kraft,	 2016;	
Uriarte	et	al.,	2010).	The	second	option	is	to	investigate	the	spatial	
pattern	of	the	community	to	test	the	null	hypothesis	that	species	
are	independently	arranged	with	respect	to	one	another.	Inference	
from	a	single	snapshot	of	the	community	relies	upon	the	assump-
tion	that	spatial	data	retain	the	“memory”	of	the	birth,	death	and	
growth	 of	 the	 individuals	 (Flügge,	Olhede,	&	Murrell,	 2012),	 and	
consequently	the	effect	of	 interspecific	 interactions	should	show	
up	as	inter-species	spatial	dependence	after	any	effect	of	the	abi-
otic	environment	has	been	 removed	 (Murrell	 et	 al.,	2001).	Under	
the	assumption	 that	all	pairwise	 tests	are	 independent,	each	pair	
of	species	can	be	assessed	individually,	and	dependent	interactions	

are	 categorised	 as	 being	 a	 competitive	 interaction	 if	 the	 species	
are	spatially	segregated,	and	facilitative	if	they	are	positively	asso-
ciated	in	space,	although	confirmation	via	experimental	manipula-
tion	is	still	advisable.	Due	to	less	restrictive	data	requirements	(the	
test	can	be	carried	out	on	a	single	sampling	of	the	community),	the	
spatial	snapshot	option	has	proven	to	be	very	popular,	and	the	test	
methods	employ	well-established	spatial	statistics	such	as	Ripley’s	
K	 or	 the	 pair	 correlation	 function	 (pcf)	 to	 test	 the	 null	model	 of	
spatial	independence	(Wiegand	et	al.,	2012).

The	results	of	previous	spatial	analyses	of	multi-species	commu-
nities	have	found	only	a	very	low	frequency	of	interspecific	spatial	
interactions	(aggregation/segregation)	over	scales	relevant	to	plant	
competition,	 implying	 interspecific	 interactions	 are	 generally	 rare,	
or	weak	 (as	discussed	by	Chacón-Labella,	Cruz,	&	Escudero,	2017;	
Luo,	Yu,	Chen,	Wu,	&	Ding,	 2012;	Wang	et	 al.,	 2014;	Wiegand	et	
al.,	 2012).	 However,	 comparisons	 of	 different	 plant	 communities	
have	also	revealed	a	positive	relationship	between	the	frequency	of	
spatial	independence	and	the	number	of	species	in	the	community	
(Chacón-Labella	et	al.,	2017;	Luo	et	al.,	2012;	Perry,	Miller,	Enright,	&	
Lamont,	2014;	Wang	et	al.,	2014;	Wiegand	et	al.,	2012).	Spatial	inde-
pendence	between	all	pairs	of	species	is	one	of	the	key	assumptions	
of	several	unifying	theories	for	biodiversity	(McGill,	2010),	and	the	
low	frequency	of	detected	interactions	has	been	put	forward	in	sup-
port	of	this	assertion	(Chac′on-Labella	et	al.,	2017;	Perry	et	al.,	2014;	
Wiegand	et	al.,	2012).	However,	classical	niche	theory	also	predicts	
the	strength	of	interspecific	interactions	to	decline	as	the	number	of	
coexisting	species	increases	(equation	4	in	Chesson,	2000),	with	the	
relative	strength	of	 interspecific	 interactions	being	proportional	to	
1/(s	−	1)	for	s	species.	Therefore,	the	main	difference	between	the	
theories	is	that	null	models	for	biodiversity	assume	spatial	indepen-
dence	 for	 all	 communities	 regardless	of	 species	 richness,	whereas	
niche	 theory	predicts	spatial	 interactions	are	 likely	 to	be	stronger,	
and	therefore	more	frequently	detected	in	less	species-rich	commu-
nities.	Hence,	we	argue	the	spatial	analyses	appear	to	better	support	
the	predictions	of	classical	niche	theory.

However,	 both	 the	 low	 frequency	 of	 interspecies	 interac-
tions	and	 the	 relationship	between	 species	 richness	 and	 species	
interactions	 could	 arise	due	 to	 the	 ability	of	 the	 statistical	 tests	
to	detect	significant	 interactions	at	 the	sample	sizes	being	used.	
Because	of	the	unequal	treatment	of	the	null	and	alternative	hy-
pothesis	in	classical	testing,	failure	to	reject	the	hypothesis	of	no	
interaction	does	not	provide	concrete	proof	of	a	 lack	of	 interac-
tions.	As	pointed	out	by	Wiegand	et	al.	 (2012),	when	species	are	
rare	the	rate	at	which	two	species	might	co-occur	in	space	is	also	

should	 be	 factored	 into	 analyses	 and	 considered	 when	 designing	 empirical	
studies.
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very	 low	 and	 the	 statistical	 tests	 used	might	 not	 be	 able	 to	 de-
tect	any	interaction,	even	if	it	were	very	strong.	If,	as	is	often	the	
case,	species-rich	communities	have	few	common	and	many	rare	
species,	 then	we	would	expect	 to	detect	 few	significant	 interac-
tions.	Indeed,	several	investigations	have	found	the	frequency	of	
significant	 spatial	 associations	 between	 species	 to	 be	 positively	
related	to	the	abundance	of	both	species	being	considered	(Luo	et	
al.,	2012;	Wang	et	al.,	2014;	Wiegand	et	al.,	2012),	raising	the	pos-
sibility	 that	 interactions	can	only	be	detected	amongst	 the	most	
abundant	species.

For	 all	 tests,	 a	 lower	 limit	on	 the	abundances	of	 species	 to	be	
included	 in	 the	 analyses	must	 normally	 be	 set,	 and	 this	 acknowl-
edges	 there	 is	 a	 limit	 to	 our	 ability	 to	 detect	 even	 strong	 interac-
tions	in	small	sample	sizes.	Previous	investigations	have	used	a	range	
of	 lower	 abundance	 thresholds	 including	 100	 (Flügge,	 Olhede,	 &	
Murrell,	2014),	70	(Wiegand	et	al.,	2012),	30	(Perry,	Miller,	Lamont,	
&	Enright,	2017),	and	even	18	(Chaćon-Labella	et	al.,	2017)	individ-
uals.	However,	 how	and	why	 is	 the	 lower	 threshold	 of	 individuals	
selected?	What	are	 the	 limits	of	our	analyses	 to	detect	significant	
interspecific	interactions?	We	are	unaware	of	any	study	that	inves-
tigates	 the	 statistical	 power	 of	 the	 tests	 for	 spatial	 independence	
between	pairs	of	species	that	are	commonly	used	and	consequently	
there	are	no	guidelines	for	the	lower	abundance	threshold.	As	such	
care	is	required	when	interpreting	failures	to	reject	the	null	hypoth-
esis,	and	we	argue	 it	 is	hard	to	make	strong	statements	about	 the	
relative	roles	of	stochastic-	and	niche-based	processes	across	differ-
ent	communities	until	we	gain	a	better	understanding	of	the	power	
of	the	methods	to	detect	departures	from	spatial	independence.	In	
other	words,	 is	spatial	 independence	a	good	first	approximation	 in	
species	rich	plant	communities	because	of	diffuse	competition	lead-
ing	to	weak	interactions,	or	is	it	because	the	statistical	methods	lack	
the	power	to	detect	the	interactions	for	the	given	sample	sizes	typ-
ically	available?

Here,	 we	will	 elaborate	 on	 the	 statistical	 power	 of	 commonly	
used	methods	 to	 detect	 significant	 interactions	 from	 spatial	 point	
pattern	data.	We	shall	study	this	problem	by	constructing	a	simple	
model	for	generating	bivariate	patterns	where	we	can	directly	con-
trol	the	strength	of	interaction,	and	by	utilising	an	approximation	to	
the	variance	of	the	spatial	summary	statistic.	We	will	show	how	the	
power	to	detect	significant	interactions	is	very	much	a	function	of	
the	 species’	 abundances,	 the	 strength	of	 the	 interaction	 (normally	
the	variable	we	are	trying	to	infer,	and	therefore	unknown),	and	the	
spatial	 scale	over	which	 the	 test	 is	performed.	Unfortunately,	 it	 is	
not	possible	to	provide	definitive	sample	size	criteria	since	the	power	
also	changes	with	the	summary	statistic	and	test	method	being	used.	
In	particular,	for	simplicity	we	ignore	habitat	associations,	and	as	we	
will	discuss,	it	is	hard	to	tell	how	much	our	results	will	change	when	
using	inhomogeneous	tests	that	take	this	into	account.	Despite	this,	
our	results	are	a	useful	first	guide	to	understanding	the	sample	sizes	
required	 to	detect	pairwise	 interactions.	With	 this	caveat	 in	mind,	
our	analyses	will	suggest	previous	abundance	thresholds	for	species	
inclusion	are	likely	too	low	to	detect	even	very	strong	interactions	
in	the	most	species-rich	communities	being	tested,	thus	questioning	

the	previously	derived	conclusion	of	a	lack	of	dependence	between	
species.	 Since	 power	 can	 be	 estimated	 from	Monte	Carlo	 simula-
tions,	 we	 hope	 our	 results	 will	 motivate	 ecologists	 to	 think	more	
about	the	issue	of	sample	size	in	future	studies	and	therefore	help	
to	resolve	the	debate	over	the	relative	importance	of	biotic	interac-
tions	in	species-rich	communities.

2  | MATERIAL S AND METHODS

2.1 | Summary statistics for bivariate interaction

Consider	data	for	two	species	labelled	1	and	2	given	as	two	sets	
of	 locations	 of	 individuals	x1=

{
x11,… x1n1

}
 and x2=

{
x21,… x2n2

}
 

respectively,	where	 the	 locations	are	observed	 in	a	well-defined	
area.	 We	 will	 call	 the	 combined	 set	 of	 points	 (x1,	 x2),	 a	 bivari-
ate	 point	 pattern,	 and	 refer	 to	 the	 individuals’	 locations	 simply	
as	 points.	 Technical	 details	 are	 left	 to	 Supporting	 Information	
Appendix	A,	but	in	brief	we	assume	that	the	data	generating	mech-
anisms	 can	 be	 described	 by	 some	 processes	X1 and X2,	 and	 the	
goal	 of	 statistical	 analysis	 is	 to	draw	conclusions	 about	 the	pro-
cesses	using	the	observed	set	(x1,	x2).	We	start	by	assuming	that	
the	processes	are	second-order	stationary,	which	means	there	 is	
no	 underlying	 heterogeneity	 in	 the	 abiotic	 environment	 (e.g.	 el-
evation,	 soil	 chemistry)	 that	 also	affects	 the	distributions	of	 the	
species,	and	implies	that	the	statistics	calculated	from	the	data	do	
not	depend	on	any	particular	location	in	the	observation	window	
(see	 Section	 4	 for	 extensions).	 Although	 ecological	 communities	
are	 rarely	well	 approximated	by	 stationary	models,	we	motivate	
studying	the	stationary	case	as	this	must	be	explored	first,	before	
any	more	complex	scenarios	can	be	understood.

We	will	 focus	our	attention	on	the	second-order	statistic	com-
monly	known	as	Ripley’s	K	(Ripley,	1979)	and	its	derivative,	the	pcf;	
our	rationale	being	that	these	two	summaries	are	amongst	the	most	
popular	 when	 characterising	 joint	 dependence	 (Law	 et	 al.,	 2009;	
Perry,	Miller,	&	Enright,	2006;	Velázquez,	Martínez,	Getzin,	Moloney,	
&	Wiegand,	2016).	First	(as	is	standard)	we	define	the	intensity	of	a	
point	process	λ	>	0	as	the	expected	number	of	points	per	unit	area.	
The cross-K	or	partial-K,	denoted	here	by	K12(r),	is	a	function	defined	
as	the	expected	number	of	points	of	species	2	inside	a	circle	of	radius	
r	placed	on	a	random	individual	of	species	1,	scaled	with	intensity	λ2 
to	remove	dimension	and	facilitate	comparisons.	Due	to	symmetry,	it	
follows	that	K12	(r)	=	K21(r).	The	parameter	r	controls	for	spatial	scale	
and	allows	for	multi-scale	analysis.

The	derivative	of	K12 in r	 is	denoted	by	g12(r),	and	 is	called	the	
cross-	or	partial-pcf.	The	pcf	describes	the	aggregation/segregation	
of	 cross-species	 point	 locations	 at	 distance	 r	 where	 the	 probabil-
ity	of	having	a	species	1	individual	in	some	small	region	and	a	spe-
cies	2	individual	in	some	small	region	distance	r	away	is	relative	to	 
g12 (r)λ1λ2.	 The	 quantities	 are	 scaled	 so	 that	 for	 independent	 pro-
cesses	 the	expectation	 is	K12	 (r)	=	πr2 and g12	 (r)	=	1.	The	different	
statistics	are	used	to	ask	subtly	different	questions,	with	K12	(r)	test-
ing	for	species	independence	up‐to distance	r,	and	g12	(r)	testing	for	
independence	at	distance	r.
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2.2 | Model generated data for illustration

For	better	understanding	of	the	power	of	bivariate	point	pattern	sta-
tistics,	we	develop	a	 simple	 two-species	model	 for	which	 the	 level	
of	cross-species	aggregation/segregation	can	be	controlled	directly	
and	 explicitly	 by	 two	 parameters	 that	 determine	 the	 spatial	 scale	
and	the	strength	of	the	interaction.	Using	this	model,	we	can	provide	
power	estimates	for	different	sample	sizes	and	interaction	scales	and	
strengths	using	simulations.	The	details	of	the	model	are	provided	in	
Supporting	Information	Appendix	B.	Briefly,	we	assume	species	1	is	
insensitive	to	the	presence	of	species	2,	but	that	the	spatial	distribu-
tion	of	species	2	is	dependent	on	the	spatial	distribution	of	species	1.	
Asymmetric	 interactions	are	a	 reasonable	starting	point	given	they	
are	 thought	 to	 be	 quite	 common	 in	 plant	 communities	 (Freckleton	
&	 Watkinson,	 2002)	 and	 theory	 suggests	 competitive	 asymmetry	
may	 help	maintain	 diversity	 in	 competitive	 communities	 (Nattrass,	
Baigent,	&	Murrell,	2012).	The	locations	of	all	n1	individuals	are	given	
by	 a	 Poisson	 process,	 so	 species	 1	 exhibits	 no	 intraspecific	 spatial	
structure.	 The	 n2	 individuals	 are	 placed	 with	 distribution	 that	 de-
pends	on	the	locations	of	species	1.	Importantly	the	model	has

where h(r)	=	exp[−r2/(2τ2)]	is	a	decreasing	function	whose	exponen-
tial	decay	is	controlled	by	the	parameter	τ	>	0,	and	has	a	range	(h is 
non-zero)	of	approximately	2τ.

This	 function	 is	 analogous	 to	 the	 interaction	or	 competition	
kernels	 used	 in	 spatially	 explicit	 birth-death	 models	 (Murrell,	
2010;	Murrell	&	Law,	2003).	The	strength	of	 interspecies’	 inter-
action,	 as	 summarised	by	g12	 (r),	 is	 controlled	by	 the	parameter	
b	≥	−1.	If	−1	<	b	<	0	the	two	species	exhibit	segregation	(g12	<	1),	
if	b	>	0	the	two	species	exhibit	aggregation	or	clustering	(g12	>	1),	
and when b	=	0	 the	 two	 species	 are	 independent.	 The	 reader	
should	note	that	this	model	is	simply	a	pattern	generating	process	
for	illustration,	rather	than	a	mechanistic	model,	and	we	simulate	
patterns	 conditional	 on	 fixed	n1 and n2	 as	we	want	 full	 control	
over	them	(for	the	unconditional	model	the	abundances	are	ran-
dom,	like	in	the	birth	and	death	processes,	see	e.g.	Murrell,	2010).	
Example	 point	 patterns	 showing	 inter-species	 aggregation	 and	
segregation	can	be	found	in	Supporting	Information	Figure	S6	in	
Appendix	B.

2.3 | Testing bivariate independence

We	now	turn	our	attention	to	the	main	problem	of	determining	if	the	
processes	X1 and X2,	as	observed	through	the	bivariate	point	pattern	
(x1,	x2),	are	statistically	independent.	If	the	processes	were	independ-
ent,	then	the	observed	pattern	would	be	a	random super‐position	of	
the	two	processes.	We	will	take	this	as	our	 independence or null hy‐
pothesis	which	now	needs	to	be	tested	using	the	observed	data.

To	test	if	the	independence	hypothesis	is	compatible	with	the	data,	
observed	values	of	a	chosen	test	statistic	are	compared	to	the	distribu-
tion	of	 the	 test	 statistic	 under	 the	 independence	model.	We	can	 test	

either	(a)	at	some	specific	distance,	which	we	call	pointwise tests	or	(b)	si-
multaneously	over	multiple	distances.	For	both	types	of	tests,	the	idea	is	
to	compute	some	test	statistic	T ∈ ℝ	from	the	data,	and	compare	it	to	the	
values	of	T	(its	distribution)	as	if	the	null	hypothesis	were	true.	If	the	data	
value	is	sufficiently	extreme,	we	have	reason	to	reject	the	null	hypothesis.

The	true	distribution	of	the	test	statistic	under	independence	is	
rarely	known	in	point	pattern	applications,	and	needs	to	be	approx-
imated	by	an	empirical	distribution	derived	from	simulations	under	
the	independence	model.	This	approach	is	known	as	Monte	Carlo	
testing	(Myllymäki,	Mrkvička,	Grabarnik,	Seijo,	&	Hahn,	2017).	We	
consider	the	observation	area	to	be	rectangular,	in	which	case	the	
independence	 simulation	 consists	 of	 randomly	 shifting	 pattern	 1	
(or	 2	 or	 both)	with	 a	 toroidal	 wrap	 (Lotwick	 &	 Silverman,	 1982).	
This	keeps	the	intra-species	statistics	of	the	patterns	intact	while	
“breaking”	any	interspecies	dependencies,	and	can	also	be	used	for	
inhomogeneous	patterns	(Cronie	&	van	Lieshout,	2015).

For	the	purposes	of	this	discussion,	we	will	consider	only	the	
simple	 pointwise	 testing	 scenario,	 for	 which	 we	 can	 employ	 an	
analytical	approach	using	a	Gaussian	approximation	to	the	distri-
bution	corresponding	to	the	random	shift	simulations.	As	we	will	
show,	the	approximation	is	very	useful	since	it	is	not	only	compu-
tationally	 very	 efficient	 relative	 to	 the	MC	 simulations,	 but	 also	
allows	some	analytical	insight	into	what	affects	the	power	of	the	
tests.	The	pointwise	tests	we	will	study	are	comparable	to	simul-
taneous	 tests	 when	 the	 best	 distance	 to	 test	 at	 is	 known	 (see	
Supporting	 Information	 Table	 S1	 in	 Appendix	 C).	 As	 detailed	 in	
Supporting	 Information	Appendix	A,	we	can	choose	an	unbiased	
estimator	K̂12	for	which	approximately	it	holds:

where K12	is	the	value	under	the	correct	model.	Conditional	on	the	
observed	point	counts	n1, n2,	the	variance	of	K̂12 (r)	can	be	approx-
imated	by

where c1, c2,	c3	are	constants	depending	on	the	distance	r	and	the	
geometry	 of	 the	 observation	 area	 (see	 Supporting	 Information	
Appendix	A.3).	At	 a	 short	 distance,	 the	 constants	 reflect	mainly	
the	stochasticity	of	each	point’s	neighbour	count,	 and	when	 the	
distance	 increases	 the	 “censoring”	 of	 the	 neighbourhood	 at	 the	
edge	of	the	finite	observation	window	contributes	additional	un-
certainty.	The	form	given	in	Equation	2	is	exact	when	X1 and X2 are 
distributed	according	 to	a	homogeneous	Poisson	process,	but	as	
we	will	see	later	on	in	Section	3.1,	the	approximation	works	quite	
well	 also	 for	 weakly	 internally	 aggregated/segregated	 patterns.	
Under	 strong	 internal	 aggregation,	 the	 true	 variance	 of	K12 will 
be	higher	 than	 the	approximation	given	by	 (2),	 but	under	 strong	
internal	segregation	the	true	variance	of	the	cross-K will be lower 
than	 given	 by	 (2);	we	 refer	 to	 Supporting	 Information	Appendix	
A.3	for	further	details.	Although	we	focus	on	K12,	the	approach	to	

g12 (r)=1+bh (r) ,

(1)K̂12 ∼ N
(
K12,�

2
)
⇔T :=

K̂12−K12

�
∼ N

(
0,1

)
,

(2)�2≈ c1
(
n1n2

)−1 [(
n1+n2

)
c2+c3

]
,
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approximating	the	distribution	is	nearly	identical	for	g12,	only	the	
constants	are	different.

2.4 | Power of a statistical test

Denoting	the	null	hypothesis	of	bivariate	independence	by	H0,	the	test	
statistic	by	T,	and	a	confidence	level	of	the	test	by	(1	−	α)	where	α ∈	(0,1).	
Recall	that	α	is	the	researcher’s	fixed	accepted	margin	of	making	a	false	
positive	decision,	also	known	as	type I error,	defined	mathematically	as

where P	 is	the	distribution	of	T,	q1−α	 is	the	corresponding	threshold	
value	for	T	so	that	if	T > q1−α is under H0,	then	we	reject	the	null	hy-
pothesis	H0.	 The	 condition	 refers	 to	T	 being	 tested.	On	 the	 other	
hand,	the	power	of	a	test	is	the	probability	of	a	true	positive	judgment,	
that	is,	the	probability	of	rejection	when	the	hypothesis	H0	does	not	
hold.	Consider	first	the	margin	of	making	a	false	negative	judgment,

also	known	as	type II error.	Then	the	power	of	the	test	is	defined	as

Therefore,	a	test	is	powerful	if	it	can	correctly	reject	the	wrong	
null	model	with	a	high	probability.

Consider	the	idealised	situation	of	testing	the	cross-species	 in-
dependence	using	the	pointwise	summary	K12=K12(r̃)	for	some	fixed	

spatial	scale	 r̃	only.	For	the	test	statistic	K12,	the	null	hypothesis	H0: 
“random	 superposition”	 implies	K12=k0=𝜋r̃2.	 Let	 us	 now	 consider	
the	situation	that	in	truth	K12	=	k12	≠	k0.	Then,	if	we	accept	the	ap-
proximate	Gaussianity	of	the	test	statistic	as	shown	in	the	previous	
section,	it	follows	by	elementary	manipulations	that

where Φ	 is	 the	 cumulative	 distribution	 function	 of	 the	 standard	
normal	distribution,	with	a-quantiles	qa	 (approx.	1.96	for	α	=	0.05	
in	the	two-sided	test).	Notice	that	the	sign	of	interaction	does	not	
matter,	meaning	that	due	to	symmetry	of	the	Gaussian	distribution	
aggregation	 is	as	easy	or	hard	to	detect	as	segregation	of	similar	
strength.	 Also	 notice	 how	 the	 power	 is	 dependent	 on	 the	 vari-
ance	 (σ2)	 of	 the	 test	 statistic	used.	The	 smaller	 the	variance,	 the	
higher	the	power,	which	explains	why	different	unbiased	estima-
tors	of	K12	have	been	developed	(see	e.g.	Illian,	Penttinen,	Stoyan,	
&	Stoyan,	2008)	and,	while	all	being	correct	 in	the	sense	of	bias,	
they	can	lead	to	different	rates	of	detecting	interactions	because	
of	different	variances.

We	can	now	use	the	power	formula	and	our	approximation	for	
the	variance	(Equation	2)	to	illustrate	how	to

•	 compute	the	power	of	the	test	given	the	point	counts	n1,	n2,	ex-
pected	true	signal	k12,	and	the	type	I	error	tolerance	α;

•	 compute	the	required	point	counts	given	the	expected	true	signal	
k12,	the	type	I	error	tolerance	α,	and	the	type	II	error	tolerance	β 
or	power.

𝛼=P
(
T>q1−𝛼|H0 true

)
,

�=P
(
T≤q1−�|H0 not true

)
,

power=power
(
H0,T,�

)
:=1−� .

(3)power≈1−Φ

(
q1−�∕2−

|k12−k0|
�

)
,

F I G U R E  1   Top:	Examples	of	the	segregated	bivariate	point	patterns,	b	=	−0.5	and	2τ	=	10,	100	×	100	window.	Bottom:	The	power	of	K12-
based	pointwise	cross-species	independence	tests	when	species	are	segregated	like	in	the	example	patterns.	The	true	power	is	estimated	
using	5,000	repeated	tests	with	199	random	shifts	each	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]
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3  | RESULTS

The	 power	 formula	 (Equation	 3)	 is	 a	 good	 approximation	 to	 the	
power	of	the	toroidal	shift	Monte	Carlo	test	(Figure	1).	There	is	very	
little	difference	between	the	test’s	true	power	and	the	approxima-
tive	power	given	by	 the	analytical	 formula,	with	 the	analytical	ap-
proximation	slightly	overestimating	the	power	(at	most	10%)	due	to	
the	clustering	of	species	2	and	subsequent	underestimation	of	the	
variance	via	formula	(2).	The	acceptable	quality	implies	that	we	can	
discuss	the	power	and	its	effect	on	ecological	interpretations	using	
the	convenient	analytical	formula,	acknowledging	the	small	optimis-
tic	 bias	 and	 the	 simplifying	 assumptions	 of	 stationarity	 and	weak	
intra-species	structuring.

As	indicated	by	Equation	2,	the	variance	of	the	estimator	for	the	
K12-function	is	increased	when	either	or	both	of	n1 and n2 are small. 
This	means	 that	 both	 the	 imbalance	 in	 population	 abundances	 as	
well	 as	 the	 total	number	of	 individuals	affect	our	ability	 to	detect	
bivariate	interactions.	We	shall	investigate	each	of	these	in	turn,	as	
well	as	the	spatial	distance	of	testing.

3.1 | Power in balanced scenarios and the 
importance of the spatial scale of testing

Figure	1	depicts	the	pointwise	powers	for	different	balanced	(n1	=	n2)	
low-abundance	scenarios	when	data	are	segregated	(aggregated	re-
sults	 are	 nearly	 identical).	 Visual	 inspection	 of	 the	 example	 point	
patterns	(Figure	1,	top	row)	already	gives	some	indication	that	de-
partures	from	spatial	independence	might	be	hard	to	detect	for	the	
lowest	abundances.	More	formal	analysis	of	the	power	quantifies	the	
increase	in	ability	to	detect	interactions	with	increasing	abundances	
(n1,	n2)	of	the	species	being	investigated	and	how	this	is	affected	by	
the	spatial	scale	at	which	the	hypothesis	is	tested	(Figure	1,	bottom	
row).	In	all	cases,	the	power	to	detect	the	interaction	at	small	spatial	
scales	(r	<	2)	is	low	because,	although	the	interaction	is	at	its	strong-
est	here,	the	variance	of	K12	 is	relatively	high	and	overwhelms	the	
ecological	signal.	The	trade-off	between	signal	and	noise	leads	to	a	

unimodal	 relationship	 between	 power	 and	 the	 neighbourhood	 ra-
dius r,	with	the	peak	being	approximately	at	r	=	7	for	the	interaction	
range	2τ	=	10	for	all	abundance	sizes	considered	(Figure	1).	We	will	
refer	to	this	peak	in	power	with	r	as	the	optimal	distance	for	testing,	
and	will	 focus	on	this	best	case	scenario	 for	 the	results	presented	
below.	 The	 unimodal	 relationship	 highlights	 the	 point	 that	 having	
some	prior	knowledge	about	the	likely	ranges	of	biotic	interactions	
is	going	to	be	important	for	detecting	interactions.

Previous	results	based	on	in	situ	data	analysis	suggest	detectable	
interactions	between	trees	typically	occur	over	10–20	m	(Uriarte	et	
al.,	2004).	Scaling	our	analyses	accordingly,	we	can	use	the	power	
formula	to	estimate	the	population	sizes	we	require	in	order	to	reli-
ably	detect	an	interaction	of	a	given	strength	and	range	(Figure	2).	
If	for	example,	we	wish	to	be	75%	sure	a	true	positive	is	not	to	be	
missed	when	the	interaction	strength	is	weak	(b	=	−0.1),	then	we	re-
quire	species	with	populations	of	approximately	400	individuals	for	
the	10	unit	interaction	neighbourhood	(2τ	=	10)	and	250	individuals	
for	20	unit	neighbourhood	(2τ	=	20).	This	value	is	surprisingly	large	
compared	to	what	data	we	commonly	have	available	to	us.

In	 contrast,	 for	 the	 maximum	 possible	 negative	 interaction	
strength	 (b	=	−1),	 a	 similar	 level	 of	 power	 is	 reached	 with	 only	
around	35	individuals	for	2τ	=	10	unit	and	18	individuals	for	2τ	=	20.	
Conversely,	 if	we	have	a	pair	 of	 species	with	n1	=	n2	=	50,	 and	we	
wish	to	be	75%	sure	a	true	positive	is	not	missed,	we	must	hope	that	
the	true	 interaction	 |b| when	coupled	with	short	 interaction	range	
(2τ	=	10)	 is	 at	 least	 0.7–0.75,	 and	 if	 coupled	with	 long	 interaction	
range	(2τ	=	20)	is	at	least	0.3–0.4.	It	therefore	seems	likely	that	only	
the	very	strongest	 interactions	are	detectable	with	the	number	of	
individuals	that	are	typically	found	in	the	species-rich	datasets.

3.2 | Imbalances in species abundance

Since	 most	 communities	 exhibit	 a	 “hollow	 curve”	 distribution	 of	
population	abundances	(McGill	et	al.,	2007),	an	imbalance	in	popula-
tion	sizes	is	very	common.	From	the	variance	formula	(2),	it	is	clear	
that	imbalance	has	a	strong	effect	on	the	power	because	the	term	

F I G U R E  2  Power	of	K12-based	pointwise	cross-species	independence	tests	when	abundances	are	balanced	and	testing	is	done	on	the	
best	possible	distance.	Test	level	α	=	5%	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]
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(n1n2)
−1,	and	hence	the	variance,	increases	with	imbalance.	This	re-

lationship	 is	 confirmed	when	we	 use	 the	 power	 formula	 to	 quan-
tify	 the	 effect	 of	 population	 imbalance	 for	 different	 interaction	
strengths	and	combined	population	sizes	(Figure	3).	So,	for	example,	
for	an	interaction	strength	of	|b|	=	0.1	and	a	desired	power	of	80%,	
a	combined	individual	count	of	about	750	is	required	when	the	pop-
ulations	 are	perfectly	 balanced,	 but	1,000	 are	 required	when	one	
species	is	five	times	more	abundant	than	the	second	species,	and	a	
surprisingly	large	1,500	required	when	one	species	is	ten	times	more	
abundant	than	the	other.	Alternatively,	consider	that	we	require	90%	
power,	and	that	the	interactions	are	assumed	to	be	|b|	=	0.5	and	of	
short	range,	2τ	=	10.	Then,	to	be	on	the	safe	side,	we	should	attain	
samples	of	sizes	at	least	(100,	100),	(40,	200),	or	(30,	300),	depending	
on	the	imbalance.

3.3 | Power at rainforest sample sizes

We	now	 consider	 how	our	 understanding	 of	 the	 power	 to	 detect	
interactions	might	affect	results	for	abundance	distributions	typical	
of	observed	plant	communities.	For	simplicity,	let	us	assume	interac-
tions	are	of	the	type	given	by	our	model	and	that	every	species	 is	

interacting	with	every	other	species	in	an	identical	manner	(so	b and 
range	2τ	are	the	same	for	all	pairs	of	species).	Since	the	power	is	the	
probability	of	detecting	 interactions,	given	that	 they	exist,	we	can	
get	a	rough	estimate	of	the	number	of	detected	cross-species	inter-
actions	by	assuming	the	tests	are	independent,	and	summing	up	the	
powers.	This	then	allows	a	coarse	comparison	of	recently	reported	
frequencies	 of	 detected	 interactions	 in	 tropical	 forests	 (Chaćon-
Labella	et	al.,	2017;	Lan	et	al.,	2016;	Perry	et	al.,	2014;	Wang	et	al.,	
2014;	Wiegand	 et	 al.,	 2012)	 with	 the	 expected	 frequency	 of	 de-
tected	interactions	as	a	function	of	power.

Figure	4	shows	the	expected	number	of	cross-species	interactions	
detected	as	a	function	of	abundance	for	various	hypothetical	interac-
tion	strengths	and	ranges.	The	abundances	are	taken	from	the	Barro	
Colorado	 Island	 1995	 census	 (https://ctfs.si.edu/webatlas/datasets/
bci/abundance)	 of	 woody	 plants	 with	 diameter	 at	 breast	 height	 at	
least	1	cm	(Condit,	1998),	and	these	are	used	in	conjunction	with	our	
variance	approximation	and	bivariate	interaction	model	(so	we	are	not	
using	the	spatial	point	pattern	associated	with	the	1995	census).	The	
abundances	are	highly	skewed,	with	a	 large	proportion	of	 low-abun-
dance	species,	and	we	show	the	power	in	two	cases,	when	the	pool	of	
species	consists	of	those	with	abundance	at	least	30	and	100.	Reducing	

F I G U R E  3  Sample	size	n1 +n2	requirements	if	testing	for	independence	at	level	α	=	5%	with	a	K12-based	pointwise	cross-species	
independence	test	in	the	example	scenario.	Interaction	range	2τ	=	10	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]
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the	species	pool	by	 increasing	the	abundance	threshold	naturally	 in-
creases	the	proportions	of	detection,	and	highlights	the	importance	of	
using	similar	 thresholds	when	comparing	different	communities.	 It	 is	
striking	how	little	power	is	to	be	expected	for	most	of	the	species	even	
when	 assuming	 strong	 interaction	 (b	=	−0.75).	Only	when	 the	 abun-
dance	of	a	species	reaches	thousands,	can	we	be	expected	to	detect	
even	50%	of	the	interactions	present.	This	is	a	very	thought-provoking	
result,	as	the	lack	of	detection	might	be	explained	simply	by	a	lack	of	
power	in	the	majority	of	species-pairs.	However,	we	remind	the	reader	
that	our	tests	do	not	take	habitat	associations	into	account	whereas	the	
previous	analyses	(Chaćon-Labella	et	al.,	2017;	Lan	et	al.,	2016;	Perry	et	
al.,	2014;	Wang	et	al.,	2014;	Wiegand	et	al.,	2012)	approximately	factor	
this	out,	and	being	different	tests	the	power	to	detect	interactions	will	
be	different.	We	discuss	this	point	in	more	detail	below.

4  | DISCUSSION

Understanding	 the	 relative	strength	of	 interspecific	 interactions	 is	
one	of	the	key	goals	of	community	ecology,	and	the	null	model	ap-
proach	has	been	popular	for	characterising	spatial	point	patterns	of	
(predominantly)	 diverse	plant	 communities	 (e.g.	Chacón-Labella	 et	
al.,	2017;	Lan	et	al.,	2016;	Martinez,	Wiegand,	Gonzalez-Taboada,	&	
Obeso,	2010;	Perry	et	al.,	2014;	Velázquez,	Paine,	May,	&	Wiegand,	
2015;	Wang	et	al.,	2014;	Wiegand	et	al.,	2012;	Wiegand	et	al.,	2017).	
However,	there	has	been	little	guidance	on	when	a	given	test	is	likely	
to	be	able	to	detect	species	associations	that	are	present.	Here,	we	
have	made	a	 first	 step	 in	 closing	 this	 important	 gap	 in	our	under-
standing.	Our	results	clarify	the	quantitative	relationships	between	
the	 strength	 of	 the	 underlying	 biological	 interaction,	 sample	 size	
(number	of	individuals	of	both	species	under	investigation),	and	the	
spatial	scale	over	which	the	test	is	being	performed.	We	have	also	
shown	that	statistical	power	may	explain	both	the	low	detection	rate	
of	biological	interactions	in	plant	communities,	and	the	negative	re-
lationship	between	species-richness	and	frequency	of	detected	in-
terspecific	interactions	in	comparative	studies.

Ecologists	have	had	 to	 rely	 largely	upon	 their	 intuition	 for	de-
ciding	the	minimum	population	size	to	include	in	their	analyses	with	
the	 result	 that	 a	 range	of	 criteria	 up	 to	100	 individuals	 (Flügge	et	
al.,	 2014)	 have	 been	 used.	 For	 species-rich	 communities,	 where	
many	 interspecific	 interactions	may	necessarily	be	weak	(Chesson,	
2000),	abundances	of	both	species	may	need	to	be	in	the	hundreds	
of	individuals	before	any	interaction	is	detected	(Figure	3),	and	this	
implies	previous	abundance	thresholds	are	likely	too	low	to	detect	
many	interactions.	As	several	authors	have	acknowledged,	the	fail-
ure	to	reject	the	null	hypothesis	of	spatial	independence	in	so	many	
species-pairs	 does	 not	 necessarily	 mean	 interspecific	 interactions	
are	not	occurring,	or	present	(Chacón-Labella	et	al.,	2017;	Perry	et	
al.,	2014;	Wiegand	et	al.,	2012),	and	we	hope	our	study	highlights	
how	the	power	of	the	tests	can	be	assessed	and	should	be	factored	
into	the	interpretation	of	the	results.	The	power	formula	can	also	be	
used	in	estimating	the	area	of	observation	necessary	to	increase	the	
power	 to	a	desirable	 level	 (Supporting	 Information	Appendix	C.4),	

so	can	also	be	used	to	aid	study	design.	Nonetheless,	we	do	stress	
that	there	is	still	much	to	be	learned	about	the	power	of	the	statis-
tical	tests	used	in	earlier	studies,	given	the	assumptions	we	had	to	
make,	and	that	the	reader	should	take	our	contribution	as	a	guide	to	
sample	sizes	that	are	required	to	make	strong	statements	about	the	
frequency	and	strength	of	interspecific	interactions.

Although	our	model	 is	clearly	mis-specified	as	we	use	tests	as-
suming	 that	 intensity	 is	 not	 dependent	 on	 abiotic	 features	 of	 the	
environment,	the	general	applicability	of	our	results	will	carry-over	
into	the	inhomogeneous	setting.	The	quantitative	relationships	be-
tween	sample	sizes	and	statistical	power	will	of	course	change	for	
different	 tests,	 including	 the	 inhomogeneous	Poisson	process,	but	
the	qualitative	relationships	we	uncover	are	likely	to	remain.	In	par-
ticular,	we	would	still	expect	a	positive	relationship	between	popu-
lation	size	and	frequency	of	interactions	to	emerge	simply	due	to	an	
increase	in	power	at	larger	sample	sizes.	Such	a	positive	relationship	
has	already	been	reported	in	a	number	of	empirical	studies	that	take	
habitat	associations	into	consideration	(Chacón-Labella	et	al.,	2017;	
Luo	et	al.,	2012;	Wang	et	al.,	2014;	Wiegand	et	al.,	2012).	It	is	possi-
ble	that	common	species	are	better	competitors	and	are	somehow	
suppressing	the	abundance	of	the	weaker	competitors,	but	without	
experimental	manipulation,	or	perhaps	different	analyses	using	re-
peated	sampling	over	time	(Damgaard	&	Weiner,	2017),	it	is	hard	to	
distinguish	whether	 this	pattern	 is	 a	 result	of	biological	processes	
or	the	ability	of	the	statistical	methods	to	detect	interactions	at	dif-
ferent	population	sizes.	Given	the	potential	for	low	power	to	detect	
interactions	for	abundances	typical	of	species-rich	communities,	we	
suggest	that	future	tests	should	consider	the	neighbourhood	from	
the	perspective	of	traits	or	phylogenetic	relatedness	(e.g.	Wang	et	
al.,	2016),	with	 interactions	potentially	being	some	 function	of	 re-
latedness	or	functional	similarity.	In	so	doing,	tests	would	consider	
the	impact	of	multiple	species	on	a	focal	species	and	would	reduce	
some	of	the	low	power	issues	we	highlight	here.	However,	such	an	
approach	 requires	 reliable	 phylogenies,	 and	 adequate	 sampling	 of	
traits	that	are	relevant	to	growth,	survival	and	fecundity	of	individu-
als,	and	these	are	still	challenging	issues	in	ecology.

The	spatial	scale	over	which	tests	are	performed	is	important	for	
the	ability	to	detect	spatial	dependencies	(Figure	1),	and	our	results	
are	similar	to	empirical	studies	that	often	find	few	negative	interac-
tions	at	the	shortest	distances,	even	though	this	is	where	the	interac-
tions	are	likely	to	be	strongest	(Chacón-Labella	et	al.,	2017;	Wang	et	
al.,	2014;	Wiegand	et	al.,	2012).	Short	scales	suffer	from	having	high	
variability	due	to	the	relatively	small	number	of	neighbours	possible	
in	a	 small	area,	but	at	 longer	distances,	 the	effect	of	neighbours	 is	
weaker.	Hence,	 there	 is	 a	 sweet	 spot	where	 this	 trade-off	 is	maxi-
mised,	and	the	location	of	this	is	likely	dependent	on	several	factors,	
not	least	of	which	is	the	scale	over	which	interactions	are	occurring	
(see	e.g.	figure	2	in	Chacón-Labella	et	al.,	2017	for	an	empirical	ex-
ample).	For	woody	plants,	there	have	been	several	studies	that	have	
fitted	neighbourhood	growth	or	survival	models	to	individual-based	
data	that	track	the	fate	of	trees	over	time	(e.g.	Stoll	&	Newbery,	2005;	
Uriarte	et	al.,	2004),	and	most	results	seem	to	point	to	interactions	
being	 confined	 to	 10–30	m	 radius	 around	 an	 individual.	 However,	
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little	 is	known	about	how	the	spatial	scales	of	 interspecific	 interac-
tions	 change	 with	 life	 history	 stage,	 environmental	 conditions,	 or	
even	species	 identity	even	though	the	latter	has	been	shown	to	be	
very	 important	 for	determining	coexistence	 (Murrell	&	Law,	2003).	
Any	changes	to	the	scales	of	interactions	will	have	consequences	for	
the	hypothesis	testing	methods	discussed	here,	but	until	more	is	un-
derstood	about	the	spatial	scales	of	interactions	between	species,	it	
seems	sensible	to	test	over	ranges	reported	in	earlier	studies.

Our	discussion	up	to	this	point	has	been	 in	the	context	of	sta-
tionary,	 most	 notably	 homogeneous,	 data.	 Most	 recent	 analyses	
have	tried	to	factor	out	the	effects	of	spatial	heterogeneity	 in	the	
abiotic	environment	by	using	inhomogeneous	Poisson	processes	as	
the	null	model	 (Chacón-Labella	et	 al.,	 2017;	Punchi-Manage	et	 al.,	
2015;	Wiegand	et	al.,	2012).	Currently,	it	is	hard	to	predict	whether	
the	power	of	an	inhomogeneous	analogue	of	our	scenario	would	be	
lower	 or	 higher.	On	 the	 one	 hand,	we	 could	 expect	 higher	 power	
to	 detect	 interactions	 because	 the	model	 better	 captures	 the	 un-
derlying	 processes	 that	 generate	 the	 spatial	 distributions	 of	 the	
species	within	the	community.	However,	we	also	expect	variance	to	
be	 increased,	since	extra	parameters	need	to	be	estimated	leaving	
fewer	degrees	of	freedom	per	parameter.	For	example,	tests	using	
the	 inhomogeneous	Poisson	process	method	use	a	smoothing	ker-
nel	 to	 approximately	 remove	 the	 effects	 of	 large	 scale	 structure	
assumed	to	be	caused	by	habitat	associations	(see	e.g.	Wiegand	et	
al.,	 2012).	 Typically,	 the	 same	 smoothing	parameter	 is	 used	 for	 all	
species,	which	is	a	sensible	assumption	when	little	is	known	about	
the	spatial	scale	of	habitat	associations,	but	there	is	no	reason	to	sus-
pect	a	single	smoothing	parameter	is	appropriate	for	all	species.	An	
open	challenge	is	to	better	understand	how	mis-specification	of	the	
smoothing	parameter	will	bias	the	detection	of	interactions.	Again,	
we	feel	that	using	a	biologically	motivated	model	to	simulate	data	is	
a	useful	approach	for	exploring	such	issues.

The	understanding	of	statistical	significance	versus	the	practical	
importance	of	any	effect	has	been	discussed	in	other	application	do-
mains	(Button	et	al.,	2013;	Hojat	&	Xu,	2004;	Sawyer	&	Ball,	1981).	
The	 difficulties	 inherent	 in	 studies	 determining	 significance	 in	 set-
tings	with	relatively	small	sample	sizes,	has	for	example	been	noted	
by	Ioannidis	(2005)	and	Open	Science	Collaboration	et	al.	(2015).	Our	
results	 underscore	 the	 difficulties	 of	 statistical	 testing	 for	 smaller	
sample	 sizes,	 especially	 given	 the	 unequal	 weighting	 between	 the	
null	 and	alternate	hypotheses.	We	also	 remind	 the	 reader	 that	 the	
spatial	statistics	used	in	the	null	model	approach	do	not	say	anything	
directly	about	the	processes	that	may	have	created	the	patterns,	and	
different	processes	could	generate	the	same	summary	statistic.	Since	
the	data	are	often	a	single	snapshot	of	the	community	it	is	also	hard	
to	infer	the	importance	of	the	results	for	the	population	dynamics	of	
the	species	under	scrutiny.	For	example,	other	processes	such	as	tem-
poral	variation	in	the	environment	(Chisholm	et	al.,	2014),	and	within	
species	interactions	(perhaps	mediated	via	specialist	natural	enemies,	
LaManna	et	al.,	2017)	could	both	contribute	more	to	population	dy-
namics	than	any	detected	pairwise	interaction.	Similarly,	interactions	
that	are	undetected	due	 to	 low	sample	 sizes	could	be	expected	 to	
contribute	little	to	population	dynamics,	especially	if	both	species	are	

quite	rare,	although	the	contribution	of	many	weak	interactions	might	
still	 be	 significant	 factors	 affecting	 growth,	 survival,	 and/or	 fecun-
dity.	As	a	result,	we	believe	the	spatial	tests	for	independence	should	
act	as	exploratory	studies	to	highlight	potentially	significant	species	
interactions,	but	understanding	their	biological	importance	requires	
different	methods.	As	an	alternative,	model-based	approaches,	either	
in	the	form	we	use	here	(which	include	the	familiar	Thomas	Cluster	
models)	or	birth-death	models	(May,	Huth,	&	Wiegand,	2015;	Rajala,	
Murrell,	&	Olhede,	2018)	 could	also	be	applied	 to	 the	 inference	of	
biological	interactions	from	point	pattern	data	(Wiegand	et	al.,	2017).	
Model	fitting	will	normally	lead	to	estimation	of	parameters	that	can	
also	be	estimated	in	the	field	(e.g.	dispersal	kernels,	interaction	ker-
nels),	we	therefore	feel	that	their	continued	development	will	help	to	
improve	the	understanding	of	the	processes	underpinning	the	results	
returned	(Wiegand	et	al.,	2017).

In	 conclusion,	we	 hope	 our	main	 contribution	 is	 to	 encourage	
more	users	to	consider	explicitly	the	ability	of	the	spatial	point	pat-
tern	 tests	 to	 detect	 significant	 associations	 between	 species.	We	
have	shown	that	the	data	requirements	to	detect	even	strong	inter-
actions	may	be	quite	high,	mirroring	results	for	null	model	tests	of	
species	co-occurrences	in	community	matrix	data	(Freilich,	Wieters,	
Broitman,	Marquet,	&	Navarrete,	2018;	Gotelli,	2000).	On	this	basis,	
we	suggest	it	is	desirable	to	only	interpret	the	frequency	of	interac-
tions	across	 large	numbers	of	 species	once	 the	effect	of	different	
powers	to	detect	 interactions	for	pairs	of	species	of	given	popula-
tion	 sizes	has	been	 (even	approximately)	 factored	out.	This	 seems	
especially	important	in	comparative	analyses	across	different	com-
munities	where	the	spatial	scales,	strengths	of	interactions,	and	the	
species	abundance	distributions	may	differ	and	affect	the	power	to	
detect	interactions.
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