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A B S T R A C T

Perennial crops offer the opportunity to harvest from the same plant many times over several years while reducing labor and seed costs, reducing emissions and
increasing biomass input into the soil. We use system dynamics modeling to combine data from field experiments, crop modeling and choice experiments to explore
the potential for adoption and diffusion of a sustainable agriculture technology in a risky environment with high variability in annual rainfall: the perennial
management of pigeonpea in maize-based systems of Malawi. Production estimates from a crop model for the annual intercrop system and data from field ex-
periments on ratooning for the perennial system provided the information to create a stochastic production model. Data from choice experiments posed by a farmer
survey conducted in three Malawi districts provide the information for parameters on farmers’ preferences for the attributes of the perennial system. The perennial
pigeonpea technology appeared clearly superior in scenarios where average values for maize yield and pigeonpea biomass production were held constant. Adoption
was fastest in scenarios where relatively dry growing seasons showcased the benefits of the perennial system, suggesting that perennial management may be
appropriate in marginal locations. The potential for adoption was reduced greatly when stochasticity in yields and seasons combine with significant social pressure to
conform. The mechanism for this is that low yields suppress adoption and increase disadoption due to the dynamics of trust in the technology. This finding is not
unique to perennial pigeonpea, but suggests that a critical factor in explaining low adoption rates of any new agricultural technology is the stochasticity in a
technology’s performance. Understanding how that stochasticity interacts with the social dynamics of learning skills and communicating trust is a critical feature for
the successful deployment of sustainable agricultural technologies, and a novel finding of our study.

1. Introduction

Increasing soil fertility in sub-Saharan Africa is a major priority for
funders, farmers, and agricultural development organizations
(Vanlauwe et al., 2011). Improvements in soil health are recognized as
a crucial prerequisite to reducing rural poverty, increasing farm output,
and improving food security in Africa (Sanginga et al., 2009). Raising
sub-Saharan Africa's historically low soil productivity will necessitate
improved technologies that are suitable for, and are attractive to, the
smallholders who cultivate most of the land in that region (McCalla,
1999).

One possibility is to improve degraded land through the perennial
management of the leguminous shrub pigeonpea. Perennial grains in
general have a number of potential benefits for the sustainability and
resilience of farming systems, most of which apply to managing pi-
geonpea as a perennial. Once they are established, perennial crops have
more and deeper roots than annuals, which enables the efficient uptake
of soil nutrients and soil water (DeHaan et al., 2005; Glover et al., 2010;

Pimentel et al., 2012; Kantar et al., 2016). This is especially advanta-
geous during dry spells (Glover et al., 2012), which may become more
frequent under climate change. Furthermore, the larger root systems of
perennials have the potential to reduce soil erosion and contribute to
increasing soil organic matter, which improves soil water holding ca-
pacity over the long term (Pimentel et al., 2012; Snapp, 2014). Ra-
tooned pigeonpea plants are expected to have larger root systems,
which can reduce the risk of erosion, especially early in the season. In
addition to producing grains for food, perennial grains can also provide
fodder for livestock (Snapp, 2014) and stover as fuel for cooking.

In recent years, there has been increased attention to technology
uptake by smallholder farmers as an important aspect of mobilizing a
‘Green Revolution’ in Africa (Sanginga, 2010; Snapp et al., 2010). There
is increasing recognition that technology performance is highly de-
pendent on agro-ecological diversity and socio-economic heterogeneity
(Giller et al., 2011). Effective agricultural research for development
requires on-farm testing across the full range of diversity so that re-
commendations can be tailored appropriately (Vanlauwe et al., 2016).

https://doi.org/10.1016/j.agsy.2019.01.001
Received 17 July 2018; Received in revised form 16 November 2018; Accepted 3 January 2019

⁎ Corresponding author at: 236 W. Reade Avenue, Upland, IN 46989, USA.
E-mail address: philip_grabowski@taylor.edu (P. Grabowski).

1 Present Address: Ostrom Workshop, Indiana University Bloomington

Agricultural Systems 171 (2019) 89–99

Available online 30 January 2019
0308-521X/ © 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/BY/4.0/).

T

http://www.sciencedirect.com/science/journal/0308521X
https://www.elsevier.com/locate/agsy
https://doi.org/10.1016/j.agsy.2019.01.001
https://doi.org/10.1016/j.agsy.2019.01.001
mailto:philip_grabowski@taylor.edu
https://doi.org/10.1016/j.agsy.2019.01.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.agsy.2019.01.001&domain=pdf


Given that diversity, one of the key challenges is assessing the
adoption potential of new technologies. Studies of technology adoption
have accordingly begun to focus on farmer preferences and decision-
making processes, using a variety of methods, including: social network
analysis (Conley and Udry, 2001), agent-based modeling (Berger,
2001), cost-benefit analysis (Egbe and Idoko, 2012), conjoint analysis
(Baidu-Forson et al., 1997), and choice experiments (Asrat et al., 2010),
among more traditional logit and probit regression models (Moser and
Barrett, 2006). These studies have shed light on barriers to technology
adoption among smallholder farmers (including labor constraints, up-
front costs, mismatch with farmer needs, and the need for training).

However, new insights can be provided by approaches that model
adoption as a dynamic process occurring over time. Because technology
adoption is temporal, understanding the drivers of technology adoption
and dis-adoption is a problem that system dynamic models with their
stock-and-flow structure are well suited to answer. System dynamics
modeling has been used to model adoption trajectories in a variety of
systems (Fisher et al., 2000). However, it has only recently been used to
investigate low adoption of smallholder agricultural innovation in
Africa (Tambang, 2010), such as conservation agriculture in Zambia
(Amelia et al., 2014). The core of these models draw on innovation
diffusion theory as described in Rogers (2003), which typically is
modeled following the Bass diffusion model (Bass et al., 2000) as a
positive feedback loop driven by word of mouth, and a negative feed-
back loop driven by market saturation.

Beyond information flow, learning and trust are dynamic processes
critical to the diffusion of agricultural technologies. Farmers must trust
that a technology is effective in order to be interested in it; the more
successful examples of the new technology's application that they see,
the more likely they are to adopt it. Conversely, if farmers do not see
many examples of successful adoption, they are likely to be wary of a
technology. This emphasis on trust as a driver of technology adoption in
a smallholder farmer context is consistent with empirical data from
other fields (Bahmanziari et al., 2003).

Adoption is a decision to choose one option over the alternatives, so
modeling adoption dynamically must consider the relative attractive-
ness of each option. Consumer theory from economics provides the
theoretical basis for modeling discrete choices based on consumers'
cumulative utility of the set of attributes embodied in a particular
choice (Lancaster, 1966). Neoclassical economics assumes that farmers
will maximize their utility by choosing the alternative with the highest
total utility. Benefits that come in future years are discounted to the
present time to account for time preferences. Similarly, benefits with
some level of uncertainty must be conditioned by their probability
distribution and the level of risk aversion. The discrete choice model
allows for estimating the probability of making a choice based on the
total utilities of all comparisons (Gensch and Recker, 1979).

Combining system dynamics modeling of diffusion with a discrete
choice model allows for decomposing and combining preferences for
different attributes of a technology with social processes associated
with technology diffusion. All prior studies that have attempted to do
this have used conjoint analysis to parameterize preferences (Kopainsky
et al., 2012; Santa Eulalia et al., 2011; Schmidt and Gary, 2002).
Conjoint analysis, a common tool for marketing, has its foundation in
conjoint measurement, which is purely mathematical and has little to
do with human preferences (Louviere et al., 2010). In contrast, choice
experiments are based on behavioral theory of choice and are better
suited to eliciting stated preferences (Hanley et al., 2001).

In this paper, we present a system dynamics model, parameterized
with data from choice experiments with Malawian farmers, to depict
the ex-ante potential adoption dynamics of perennial pigeonpea in
smallholder farming systems in Malawi. Perennial pigeonpea represents
a new technology, as most Malawian farmers who grow pigeonpea
cultivate it as an annual intercrop with maize. However, perennial
cultivation is not unheard of, as in some instances, ratooning of pi-
geonpea is conducted in Malawi, whereby the stem is pruned close to

the ground after harvest in anticipation of a second year of growth
(Rogé et al., 2016). Perennial management has the potential to improve
landscape-scale soil fertility and possibly rehabilitate marginal lands if
widely adopted (Glover et al., 2010). Data from choice experiments
allowed us to assess the tradeoffs potential adopters would be willing to
make in order to begin managing pigeonpea as a perennial.

The research questions we investigated in this study were as follows:
What are the potential dynamics of perennial pigeonpea adoption over time
in Malawi, and what characteristics of the perennial technology would likely
drive adoption trajectories?

2. Perennial pigeonpea for marginal land in Malawi

Perennial pigeonpea has the potential to address multiple issues by
increasing soil nitrogen, reducing soil erosion, reducing labor require-
ments and providing families with valuable fuelwood through its
woody stems.

Pigeonpea (Cajanus cajan) is a nitrogen-fixing semi-perennial woody
shrub that produces an edible seed and is currently managed as an
annual intercrop with maize in southern regions of Malawi for income,
nutrition, fuel and soil enhancement (Orr and Mwale, 2001; Orr et al.,
2015). It has been promoted in southern Africa for soil fertility en-
hancement either as an annual intercrop or as a pure stand (Akinnifesi
et al., 2009). The nitrogen fixing benefits of pigeonpea are needed to
improve maize production in Malawi where a majority of farmers can
not afford synthetic fertilizers (Dorward and Chirwa, 2011).

Some farmers in southern Malawi have identified the potential for
pigeonpea to be managed as a perennial intercrop through ratooning,
meaning that it would be left in the ground for several years, rather
than being replanted annually (Rogé et al., 2016). This could confer
enhanced soil fertility and labor-saving benefits, but would require
farmers to manage pigeonpea differently than they have historically.
Rusinamhodzi et al. (2017) found that ratooning pigeonpea inter-
cropped with maize was economically valuable for saving seeds while
maintaining or enhancing maize yields.

However, integrating perennial grains in smallholder farming sys-
tems are not without potential challenges and tradeoffs. Some of these
challenges include weeds, livestock, as well as pests and disease pro-
blems. However, with pigeonpea the establishment and weeding would
be the same, whether it is managed as an annual or ratooned as a
perennial. Perennials may also need to be protected from free-range
livestock during the non-growing season, and this is a major concern
with pigeonpea in much of southern Africa where dry season crop lands
are open-access for community grazing.

Due to their extended growing seasons, perennial grains can provide
habitat for both soil and residue-borne pathogens, as well as pests and
diseases (Cox et al., 2005; Kantar et al., 2016; Pimentel et al., 2012).
However, there is no evidence of disease problems from ratooning in
Malawi or Tanzania. Pigeonpea insect pests significantly affect yields
when they eat the flowers. These pests typically peak towards the end of
the rainy season, which means short duration varieties require greater
pest control (Jones et al., 2002). Perennial management of pigeonpea
may in some cases reduce pest problems by avoiding pest pressure.
Ratooned systems often utilize long duration varieties (180-day ma-
turity, that are harvested several months after maize, towards the end
of the dry season) where peak flowering is later in the season.

3. Methods

This research aims to assess the adoption trajectory of a technology
that is not yet available. Given that empirical data on technology up-
take is impossible, we use simulations to understand adoption dynamics
based on what is known about the system. By creating a system dy-
namics model based on the characteristics of perennial pigeonpea, the
preferences of Malawian farmers and the social learning of smallholder
farming systems, we are able to answer our research questions.
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In this section, we first describe the theoretical framework for the
model and the equations for its structure. This is followed by how the
model was parameterized. We then describe the case study area and the
model scenarios simulated.

3.1. Theoretical framework and mathematical structure of the model

To answer the research questions described above, we developed a
system dynamics model that combines elements of trust in technologies
and information sharing with traditional economic elements of utility
maximization among discrete choices to simulate the potential demand
for perennial pigeonpea over time (Fig. 1). Sociological research on the
diffusion of innovations stresses the importance of communication
among farmers to transfer skills as well as to share their level of trust in
the performance of a technology, which influences the social pressure
to conform (Rogers, 2003). This theoretical perspective provides the
basis for reinforcing feedback loops for both adoption and disadoption
(R1, R2 and R3 in Fig. 1). Many of these dynamics can easily be added
to the well-known Bass diffusion model (Bass et al., 2000). A significant
improvement on the Bass diffusion model is the inclusion of disadop-
tion and readoption (Ulli-Beer et al., 2010). This allows for a balancing
effect on adoption (or re-adoption) as the level of non-adopters (or
disadopters) approaches zero (B1 and B2). The combination of the re-
inforcing and balancing feedback loops leads to the classic s-shaped
diffusion curve and is based on social learning theory (Young, 2009).

3.1.1. Utility of annual and perennial systems
The focus of the perennial pigeonpea adoption model is farmers in

Malawi who already grow pigeonpea, and their decision whether or not
to adopt perennial management of long duration varieties. Here we
define adoption as use of perennial pigeonpea on any amount of land.
In our model, perennial pigeonpea is a three-year system with two years
of ratooning pigeonpea in the dry season (Table 1).

The total utility from the perennial pigeonpea system Up is the sum
of the utilities from all attributes of the system (maize yield, pigeonpea
yield, stem biomass, additional soil fertility and labor savings).
Likewise, for the annual pigeonpea system the total utility Ua is the sum
of the utilities of all attributes of that system (maize yield, pigeonpea

yield and stem biomass). We estimated the utilities using data from
choice experiments and we estimated the yield and biomass production
in two ways: with average values and with stochastic values utilizing
APSIM modeled production data from 1980 to 2006 (See Section 3.2
below for details).

One major risk for perennial pigeonpea is that wildlife or free-range
livestock may consume it over the dry season before it is harvested. In
contrast, farmers harvest short duration pigeonpea varieties closer to
when other crops are harvested, thus reducing this risk. We assumed
that farmers would only plant perennial pigeonpea in a location where
livestock and wildlife would not consume it.

3.1.2. Adoption, dis-adoption and re-adoption
The probability of adoption of the perennial system, Pa, was cal-

culated based on utilities for all attributes of each system (perennial and
annual) using the following equation from discrete choice modeling
(Gensch and Recker, 1979):

= +Pa e /(e e )Up Up Ua (1)

Where Up and Ua are the combined utility from all attributes of the
perennial and annual pigeonpea systems respectively (as described
above). This probabilistic estimate of adoption is especially suitable for
this context because it implicitly models the heterogeneity of farmer-
specific costs and benefits. The relative utility of Up and Ua are the
means for a distribution of costs and benefits of farmers in the

Fig. 1. Core structure and causal loop diagram of the system dynamics adoption model. Note: The rectangles are stocks and the arrows with solid lines are flows. The
circles and the arrows with fine dashed lines are factors affecting the flows. Reinforcing and balancing feedback loops are labeled with R and B respectively. Notice
that “Relative utility of perennial” is included twice to avoid arrows crossing each other.

Table 1
Annual and perennial production systems by year.

Annual system Perennial system

Year 1 – growing season Maize – pigeonpea
intercrop

Maize – pigeonpea intercrop

Year 1 – dry season Destructive harvest Harvest and ratoon
Year 2 – growing season Maize – pigeonpea

intercrop
Maize – 2nd year pigeonpea
intercrop

Year 2 – dry season Destructive harvest Harvest and ratoon
Year 3 – growing season Maize – pigeonpea

intercrop
Maize – 2nd year pigeonpea
intercrop

Year 3 – dry season Destructive harvest Destructive harvest
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simulation. There is a strong basis for this heterogeneity in smallholder
farming systems (Giller et al., 2011; Vanlauwe et al., 2016).

The adoption decision in our model is a function of the probability
of adoption conditioned by the proportion of confident people who also
trust the technology. We also included a constraint for the availability
of local seed. Seed limitations were a constraint to more widespread use
of improved pigeonpea varieties in Tanzania (Shiferaw et al., 2008). As
more farmers adopt perennial management, seed for varieties that work
well with perennial management will become more available.

The equation regulating adoption is written:

= ∗ ∗ ∗ = ∗ ∗ ∗ ∣ >R N ((C T) P(a))R N ((C/X) (T/X)) Pa S R

= ∣ <R S S R (2)

where R is the rate of adoption (number of farmers/year),
N=number of non-adopters (who are potential adopters), C is the
proportion of farmers who are confident in their ability to use the
technology appropriately (that is, in their ability to manage pigeonpea
as a perennial), T is the proportion of farmers who trust the technology,
X is the total population, Pa is the probability of adoption, and S is the
maximum number of farmers who can adopt based on the amount of
seed available from the previous year's production. R is then a flow
from the stock N into the stock A for adoption.

Both C and T are stocks whose levels depend on the functions af-
fecting their flows, as represented in Fig. 1 and described below.

3.1.2.1. Modeling disadoption and re-adoption. Disadoption of the
technology in our model is the sum of two related but independent
effects, which we call direct disadoption (caused directly by
disappointment with the performance of the technology) and indirect
disadoption (caused by persuasion from disadopters that the technology
is not trustworthy or by the desire to conform to the majority).

Direct disadoption is strongest when the relative utility of the per-
ennial is less than that of the annual. In that case, the formula for the
direct disadoption rate is one minus the three-year average of the
probability of adoption. Using the three-year average is a way to re-
present farmers' sensitivity to yearly performance but also their famil-
iarity with annual variability. This is the top line of Eq. (3).

Even when the perennial system outperforms the annual system,
direct disadoption can occur when farmers are disappointed with the
performance of the perennial system relative to their expectations, such
as when the relative utility decreases from the previous year. This
disappointment effect takes effect when this year's performance is 90%
or less of last year's performance relative to the annual. We modeled it
as a rate of disadoption and it increases linearly from zero to 10% as the
performance relative to last year decreases from 90% to zero. This is the
term labeled “Y” in the middle line of Eq. (3). The last line of Eq. (3) is
when there is no direct disadoption.

Indirect disadoption happens when social pressures, apart from the
technology's performance, influence adopters, such as through influ-
ential peers who disadopted or through the more general desire to
conform to the majority. Henrich (2001) demonstrated mathematically
the importance of these cultural aspects for generating the well-estab-
lished S-shaped diffusion curve. In our model this is operationalized as
first a loss of trust in the technology and then as a desire to conform to
the majority, regardless of the relative utility of the technology. First,
when disadopters communicate to their peers about their disappointing
experience with the technology, they are able to persuade some to lose
trust in the technology. The disadopters' level of communication, their
persuasiveness, and the social pressure to conform are difficult to
measure empirically, and so the values we use in our model are the
focus of the sensitivity analysis. We then take the proportion of the
population that does not trust in the technology as the indirect dis-
adoption rate, adjusted by a variable representing the pressure to
conform, which we also explore in our sensitivity analysis.

Putting it all together the disadoption rate is:

D=A∗(1 – ((Pa+ Pat−1+ Pat−2)/3))+A∗(L/20) ∣Up < Ua

= + ∣ > <∗
−D Y A (L/I) U U and U /U (U /U )p a p a p a t 1 (3)

= ∣ > >∗
−D A (L/I) U U and U /U (U /U )p a p a p a t 1

Where Up and Ua are the combined utility from all attributes of the
perennial and annual pigeonpea systems, respectively, Pa… Pat-2 is the
probability of perennial adoption at a given time step, and A is the stock
of adopters in the previous time step, L is the proportion of the popu-
lation who lack trust (from the stock in Distrust), I is a variable re-
presenting the social pressure to conform, and Y is the disappointment
effect described above. Re-adoption of the technology is a function of
those who disadopted who regained trust in the technology through
information from successful adopters. The formula is simply the pro-
portion of the population who gained trust multiplied by the number of
disadopters.

3.1.3. Confidence
We modeled the development of skills and confidence as a function

of mentoring provided by adopters to communicate the complex skills
for perennial management. We assumed a base skill transfer rate of 10
adopters training one new farmer each year and a maximum of one
adopter training two farmers each year, depending on the relative
utility of the perennial to the annual system.

Next, given the importance of risk aversion for smallholder tech-
nology adoption (Feder, 1980; Ghadim et al., 2005) we assumed that a
maximum of 80% of those who gained the skills to manage the per-
ennials in a given year would have the self-efficacy to change their
practice (i.e. they would be confident enough to try it). This willingness
to risk trying a new technology is also modeled to be a function of the
relative utility of the annual and perennial systems, specifically that
those confident to use their skills would increase linearly from 40%
when the two systems are equal to 80% when the perennial system has
double or more the utility of the annual system. We assumed that the
obtaining skills and confidence was permanent.

We assumed that some outside force (such as development project)
would initiate promotion and be able to provide 10 farmers per year
with sufficient confidence and trust in the technology that they would
adopt. We assumed this promotion would happen only when 10% or
less of the population was using the perennial system. This exogenous
promotion was essential for catalyzing the initial adoption trajectories
in our model.

3.1.4. Trust
We modeled trust as a reversible process that is a direct function of

farmers' experiences communicated to their peers. We adapted the
structure for these dynamics from models that focused on adoption of
improved seed in Africa based on trust in brand names (Derwisch et al.,
2011; Kopainsky et al., 2012; Kopainsky and Derwisch, 2009). We as-
sumed that each adopter would talk to ten of their peers per year about
their experiences (Kopainsky and Derwisch, 2009) and that their per-
suasiveness would be equal to the three-year average probability of
adoption. We also assumed that each non-adopter would contribute to
the development of trust by discussing the new technology with ten
peers though with very low persuasiveness compared to that of adop-
ters (1%). Considering disappointment may lead to strong emotions, we
assumed that each disadopter would communicate their experience to
twenty peers per year, with their persuasiveness being equal to one
minus the three-year average probability of adoption. Given the highly
uncertain nature of the risk aversion, trust, and communication vari-
ables, and the lack of empirical data from the specific study population,
we conducted an extensive sensitivity analysis on these parameters to
determine the significance of their contribution to model outcomes (see
Section 4.2 and Figs. 6 and 7).
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3.2. Model parameterization

All simulations consist of 1000 households already growing annual
pigeonpea with annual decisions about the use of perennial manage-
ment over 25 years, which provides ample time to observe patterns of
adoption and interannual yield variability. The values for key model
parameters and their sources are presented in Appendix 1.

3.2.1. Agronomic parameters
The complex impacts of perennial management of pigeonpea on

production of both pigeonpea and maize over time are not well re-
searched. Pigeonpea is more drought tolerant than maize and perennial
pigeonpea has a deeper root system in its second and third year, which
makes it even more drought tolerant.

To parameterize our model we draw on recent research using APSIM
modeled maize-pigeonpea intercrop production in Malawi (Smith et al.,
2016) and ratooned maize-pigeonpea intercrop trials in Tanzania
(Rusinamhodzi et al., 2017). We combine the APSIM modeling results
from Smith et al. (2016) with the ratoon effect from Rusinamhodzi et al.
(2017) to estimate maize and pigeonpea yield across seasons for the
annual and perennial management systems. We also use data from
Gwenambira (2015) to estimate woody pigeonpea biomass.

Smith et al. (2016) used APSIM to model several maize-legume
systems at Africa RISING sites in Malawi, including intercropped maize
and pigeonpea (managed as an annual). That model used historic
rainfall data from 1980 to 2006. Using the APSIM modeling output for
the low potential maize site in Malawi (Golomoti) we developed for-
mulas for the upper and lower yields for maize and pigeonpea for any
given season quality.

We created a season quality index using the sole maize system as a
proxy by calculating each season's sole maize yield as a proportion of
the average sole maize yield from the 1980 to 2006 seasons. The result
is a variable between 0.2 and 1.6 that has a beta distribution and our
stochastic model randomly selects a seasonal index from that distribu-
tion for each year. Each year our model then selects a random value
from a uniform distribution between the upper and lower yield limits
for each crop based on the APSIM model. The baseline model has the
season index fixed at 1 (average season).

The model simulates maize and pigeonpea yields according to a
logical flow of interdependent relationships between the two crops,
driven by seasonal rainfall (Fig. 2). We assume that rainfall patterns are
driving maize production, which in turn dictates the available water
and light for pigeonpea.

Rusinamhodzi et al. (2017) provide data on yields from ratooned
pigeonpea intercropped with maize in Tanzania. That study contains
observations from two years of ratooned pigeonpea and shows that on
the dry year, the ratooned system had higher pigeonpea and lower
maize yields than the annual system. However, on the wetter year, the
ratooned system had lower pigeonpea and higher maize yields than the
annual system.

We used that data to create season-dependent non-linear effects of
ratooning on pigeonpea and maize yields. Using the data between ra-
tooning and season from Rusinamhodzi et al. (2017) we calculated the
ratoon effect on maize and pigeonpea for a very dry season and for a
very wet season and then estimated that a normal season would lie
between these values (Fig. 3). In our model, we calculated the yields for
the perennial system by multiplying the APSIM modeled yield for each
crop by the crop-specific ratoon effect.

3.2.2. Farmer preference parameters
Farmers' preferences for the attributes that change from annual to

perennial management of pigeonpea were modeled using the results of
a choice experiment (Waldman et al., 2017), an increasingly common
method in development economics for obtaining stated preferences
among hypothetical scenarios (e.g. Pienaar et al., 2014; Roessler et al.,
2008; Schipmann and Qaim, 2011; Ward et al., 2014). The choice ex-
periment was designed based on a series of focus groups with farmers
and interviews with experts in Malawi's Central and Southern regions to
identify the most important attributes and tradeoffs involved in annual
versus perennial pigeonpea production. Waldman et al. (2017) identi-
fied the tradeoff between maize and pigeonpea yield as a key factor in
farmers' decision-making process as well as the length of time the crop
was in the field, the degree to which it improves soil quality, and how
much biomass is produced. The choice experiments were based on an
orthogonal experimental design of these attributes using illustrated
booklets where farmers evaluated a series of five choice sets. Coeffi-
cients were estimated using a random parameters logit model and these
are marginal utilities we used to parameterize our system dynamics
model. Full details on the choice experiments are available in Waldman
et al. (2017).

We used the results of the choice experiments to derive utilities for
each attribute of the perennial system and we imputed utility values for
the annual system by multiplying the marginal utility per kg from the
choice experiments by the total production of grain for each crop (see
Appendix 2 for details).

The choice experiment necessarily simplified differences in biomass
into “high” and “low”. To convert this into a continuous variable, we
assumed that farmers' perception of the difference between these ca-
tegories was accurate and then calculated a marginal utility per kg of
additional biomass. This further assumes that farmers' utility for an
additional kg of biomass is constant across the full range of observed
biomass. While this assumption may not be appropriate for levels of
biomass beyond the consumption needs of the household, it is an ap-
propriate simplification in this case given the relatively small areas
dedicated to pigeonpea and the high demand for biomass at the
household level.

3.3. Model validation

There is no empirical data on uptake of this technology because it is

Fig. 2. Dynamic interdependencies between maize and pigeonpea yields driven by seasonal rainfall.
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not being practiced at any measurable scale in Malawi. To ensure that
our model is providing reasonable results we engaged in expert con-
sultation with agronomists, economists and development practitioners
who are familiar with pigeonpea in Southern Africa. We also presented
an early version of the model to international scientists working on
perennial grains at a meeting in Bamako, Mali in 2015. Furthermore,
we subjected our model to a series of extreme behavior tests to ensure
reasonable expectations when either technology is clearly superior.
Finally, the adoption of perennial pigeonpea over 25 years is reasonable
given how annual pigeonpea diffused through southern Malawi from
very low levels in 1990 to fairly high levels at present in response to
market opportunities. Introducing new management of a known crop
has fewer barriers than introducing a brand new crop. For this reason,
we limit our model's application to farmers already growing annual
pigeonpea. Many other factors would need to be considered for adop-
tion in areas not already growing annual pigeonpea.

3.4. Model simulation runs

In our baseline model runs we simulated adoption with average,
constant yields for maize and pigeonpea for the duration of the simu-
lation. This simple version of the model allows for the analysis of how
various scenarios are likely to affect adoption trajectories. We present
results for various scenarios by systematically changing maize yield
potential, pigeonpea yields and livestock pressure.

Next, we simulated adoption of a more realistic representation of
the agricultural system by including variability in yields and season
quality with their corresponding impact on the relative performance of
the perennial system. A single run of this simulation provides little
information for comparisons. For this reason, we ran 1000 simulations
for each comparison and we present the mean, min and max values
from each year.

3.5. Methods used for sensitivity analysis

We used a systematic approach to sensitivity analysis by gradually
varying key factors and assessing their influence on the adoption tra-
jectories. By changing the biophysical variables, such as the average
crop yields in the baseline model runs, we can explore how adoption
rates would change with the agro-ecological potential of an area. We
also present results when dry season livestock destroy the pigeonpea
above ground biomass, thereby eliminating the pigeonpea harvest and
the soil fertility benefits from decomposed leaves.

We also carried out sensitivity analysis on the social variables in-
cluding the importance of conformity as well as the persuasiveness and

communication rate of disadopters, adopters and re-adopters.

4. Results and discussion

Under the baseline model run with average yields (2800 kg ha−1

maize and 289 kg ha−1 pigeonpea), farmers are estimated to have a
probability of adoption of the perennial system of 77%. However, the
newness of the technology causes adoption to occur gradually as people
gain trust and skills in the perennial management of the crop. This
results in a diffusion curve that reaches 77% of pigeonpea farmers
adopting by year 12 and approaching saturation (100% of farmers) by
year 14 (Fig. 4 – solid line).

4.1. Conditions for adoption of perennial pigeonpea

Simulations with lower than average maize yields have slightly
faster rates of adoption (Fig. 4) because in these conditions the relative
benefit from the perennial system is greatest. The choice experiments
indicate that farmers generally value maize more than pigeonpea grain.
When maize yields are higher the cost of reduced maize yields due to
competition from the perennial are smaller, making the perennial
system more attractive. When we include animal grazing (which
eliminates the pigeonpea harvest, the soil fertility and biomass benefits)
adoption is minimal throughout the simulation (Fig. 4).

When we doubled the utility from pigeonpea grain (the equivalent
of doubling the price or yield), adoption rates increased only slightly
(not shown). This reflects farmers' higher utility for maize relative to
pigeonpea grain and suggests that the key value of the pigeonpea to
farmers is the soil fertility enhancement it provides for maize.

Scenarios with constant seasons that are worse than average for sole
maize, which tend to be seasons with dry spells, have faster adoption
rates, because in these conditions the maize yields are lower and so the
cost of competition from the perennial system is lower (Fig. 5). Sce-
narios with better than average seasons for sole maize, which tend to be
wetter seasons, have significantly suppressed adoption because in that
context the additional maize production benefits are offset by reduced
benefits from pigeonpea grain and biomass, though overall the per-
ennial system still has higher utility.

This shows that the ratoon effect by season is a major driver of the
adoption pattern. This is interesting because the perennial system has
higher utility than the annual system across all values of the season
index. This highlights how adoption may be very slow for technologies
that are only slightly better than the status quo due to the informational
uncertainty.

A sensitivity analysis on the social variables in the model revealed
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that their effects on the adoption trajectory were largely limited to
scenarios where adoption was slow or variable. Most of these scenarios
included stochastic yields and seasons, but sensitivity without sto-
chasticity was also explored (see Fig. 6). The disadoption communica-
tion rate and persuasiveness had the largest influence on the average
adoption level (after 1000 iterations), while the adoption and non-
adoption communication rates had small effects. The factors for social
conformity, disadopters communication rate and disadopters' persua-
siveness were synergistic in causing a non-linear tipping point. If these
three values were all high enough (double the default value) then
adoption was significantly suppressed but a slight reduction in any one
of them caused much higher adoption. These higher values are used in
the “conformity scenario” for Fig. 7.

4.2. Effects of variability in production and climate on adoption trajectories

Before exploring stochasticity in production and utility, we present
how the model responds to a single permanent shift in the utility of the
perennial system whereby on average farmers' utility for it is much less
than the annual system (relative utility shifts from 1.2 to −1.0). Such a
shift would be similar to a real-world scenario that makes the produc-
tion of the perennial much more costly, such as a new alternative dry
season land-use opportunity. The drop in utility causes an immediate
drop in adoption, followed by a small recovery as the peer pressure
from disadopters wears off and the conformity of those who continue

using the perennial system encourages others to continue trying the
perennial system (double line in Fig. 6). Higher social pressure to
conform eliminates the recovery from the initial drop. Interestingly, a
reduction in risk aversion makes the recovery stronger. When high
social pressure to conform is combined with reduced risk aversion,
there is an oscillation pattern resulting from the tension between two
reinforcing feedback loops – the adopters communicating their success
and the disadopters communicating their discouragement (R2 and R3 in
Fig. 1). In all of these scenarios the response to the sudden drop reaches
a new stability after 3 or 4 years.

Having stochastic yields and stochastic seasons in the model has a
surprisingly large effect on the range of potential adoption trajectories,
especially because the average utility for the perennial system never
goes below zero. The minimum values from 1000 iterations were much
lower and are the collection of the low points from oscillations in dis-
adoption and readoption. The average from 1000 iterations was similar
to the non-stochastic baseline scenario, though plateauing at a lower
level (Fig. 7). Perennial pigeonpea outperforms annual pigeonpea
under the full range of climatic conditions but the amount by which the
perennial system outperforms annual pigeonpea is marginal in poor
seasons, and this marginal improvement is not enough to overcome the
inherent risk aversion farmers demonstrate around a new and trans-
formative technology. Furthermore, disadoption after a poor rainfall
year results in a loss of trust in the perennial system, which is only
regained gradually with better seasons.

Fig. 4. Adoption pattern for the full range of average maize yields using the baseline model parameters (constant yields and constant “normal” seasons).

Fig. 5. Adoption pattern across the range of season quality for maize (fixed for the entire simulation) using constant average yields.
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Combining that stochastic baseline scenario with a higher degree of
conformity and a greater persuasiveness of disadopters led to average
adoption levels of less than 40% (Fig. 8 – solid line). The conformity
scenario affects the latter half of the adoption trajectory to a greater
extent because of the stronger influence of disadoption on levels of trust
as adoption levels increase. The disadoption is initially caused by de-
creased relative utility of the perennial system in certain seasons but
then triggers further disadoption and slower adoption because of a loss
of trust in the perennial system.

Poor seasons therefore suppress the adoption trajectory in contexts
with high cultural conformity. This effect is less pronounced when
yields and seasons are held constant at the average. When farmers are
less risk averse but conformity is still high the average adoption tra-
jectory is significantly increased (Fig. 8 – double line) but still below the
base scenario with risk aversion but low conformity. This suggests that
reducing the risk of trying new technologies may be one strategy for

reducing the effect of social pressure to conform. Risk aversion in our
model affects adoption as the proportion of those who gain skills that
are willing to implement them. Thus, a similar effect could be achieved
by strengthening the quality of training and linking it better to im-
plementation.

A key finding of this study is that the inherent stochasticity of
agricultural conditions limits agricultural technology adoption rates in
cultural contexts of conformity and risk aversion, even when these
technologies present clear advantages over existing systems. The sto-
chasticity enters through the probability of adoption, which is a func-
tion of the relative utility of perennial pigeonpea compared to annual
pigeonpea.

Overall, adoption patterns are driven primarily the season-specific
benefits of the perennial system which motivate adoption and stimulate
reinforcing feedback loops that build trust and skills for perennial
management (R1 and R2 in Fig. 1). In addition, adoption dynamics
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involve social feedback, so that poor seasons lead some to disadopt and
these disadopters communicate their negative experiences, triggering a
loss of trust, which can further disadoption (R3 in Fig. 1). This dynamic
would apply to any new agricultural technology whose relative ad-
vantages over traditional practices is dependent on climatic variability,
which is virtually any technology that seeks to improve yields. This
finding has clear explanatory value for the common phenomenon of low
adoption rates among risk-averse farmers of technologies that have
yield-boosting potential (Friedlander et al., 2013; Giller et al., 2009).

5. Conclusions and implications of the research

The combination of choice experiments, crop simulation modeling
and system dynamics modeling is uniquely powerful to investigate the
adoption trajectories of new technologies. This approach allowed us to
use modeling to project technology adoption into the future, while
grounding our projections in empirical data about farmers' preferences.
The use of this method led to insights about one potential cause of low
adoption rates of technologies that can clearly improve yields for
smallholder farmers—namely, the social feedback effects of dampened
adoption rates in years in which these technologies represent only
modest gains in productivity, due to climatic stochasticity.

Confronting the complexities of social dynamics affecting adoption
is key to supporting sustainable intensification of agriculture. There are
three major implications from this study. First, policy makers should be
made aware that climatic variability makes it difficult for farmers to
evaluate the “average” effect of technologies and therefore the new
practices may not be adopted as well as might be expected from initial

research trials and surveys of farmer preferences. Second, trust in a
technology is a complex social process that cannot be created among
project participants simply through demonstrations and training. Peer
to peer extension strategies combined with the availability of expert
support to address farmers' concerns may facilitate the development of
trust in new practices. Finally, promoters of a new technology should be
aware of the power of disadopters to dampen adoption trajectories by
instigating loss of trust in the technology. Development agencies can
mitigate this by taking disadopters' concerns seriously and helping
farmers have clear expectations about any technology's sensitivity to
factors outside farmers' control, such as climate and markets.

Testing the actual magnitude of the effect of social dynamics on
adoption trajectories will require focused research efforts. We en-
courage a time horizon of at least several years for studies that track
agricultural technology adoption, in the context of the climatic condi-
tions experienced by technology adopters. While this modeling study is
based in empirical observations of farmers' preferences, the evolution of
those preferences over time, and their response to changing socio-
economic and ecological conditions, are more speculative. Generally,
there is a dearth of longitudinal studies of technology adoption dy-
namics in sub-Saharan Africa.

Acknowledgements

Funding: This work was supported by Bill & Melinda Gates
Foundation, Seattle, WA Grant number OPP1076311, “Perennial Grain
Crops for African Smallholder Farming Systems” and by the Global
Center for Food System Innovation at Michigan State University.

Appendix 1. Parameters, values and sources

Description of variable Value Sources

Agronomic variables
Mean pigeonpea yield – annual or 1st year perennial 267.7 kg ha-1 Snapp et al., 2002 – mean of 3 sites
Mean second year pigeonpea yield - perennial 436 kg ha-1 Interpolating Rusinamhodzi et al., 2017 for an average season
Seed savings for perennial system 6.6 kg ha-1 Seed weight from (Narayanan et al., 1981), Planting density from

Gwenambira, 2015
Pigeonpea grain harvest index 0.2 Rogé et al., 2015 Table 5 p.68
Mean maize yield when intercropped with pigeonpea - annual or 1st year perennial 2845.8 kg ha-

1
Smith et al., 2016

Farmer preference variables
Marginal utility of labor saving with perennial (considering also the risk of crop loss) 0.164 Waldman et al. (2017) Table 3 Preference space – random parameter means
Marginal utility of higher soil fertility in year following perennial pigeonpea 0.768 Waldman et al. (2017)
Marginal utility of higher biomass production from perennial pigeonpea 0.358 Waldman et al. (2017)
Marginal utility of another kg of pigeonpea grain 0.015 Waldman et al. (2017)
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Marginal utility of another kg of maize grain 0.023 Waldman et al. (2017)

Trust and communication variables
Base skill transfer rate – the number of people each adopter could train in a year 0.1 to 2 Kopainsky and Derwisch, 2009
Base proportion of those trained who would be confident enough to try the new

practice
0.4 Based on experiences with Malawian farmers and literature on risk aversion

(e.g. Grothmann and Patt, 2005)
Social pressure to conform 0 to 0.1 Buffering factor for indirect adoption loosely related to communication rates

(1/10=0.1) based on social network size.
Disadopter communication rate (the number of people they tell about their experi-

ence each year)
20 Based on Kopainsky and Derwisch, 2009

Adopter communication rate (the number of people they tell about their experience
each year)

10 Kopainsky and Derwisch, 2009

Non-adopter communication rate (the number of people they tell about the positive
things they have heard about the technology)

10 Kopainsky and Derwisch, 2009

Persuasiveness of non-adopters (the proportion of those convinced to trust in the
technology)

0.01 Kopainsky and Derwisch, 2009

Appendix 2. Attributes and levels used in the choice experiment

Attribute Levels Description

Perennial Yes, No Whether the pigeonpea was managed as a perennial crop
Soil fertility Low, high The level of soil fertility in the following year
Biomass Low, high The level of biomass produced over the planting period
Pigeonpea yield 50, 100, 150, & 200 Yield of pigeonpea in kg per 0.5 acres
Maize yield 150, 200, 250, & 300 Yield of maize in kg per 0.5 acres
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