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Abstract Global multiconstituent concentration and emission fields obtained from the assimilation of the
satellite retrievals of ozone, CO, NO2, HNO3, and SO2 from the Ozone Monitoring Instrument (OMI), Global
Ozone Monitoring Experiment 2, Measurements of Pollution in the Troposphere, Microwave Limb Sounder,
and Atmospheric Infrared Sounder (AIRS)/OMI are used to understand the processes controlling air
pollution during the Korea-United States Air Quality (KORUS-AQ) campaign. Estimated emissions in South
Korea were 0.42 Tg N for NOx and 1.1 Tg CO for CO, which were 40% and 83% higher, respectively, than the a
priori bottom-up inventories, and increased mean ozone concentration by up to 7.5 ± 1.6 ppbv. The
observed boundary layer ozone exceeded 90 ppbv over Seoul under stagnant phases, whereas it was
approximately 60 ppbv during dynamical conditions given equivalent emissions. Chemical reanalysis
showed that mean ozone concentration was persistently higher over Seoul (75.10 ± 7.6 ppbv) than the
broader KORUS-AQ domain (70.5 ± 9.2 ppbv) at 700 hPa. Large bias reductions (>75%) in the free
tropospheric OH show that multiple-species assimilation is critical for balanced tropospheric chemistry
analysis and emissions. The assimilation performance was dependent on the particular phase. While the
evaluation of data assimilation fields shows an improved agreement with aircraft measurements in ozone
(to less than 5 ppbv biases), CO, NO2, SO2, PAN, and OH profiles, lower tropospheric ozone analysis error was
largest at stagnant conditions, whereas the model errors were mostly removed by data assimilation under
dynamic weather conditions. Assimilation of new AIRS/OMI ozone profiles allowed for additional error
reductions, especially under dynamic weather conditions. Our results show the important balance of
dynamics and emissions both on pollution and the chemical assimilation system performance.

Plain Language Summary Global multi-constituent concentration and emission fields obtained
from the assimilation of the satellite retrievals are used to understand the processes controlling air
pollution during the Korea U.S.-Air Quality (KORUS-AQ) campaign. Our results show the important balance of
dynamics and emissions both on pollution and the chemical assimilation system performance.

1. Introduction

With rapid economic development, air quality in East Asia has become increasingly important over recent
decades (Akimoto, 2003; Liu et al., 2017; van der A et al., 2017). Tropospheric gases such as ozone, nitrogen
oxides (NOx = NO2 + NO), and carbonmonoxide (CO) play an important role in air quality, tropospheric chem-
istry, and climate. Tropospheric ozone is the third most important greenhouse gas in the atmosphere
(Bowman et al., 2013; Myhre et al., 2013; Stevenson et al., 2013); it is formed from the secondary photoche-
mical production of ozone precursors including hydrocarbons or CO in the presence of NOx, while it is
removed by processes such as in situ chemical loss and deposition to the ground surface. Tropospheric
NOx concentrations are highly variable in both space and time, reflecting its short chemical lifetime in the
atmosphere and the heterogeneous distribution of its sources and sinks. NOx emission sources are

MIYAZAKI ET AL. 387

Journal of Geophysical Research: Atmospheres

RESEARCH ARTICLE
10.1029/2018JD028912

Key Points:
• Multiconstituent data assimilation

during KORUS-AQ showed that
emissions in South Korea were
0.42 Tg N for NOx and 1.1 Tg CO for
CO

• These emissions were 40% and 83%
higher, respectively, than the a priori
bottom-up inventories and increased
ozone by up to 7.5 ± 1.6 ppbv

• Mean ozone concentration was
persistently higher over Seoul
(75.1 ± 7.6 ppbv) than the broader
KORUS-AQ domain (70.5 ± 9.2 ppbv)
at 700 hPa

Correspondence to:
K. Miyazaki,
kmiyazaki@jamstec.go.jp

Citation:
Miyazaki, K., Sekiya, T., Fu, D., Bowman,
K. W., Kulawik, S. S., Sudo, K., et al. (2019).
Balance of emission and dynamical
controls on ozone during the Korea-
United States Air Quality campaign from
multiconstituent satellite data assimila-
tion. Journal of Geophysical Research:
Atmospheres, 124, 387–413. https://doi.
org/10.1029/2018JD028912

Received 30 APR 2018
Accepted 6 NOV 2018
Accepted article online 9 NOV 2018
Published online 3 JAN 2019

Author Contributions:

Investigation: A. M. Thompson

©2018. The Authors.
This is an open access article under the
terms of the Creative Commons
Attribution-NonCommercial-NoDerivs
License, which permits use and distri-
bution in any medium, provided the
original work is properly cited, the use is
non-commercial and no modifications
or adaptations are made.

https://orcid.org/0000-0002-1466-4655
https://orcid.org/0000-0002-8659-1117
https://orcid.org/0000-0002-7829-0920
https://orcid.org/0000-0002-6595-0686
https://orcid.org/0000-0003-2325-6212
http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2169-8996
http://dx.doi.org/10.1029/2018JD028912
http://dx.doi.org/10.1029/2018JD028912
mailto:kmiyazaki@jamstec.go.jp
https://doi.org/10.1029/2018JD028912
https://doi.org/10.1029/2018JD028912


important in determining the atmospheric amount and distribution of NOx and other air pollutants. However,
bottom-up inventories from different sources and regions contain large uncertainties, which result from inac-
curate emission factors and activity rates for each source category (Castellanos et al., 2014; Oikawa et al.,
2015; Vinken et al., 2014).

Satellite-retrieved measurements have great potential for evaluating global and regional distributions of
air pollutants, including their emissions. Global tropospheric ozone fields have been retrieved from the
Tropospheric Emission Spectrometer (TES; Herman & Kulawik, 2013) and the Infrared Atmospheric
Sounding Interferometer (IASI; Clerbaux et al., 2009). Tropospheric NO2 columns have been measured from
the Global Ozone Monitoring Experiment (GOME; Richter & Burrows, 2002), the Scanning Imaging
Absorption Spectrometer for Atmospheric Chartography (Bovensmann et al., 1999), GOME-2 (Callies
et al., 2000), and the Ozone Monitoring Instrument (OMI; Levelt et al., 2006, 2018). Carbon monoxide dis-
tributions have been retrieved from IASI (George et al., 2009) and from Measurements of Pollution in the
Troposphere (MOPITT; Deeter et al., 2017). These satellite measurements have shown rapid changes in air
pollutant emissions over Asia, such as increases in NOx emissions between 2005 and 2010 and a rapid
reduction after 2011 in China (Liu et al., 2017; Miyazaki et al., 2017; Qu et al., 2017), decreasing CO emis-
sions from the United States and China between 2001 and 2015 (Jiang et al., 2017), and a rapid SO2 emis-
sion decrease since 2007 for China (Li et al., 2017; Wang et al., 2015). These changes in Asia are of
importance for air quality and health problems on both regional and global scales (Verstraeten et al.,
2015; Wang & Hao, 2012). The satellite measurements have also been used to validate bottom-up inven-
tories (Kim et al., 2013; Mijling et al., 2013) and study transboundary influences (Lee et al., 2014) over
South Korea.

Data assimilation techniques have been used to propagate observational information in time and space,
from a limited number of observed species to a wide range of chemical components that are physically
and chemically consistent within the precision of individual observations (Bocquet et al., 2015; Lahoz &
Schneider, 2014). Various studies have demonstrated the capability of data assimilation techniques in
the analysis of chemical species in the troposphere and stratosphere (e.g., Flemming et al., 2011, 2017;
Gaubert et al., 2016; Inness et al., 2013; Miyazaki, Eskes, Sudo, Takigawa et al., 2012; Miyazaki, Eskes,
Sudo, 2012; Miyazaki et al., 2014, 2015, 2017; Parrington et al., 2009). Miyazaki, Eskes, and Sudo (2012)
developed a system to simultaneously optimize concentrations and emissions of various species from
assimilation of multiconstituent measurements from multiple satellite sensors. Chemical reanalysis using
the ensemble Kalman filter (EnKF) has been used to provide comprehensive information on atmospheric
composition variability and to elucidate variations in precursor emissions (Ding et al., 2017; Jiang et al.,
2018; Miyazaki et al., 2015, 2017). It has also been used to validate chemistry-climate model simulations
(Miyazaki & Bowman, 2017). The chemical reanalysis performance has been evaluated using independent
satellite measurements and aircraft measurements for various regions (Miyazaki et al., 2015) but not yet
specifically for East Asia because of the lack of intensive validation data. It makes the potential of chemical
reanalysis in East Asia unclear for studying the local atmospheric environment and its impacts on the glo-
bal air quality and climate.

During the Korea-United States Air Quality (KORUS-AQ) campaign of May–June 2016, aircraft, ground-
based, and ozonesonde observations were conducted around the Korean Peninsula by the National
Aeronautics and Space Administration (NASA) and the National Institute of Environmental Research.
These measurements provide a great opportunity to evaluate multiple satellite data assimilation in East
Asia. In this study, we use KORUS-AQ measurements to evaluate the performance and efficiency of multi-
constituent satellite data assimilation for varying meteorological conditions and to provide comprehensive
tropospheric chemical reanalysis of multiconstituent concentration and emission fields to understand the
processes controlling variations in air pollution.

2. Methodology
2.1. Observations During KORUS-AQ

The KORUS-AQ campaign was conducted by NASA and National Institute of Environmental Research from 1
May to 14 June 2016 over the Korean peninsula. The campaign aimed to implement an integrated observation
system for improved understanding of air quality. These observations included three aircrafts (NASA DC-8,
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NASA B200, Hanseo University King Air), ground in situ measurements, remote sensing measurements by
AERONET, Pandora and LIDAR observations, and several satellite measurements. This campaign has several
characteristics. First, Korea’s urban/rural sectors are distinct, providing an attractive setting for understanding
the relative importance of human and natural emissions. Second, the Korean peninsula and its surrounding
waters provide an advantageous experimental setting for distinguishing local and transboundary pollution.
Third, Korea is located in a region of rapid economic and social change, with strong air quality gradients both
in time and space.

We used DC-8 aircraft measurements (23 flights) and ozonesonde measurements over Taehwa (42 profiles,
located in a forest area near Seoul) and Olympic Park (20 profiles, located in an urban area of Seoul). Some
of the DC-8 flight track information is provided by Tang et al. (2018). Sixty-second merge R4 data of var-
ious species measurements on board DC-8 were used: ozone, NO2, and NO obtained using four-channel
chemiluminescence instrument (Weinheimer et al., 1993); NO2 using thermal-dissociation laser-induced
fluorescence (Thornton et al., 2000); OH and HO2 concentrations using laser-induced fluorescence; OH
reactivity with discharge flow (Brune et al., 1995); CO using differential absorption carbon monoxide mea-
surements (Warner et al., 2010); CH2O using the compact atmospheric multispecies spectrometer
(Weibring et al., 2007); PAN and SO2 using the chemical ionization mass spectrometer (Huey, 2007); and
HNO3 using single mass analyzer chemical ionization mass spectrometer (Crounse et al., 2006).

For comparisons with aircraft and ozonesonde observations, all observed profiles were binned on a com-
mon pressure grid with an interval of 30 hPa and mapped with a horizontal resolution of 0.5° × 0.5°. The
reanalysis and model fields were linearly interpolated to the time and location of each measurement using
two-hourly output data and then binned on the common pressure grid and horizontal resolution. The vali-
dation using DC-8 measurements was conducted both inside and outside the Seoul metropolitan area
(SMA; defined as 36.6°N–37.9°N, 126.4°E–127.6°E in this study) to discuss the model/data assimilation per-
formance for different chemical regimes.

2.2. Chemical Data Assimilation System

The data assimilation system used was constructed based on a global chemical transport model and an EnKF.
The data assimilation framework is described in Miyazaki et al. (2017); however, some updates have been
applied in this study including horizontal resolution (from 2.8° × 2.8° to 1.1° × 1.1°), assimilated measure-
ments, and data assimilation setting. Here we provide a brief description of the updated data
assimilation system.
2.2.1. Forecast Model
The forecast model used is MIROC-Chem (Watanabe et al., 2011), which considers detailed photochemistry
in the troposphere and stratosphere. The chemistry component of the model, which is based on CHASER-
V4.0, calculates the concentrations of 92 chemical species and 262 chemical reactions (58 photolytic, 183
kinetic, and 21 heterogeneous reactions). Its tropospheric chemistry considers the fundamental chemical
cycle of Ox-NOx-HOx-CH4-CO along with oxidation of nonmethane volatile organic compounds. Its strato-
spheric chemistry simulates chlorine- and bromine-containing compounds, CFCs, HFCs, OCS, N2O, and the
formation of polar stratospheric clouds and heterogeneous reactions on polar stratospheric cloud surfaces.
More details on the CHASER chemistry module can be found in Morgenstern et al. (2017). In the frame-
work of MIROC-Chem, CHASER is coupled to the atmospheric general circulation model MIROC-AGCM ver-
sion 4 (Watanabe et al., 2011). The meteorological fields simulated by MIROC-AGCM were nudged toward
the six-hourly ERA-Interim (Dee et al., 2011). The emission data used are described in section 2.3.

The model used has a T106 horizontal resolution (1.1° × 1.1°) with 32 vertical levels from the surface to
4.4 hPa. The T106model has approximately 2.6 times higher horizontal resolution (6.25 times smaller grid cell
size) than the model used in our previous data assimilation (T42 = 2.8° × 2.8°). Sekiya et al. (2018) demon-
strated that increasing model resolution from T42 to T106 significantly improves the tropospheric NO2 simu-
lations, with reductions in regional mean model biases (root mean square errors [RMSEs]) for the annual
mean tropospheric NO2 column by 90% (32%) over eastern China. The increase in model resolution can be
expected to improve the representation of spatial variations including those between inside and outside
the SMA.
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2.2.2. Data Assimilation Method
Data assimilation was based upon an EnKF approach (Hunt et al., 2007). The EnKF uses an ensemble forecast
to estimate the background error covariance matrix and generates an analysis ensemble mean and covar-
iance that satisfy the Kalman filter equations for linear models. In the forecast step, a background ensemble,
xbi (i = 1, ..., k), is obtained from the evolution of an ensemble model forecast, where x represents the model
variable, b is the background state, and k is the ensemble size (i.e., 32 in this study). The background ensem-
ble is converted into the observation space, ybi = H (xbi ), using the observation operator H, which is composed
of a spatial interpolation operator and a satellite retrieval operator. The satellite retrieval operator can be
derived from an a priori profile and an averaging kernel of individual measurements (e.g., Eskes &
Boersma, 2003; Jones et al., 2003). Using the covariance matrices of observation and background error as esti-
mated from ensemble model forecasts, the data assimilation determines the relative weights given to the
observation and the background and then transforms a background ensemble into an analysis ensemble,
xai (i = 1, ..., k). The new background error covariance is obtained from an ensemble forecast with the updated
analysis ensemble.

The emission estimation is based on a state augmentation technique. In this approach, background error cor-
relations determine the relationship between the concentrations and emissions of related species for each
grid point. The state vector includes surface emissions of NOx, CO, and SO2 and lightning NOx sources, as well
as the concentrations of 35 chemical species. Owing to the simultaneous assimilation of multiple-species
data and because of the simultaneous optimization of concentrations and emission fields, the global distri-
bution of various reactive gases, including OH, is modified considerably in our system. The changes in various
species, especially in OH, propagate the observational information between various species, modulate the
chemical lifetimes of many species, and improve emission estimates (Miyazaki, Eskes, & Sudo, 2012;
Miyazaki et al., 2015, 2017; Miyazaki & Eskes, 2013). The OMI and GOME-2 NO2 measurements obtained at dif-
ferent overpass times (cf., section 2.2.3) were used to optimize the diurnal NOx emission variability, following
the method of Miyazaki et al. (2017).

Covariance inflation was applied to analyses of both concentrations and emissions to prevent an underesti-
mation of background error covariance and filter divergence caused by sampling errors associated with the
limited ensemble size and by model errors, as used in Miyazaki et al. (2015). A constant multiplication infla-
tion factor (8%) was applied to inflate the forecast error covariance at each analysis step. We also applied con-
ditional covariance inflation to the emission factors to prevent covariance underestimation caused by the
application of a persistent forecast model and to maintain emission variability, by inflating the spread to a
minimum predefined value (i.e., 30% of the initial standard deviation) at each analysis step. The initial stan-
dard deviation was set to be 40% for surface emissions of NOx, CO, and SO2. We obtained the optimal value
of 40% from sensitivity experiments, to achieve the best agreements with the assimilated measurements and
improve the data assimilation statistics; however, this was done using a 2.8° × 2.8° resolution system
(Miyazaki, Eskes, & Sudo, 2012).

To improve data assimilation performance and stability, a covariance localization is applied to neglect the
covariance among unrelated or weakly related variables, which has the effect of removing the influence of
spurious correlations resulting from the limited ensemble size, as described in Miyazaki et al. (2015). The loca-
lization is also applied to avoid the influence of remote observations that may cause sampling errors, with the
cut-off radius of 1,643 km for NOx emissions and 2,019 km for CO emissions, lightning sources, and
chemical concentrations.

Because of the increased horizontal model resolution from 2.8° × 2.8° to 1.1° × 1.1°, the data assimilation ana-
lysis suffers more from errors related to the sampling of the background covariance, due to the increased
degrees of freedom in the state vector. Increasing the ensemble size from 32 to 64 in the assimilation
improved the performance somewhat. For comparisons, we employed 32 members, as was done in the latest
decadal chemical reanalysis calculation. Although a strong covariance localization was applied to reduce
spurious long-range correlations (cf., section 2.2.2), further investigations on the optimal localization length,
inflation factor, ensemble size, and other data assimilation settings at different model resolutions would
be required.
2.2.3. Assimilated Measurements
Assimilated observations were obtained from multiple satellite measurements, as listed below.
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• OMI and GOME-2 NO2

Tropospheric NO2 column retrievals used were the QA4ECV version 1.1 level 2 (L2) product for OMI (Boersma
et al., 2017a) and GOME-2 (Boersma et al., 2017b). Low-quality data were excluded following the recommen-
dations (Boersma et al., 2017), using the provided quality flag and information on solar zenith angle (<80°
were used), cloud radiance fraction (<0.5), and air mass factor (tropospheric air mass factor/geometric air
mass factor > 0.2). We employed a superobservation approach to produce representative data with a hori-
zontal resolution of the forecast model (1.1° × 1.1°) for OMI and GOME-2 observations, following the approach
of Miyazaki, Eskes, Sudo, Takigawa et al. (2012). Superobservations were generated by averaging all data
located within a superobservation grid cell. Superobservation error was estimated using the provided retrie-
val uncertainty by considering an error correlation of 15% among the individual satellite observations within
a model grid cell and by considering representativeness error. The retrieval uncertainty of individual pixels
was calculated based on error propagation in the retrieval, based on uncertainties in level 1 data and subse-
quent spectral fitting, and contributions from uncertainties in ancillary data (surface albedo and cloud prop-
erties) required to calculate the stratospheric NO2 background and the AMF. Uncertainties in the retrieval a
priori do not play a role because the averaging kernels are used. The detailed error characteristics and valida-
tion results of the OMI NO2 product is described by Boersma et al. (2004, 2018).

• MLS ozone and HNO3

The Microwave Limb Sounder (MLS) data used were the version 4.2 ozone and HNO3 L2 products (Livesey
et al., 2011). We used MLS data for pressures of less than 215 hPa for ozone and 150 hPa for HNO3, while
excluding tropical-cloud-induced outliers. The provided accuracy and precision of the measurement error
were included as the diagonal element of the observation error covariance matrix.

• MOPITT CO

TheMOPITT total column CO data used were the version 7L2 TIR/NIR product (Deeter et al., 2017). The version
7 data generally show smaller retrieval biases and reduced bias variability compared with earlier products,
while the TIR-NIR product offers the greatest vertical resolution and the greatest sensitivity to CO in the lower
troposphere. The total column averaging kernel was used in the observation operator to estimate simulated
total columns. The estimated error, which consists of cumulative error from smoothing error, model para-
meter error, model error of the radiative transfer model, geophysical noise, and instrumental noise, was used
in the observation error. The superobservation approach was also applied to MOPITT observations.

• OMI SO2

The OMI SO2 data used were the planetary boundary layer vertical column SO2 L2 product produced with the
principal component analysis algorithm (Krotkov et al., 2016; Li et al., 2013). The data were produced using a
constant air mass factor of 0.36. Only clear-sky OMI SO2 data (cloud radiance fraction less than 20%) with solar
zenith angles less than 70° were used, while the first 10 and last 10 cross-track positions were excluded to
limit the across-track pixels, following Fioletov et al. (2016, 2017). Because of the lack of information on obser-
vation error in the retrieval data set, the OMI SO2 error was set to be a constant value of 0.25 DU, which is
about half of the standard deviation of the retrieved columns over remote regions (Li et al., 2013).

• Atmospheric Infrared Sounder (AIRS)/OMI ozone

We also assimilated observational data from the joint AIRS/OMI version 1 L2 ozone profile product (Fu et al.,
2018) in sensitivity data assimilation calculations. The ozone profile retrievals were performed via applying
the JPL MUlti-SpEctra, MUlti-SpEcies, Multi-Sensors (MUSES) algorithm to both AIRS and OMI level 1B (L1B)
spectral radiances (Fu et al., 2018). The methodology, characteristics, and validation of MUSES algorithm have
been presented by Fu et al. (2013) for joint TES/OMI ozone retrievals and joint CrIS/TROPOMI carbon monox-
ide (CO) profiling (Fu et al., 2016), joint TES/MLS CO retrievals (Luo et al., 2013), and AIRS alonemethane, HDO,
H2O, and CO retrievals. The AIRS/OMI ozone profile product, containing both global survey (GS) and regional
mapping (RE) mode data, are publicly available via the Aura Validation Data Center website (https://avdc.gsfc.
nasa.gov/pub/data/satellite/Aura/TES/AIRS_OMI/O3). The GS mode AIRS/OMI data have been produced with
a spatial sampling and the retrieval characteristics of ozone profiles equivalent to TES L2 standard data pro-
duct, demonstrating the feasibility of extending the TES L2 data record via a multiple spectral retrieval
approach, while the RE mode processes all available AIRS+OMI measurements over the Korean Peninsula.
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The GS retrievals show good agreements with WOUDC global ozonesondemeasurements, with seasonal and
global mean biases of�0.9–14.4 ppbv at 750 hPa, 2.2–5.9 ppbv at 510 hPa, and�7.7–2.9 ppbv at 316 hPa (Fu
et al., 2018). The retrieved ozone profile, a priori ozone profile, quality flag, averaging kernels, and the esti-
mated uncertainty matrix for ozone profiles were used in data assimilation.

2.3. Experimental Settings

We conducted several data assimilation (i.e., chemical reanalysis) calculations and a model simulation with-
out any assimilation (i.e., control run). The data assimilation and model calculations were started from 1
April 2016, using an initial condition on 1 April obtained from a three-month spin-up model calculation.
The comparison of validation results between the assimilation and model simulations were used to measure
improvements by data assimilation. In the standard assimilation calculation, none of tropospheric ozone pro-
files were assimilated. This setting is different from our reanalysis calculation (Miyazaki et al., 2015) because of
the lack of TES global survey data during the KORUS-AQ period. To measure the impact of assimilating tropo-
spheric ozone profiles, we conducted sensitivity data assimilation calculations using the AIRS/OMI multispec-
tral tropospheric ozone profile retrievals.

The a priori values for surface emissions of NOx, CO, and SO2 were obtained from bottom-up emission inven-
tories. Anthropogenic emissions of NOx, CO, and SO2 were obtained from the HTAP version 2 for 2010
(Janssens-Maenhout et al., 2015). The HTAP version 2 data were produced using nationally reported emis-
sions combined with regional scientific inventories from the European Monitoring and Evaluation
Programme, Environmental Protection Agency, Greenhouse Gas-Air Pollution Interactions and Synergies,
and Regional Emission Inventory in Asia. Emissions from biomass burning were based on the monthly
Global Fire Emissions Database version 4 (Randerson et al., 2018) for NOx and CO. Emissions from soils were
based onmonthly mean of the Global Emissions Inventory Activity (Graedel et al., 1993) for NOx. Volcanic SO2

emissions were based on results from Andres and Kasgnoc (1998). Lightning NOx (LNOx) sources were calcu-
lated based on the Price and Rind (1992) scheme. For other compounds, emissions were taken from the HTAP
version 2 and Global Fire Emissions Database version 4 emissions.

Any biases in the assimilated satellite retrievals could degrade the data assimilation performance. However,
we did not apply any bias correction to the assimilated measurements because of the difficulty in estimating
the bias structure.

3. Evaluation Results
3.1. Ozone
3.1.1. Mean Profiles
Figure 1 compares the mean vertical ozone profiles from the model simulation without any data assimilation,
the chemical reanalysis, independent observations from DC-8 aircraft measurements, and the ozonesonde
measurements over Taehwa and Olympic Park averaged over the KORUS-AQ period. The aircraft profiles
were averaged over and outside of the SMA. The model generally underestimated mean ozone concentra-
tions throughout the troposphere, except for the ozonesonde measurements over Olympic Park in the lower
troposphere. The negative model bias in the lower troposphere is 5–10 ppbv over SMA and 10–16 ppbv over
the area outside of the SMA relative to the DC-8 profiles and 2–11 ppbv over Taehwa. The positive model bias
over Olympic Park in the lower troposphere can be attributed to large disagreements between the observed
low concentration (38–44 ppbv) and simulated high concentration (approximately 80 ppbv) for specific two
flights on 2 and 5 June. In the free troposphere, the model shows a mean negative bias of 2–13 ppbv relative
to the DC-8 profiles and up to 17 ppbv relative to the Taehwa ozonesonde profiles. Compared with biases
against other measurements, the model bias is smaller for the Olympic park ozonesonde profiles (by up to
8 ppbv) at most altitudes of the free troposphere.

Data assimilation largely reduced the mean model bias in the free troposphere to less than 5 ppbv over SMA
and 3 ppbv outside of the SMA relative to the DC-8 measurements, with a bias reduction of larger than 50%
over SMA and 60% outside of the SMA. The mean bias became less than 4 ppbv after data assimilation over
Taehwa in the free troposphere. Over Olympic Park, data assimilation led to positive biases of 2–10 ppbv in
the free troposphere. Note that when excluding the 2 June Olympic Park ozonesonde profile (when the
observed concentrations were anomalously low: 44–66 ppbv below 800 hPa and 74–93 ppbv between 420
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and 300 hPa, which are about 35% lower near the surface and 17–30% lower between 950 and 750 hPa than
the mean observed concentrations averaged during the campaign over Olympic Park, with numerous
erroneous data near the surface), the positive bias was greatly reduced. Compared with the aircraft
measurements, the RMSE was also reduced by 6–45% over SMA and 13–37% outside of the SMA in the
free troposphere. In the lower troposphere, the model negative bias was reduced by approximately 70%
over SMA and 45% outside of the SMA relative to the DC-8 measurements and became nearly zero over
Taehwa, whereas the RMSE was reduced by 10–20% over SMA and 10–27% outside of the SMA. The
remaining large RMSE values are associated with the occurrence of filament structures in the observed
individual profiles. The model vertical profiles appear to be insufficient to resolve these structures, while
the assimilated measurements do not contain sufficient information to constrain this fine-scale variability.

The remaining negative bias in the lower troposphere could be associated with underestimated ozone pro-
duction by precursors. Assimilating additional observations could be required to further improve the near
surface ozone analysis. Spatial gradients in urban chemistry are difficult to capture with a global analysis.
For example, Na et al. (2005) suggested that near surface ozone is strongly VOC-limited over the SMA. VOC
emission optimization through assimilation of formaldehyde measurements (e.g., Millet et al., 2008) in com-
bination with NOx and ozone data assimilation could be important. Meanwhile, the representation of meteor-
ological fields and chemical losses need to be carefully evaluated using observations. The simulated
meteorological fields were nudged toward the meteorological reanalysis fields (i.e., ERA-Interim) and

Figure 1. Comparison of mean vertical ozone profiles (in ppbv) between observations (black), model (blue), and reanalysis (red) averaged over the Korea-United
States Air Quality campaign period. Top row shows mean profile; middle and bottom rows show mean difference and root mean square error (RMSE) between
model simulation and observations (blue) and between the reanalysis and the observations (red), respectively. From left to right, results are shown for DC-8 aircraft
measurements over the Seoul metropolitan area (SMA), outside of the SMA, and ozonesonde measurements at Taehwa and Olympic Park.
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should realistically represent the actual weather patterns. Nevertheless, the general circulation model
performance could substantially influence the representation of detailed meteorological fields, for
example, in boundary layer height and cloud distribution, which could degrade the chemical data
assimilation performance. The spatial representativeness gaps between the measurements and model (at
1.1° × 1.1° resolution) could also contribute to the disagreement over the SMA.

Figure 2 compares the spatial distributions of mean ozone concentration from the DC-8 measurements
averaged over the campaign period. From the surface to 800 hPa, the observed mean concentrations
were high (110–130 ppbv) over the Yellow Sea and were lowest over western Japan (approximately
45 ppbv). The observed concentrations over the Korean Peninsula varied from 72 to 85 ppbv, with
enhancements around Seoul and Busan (80–85 ppbv). Between 800 and 500 hPa, the observed concen-
trations were high around the west coast of the peninsula (85–90 ppbv) and around Busan (90–100 ppbv).
Between 500 and 100 hPa, the observed mean concentrations reached 80–110 ppbv, with relatively high
concentrations around Seoul and western Japan.

The model underestimated the regional mean concentration by approximately 14 ppbv between the sur-
face and 800 hPa, 10 ppbv between 800 and 500 hPa, and 16 ppbv between 500 and 100 hPa. The nega-
tive model biases were large over the Yellow Sea and the vicinity of the western coast in the lower
troposphere (by up to 55 ppbv). The KORUS-AQ measurements over the Yellow Sea were designed to
observe strong (sharp) transport of pollution plumes from China, whereas even at the improved T106,
the horizontal model resolution is still considered too coarse to simulate the plume structure. Tang
et al. (2018) noted that during the 25 May 2016 flight, even forecasts using a grid spacing of
9 × 9 km were not able to capture the transport of enhanced CO and CO2 over the Yellow Sea, although
the impact of using high resolution models for simulating the high ozone plume is not clear. Based on
model calculations using the optimized emission (cf., section 5), we confirmed that rapid transport of pol-
luted air from China through NOx emissions resulted in large enhancements of lower tropospheric ozone
(30–50 ppbv) over the Yellow Sea during the period (Figure 3). Thus, model errors in local photochemical
production, precursor emissions in China, and transport processes at both synoptic and finer scales, in
addition to the coarse horizontal and vertical resolution of the model, could all contribute to the large
underestimation over the Yellow Sea. Also note that the assimilated measurements contain limited

Figure 2. Spatial distribution of mean ozone concentrations (in ppbv) averaged over the campaign period from a DC-8 aircraft sampling between the surface and
800 hPa (top), 800 and 500 hPa (middle), and 500 and 100 hPa (bottom). From left to right, results are shown for DC-8 aircraft measurements, model, reanalysis,
mean difference between the model and the observations, and mean difference between the reanalysis and the observations. The black square line represents the
SMA region (defined as 36.6°N–37.9°N, 126.4°E–127.6°E in this study).
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information to constrain lower tropospheric ozone over the remote areas. Over the Korean peninsula, the
model negative bias was maximized around Busan between 800 and 500 hPa, because of local sources
such as industries and power plant emissions.

Data assimilation largely reduced the model bias over the entire Korean peninsula throughout the tropo-
sphere and over the oceans, except over the Yellow sea below 800 hPa where most of the negative model
bias remained. The regional mean model bias was reduced by 64% between the surface and 800 hPa (to
6 ppbv), 86% between 800 and 500 hPa (to 1.5 ppbv), and 96% between 500 and 100 hPa (to 0.9 ppbv).
3.1.2. Temporal Variations
Meteorological conditions varied significantly during the campaign. We divided the period into four
phases based on dominant circulation patterns. Because the spatial coverage of the DC-8 measurements
is limited and changed largely with time during the campaign, regional ozone distributions over East Asia
for each phase cannot be obtained from the DC-8 measurements. We thus used the chemical reanalysis
to characterize the regional ozone distributions for all phases. Figure 4 shows the spatial distribution of
ozone and horizontal wind in the lower troposphere (at 700 hPa) from the chemical reanalysis for each
phase. During phase 1 (1–16 May), when the synoptic weather system dynamically changed, the spatial
and temporal variation of mean ozone concentration was weak. In phase 2 (17–22 May), when synoptic
flow was weak, stagnant conditions led to strong enhancements of pollution over the Korean Peninsula.
In phase 3 (25–31 May), when strong westerlies existed, polluted air was rapidly transported from China
to Korea, causing extreme pollution (>78 ppbv) and bad visibility in South Korea. In phase 4 (1–6 June),
a blocking pattern determined the large-scale ozone distribution over East Asia, leading to high ozone
concentrations over the northern part of the Korean peninsula (>74 ppbv) and northern
China (>77 ppbv).

Figure 5 compares the mean vertical ozone profiles from the DC-8 for individual phases, averaged for six
flights in phase 1, four flights in phase 2, four flights in phase 3, and three flights in phase 4. In phase 1, the
observed concentration increased with height over the SMA, with a minimum concentration of approxi-
mately 60 ppbv near the surface. The vertical variation was small outside of the SMA. The observedmean con-
centration in the boundary layer exceeded 90 ppbv in phases 2 and 3, whereas the mean concentration was
almost constant in the free troposphere (75–85 ppbv). In phase 4, the observed concentration decreased from
the surface (85–90 ppbv) to the middle troposphere (65 ppbv over the SMA and 75 ppbv outside of the SMA),
with a sharp minimum around 600 hPa over the SMA.

Figure 3. Spatial distribution of ozone (in ppbv) at 850 hPa on 25 May 2016 from the reanalysis (left) and its changes due to
Chinese NOx emissions (right). The impacts of Chinese NOx emissions were measured by comparing the results from a
control model simulation (using the optimized emission from data assimilation) and sensitivity model simulations using
modified NOx emissions where the emissions in China were set to zero. Vectors represent horizontal winds obtained from
the general circulation model calculation nudged to ERA-Interim.
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The negative model bias in the lower troposphere was large during phases 2–4 (10–18 ppbv over the SMA
and up to 20 ppbv outside of the SMA), whereas it was less than 10 ppbv during phase 1 both over and out-
side of the SMA. The model bias in the free troposphere was largest during phase 2 both over and outside of
the SMA (10–23 ppbv), while it was less than 8 ppbv above 700 hPa during phase 4 over the SMA.

Data assimilation largely reduced the model bias in the free troposphere throughout the campaign, whereas
the data assimilation efficiency varied largely in the lower troposphere. Most of the lower tropospheric bias
remained in phases 2 and 3 especially over the SMA. During these phases under stagnant and transboundary
transport conditions, model errors in, for instance, local photochemical processes, precursor’s emissions, and
boundary layer mixing could prevent improvements in the current data assimilation framework. In contrast,
during phases 1 and 4, when observed concentrations over the Korea peninsula were controlled by large-
scale variations, observational information was propagated efficiently in time and space, improving the data
assimilation performance from the surface to the free troposphere. These results highlight that both model
performance and data assimilation efficiency are strongly sensitive to meteorological conditions, even at

Figure 4. Spatial distribution in mean ozone concentrations (in ppbv) from the reanalysis at 700 hPa averaged during (a) 1–16 May 2016 (phase 1), (b) 17–22 May
2016 (phase 2), (c) 25–31 May 2016 (phase 3), and (d) 1–6 June 2016 (phase 4). Vectors represent horizontal winds obtained from the general circulation model
calculation nudged to ERA-Interim.

Figure 5. Same as in Figure 1 but for DC-8 measurements over the Seoul metropolitan area (SMA; top) and outside of the SMA (bottom) averaged during the indi-
vidual phases (from left to right, phases 1 to 4). Error bars represent the standard deviation of all data within each bin.
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same location and in the same season. Note that the choice of model resolution could influence the depen-
dence of data assimilation efficiency on meteorological conditions.
3.1.3. Evaluation of Regional Ozone Using Reanalysis
Data assimilation analysis provides comprehensive information on the spatial and temporal variations in
global ozone, which can be used to measure the representativeness of the DC-8 aircraft observations.
As summarized in Table 1, at 700 hPa over the SMA, the mean concentration averaged over the campaign
period, according to chemical reanalysis, is 76.7 ± 9.4 ppbv with the DC-8 aircraft sampling; this value is
comparable to the value observed in complete temporal and spatial sampling over the SMA
(75.1 ± 7.6 ppbv). The good agreement between the two samplings demonstrates that the aircraft obser-
vations are representative of means over the SMA. The standard deviation is largest for dynamic weather
conditions (in phase 1), and it is reduced by approximately 60% in complete sampling.

In the KORUS-AQ domain, the mean ozone concentration obtained by aircraft sampling is 75.8 ± 5.3 ppbv,
which is approximately 5 ppbv higher than the average of the surrounding area (defined as 31.5°N–
37.5°N, 123°E–132°E, corresponding to the area shown in Figure 2) in complete sampling (70.5 ± 9.2 ppbv),
because the DC-8 aircraft flew mainly over highly polluted areas over the Korean peninsula. The differ-
ence in mean ozone concentration between the two samplings (6 ppb) as well as the standard deviation
in complete sampling (8.7 ppb) is largest in phase 3 owing to strong latitudinal gradients of ozone asso-
ciated with the rapid transport of polluted air from eastern China centered over northern South Korea.
The difference between the two samplings at 900 hPa (not shown in the table) is 8 ppbv at the mean
concentration of the campaign (77.1 ± 12.2 ppbv in aircraft sampling and 69.1 ± 10.5 ppbv in complete
sampling), with large differences in phases 2–4 (7–11 ppbv).

Temporal variation is also different between the two samplings for both the SMA and the KORUS-AQ domain.
From phases 3 to 4, the mean ozone level decreased in aircraft sampling by approximately 2 ppbv, whereas it
increased in complete sampling by 2.4 ppbv. These differences reveal that the aircraft measurements have
limitations in representing the evolution of mean ozone fields associated with changes in meteorological
conditions at both local and regional scales.

The mean concentration of ozone over the East Asia domain (defined as 29°N–45°N, 110°E–132°E, corre-
sponding to the area shown in Figure 4) in the complete sampling is 70.2 ± 9.3 ppbv (averaged over the cam-
paign period), which is up to approximately 7 ppbv lower (in phase 3) than that based on aircraft sampling.
These results demonstrate that the DC-8 measurements are not representative of monthly and regional
means either over the KORUS-AQ domain or over East Asia.

Discrepancies can occur between the estimates using actual aircraft data and the analysis fields because
of the coarse model resolution. The standard deviation estimated along the DC-8 flight tracks for each bin
(with an interval of 30 hPa) was 20–90% larger in the actual aircraft data than in the data assimilation ana-
lysis, showing that the analysis represents only parts of the observed variability. Despite the large differ-
ences in the variability, we expect the mean concentrations to be similar because of the large number of
aircraft samples over a wide area, except near the surface. Near the surface, evaluations using high-
resolution model/data assimilation fields would provide more useful estimates.

Table 1
Mean Values and Standard Deviations of Ozone Concentrations (in ppbv) Based on Data Assimilation Analyses Averaged Over the Entire Korea-United States Air Quality
(KORUS-AQ) Campaign Period and During Individual Phases

Sampling All period Phase 1 Phase 2 Phase 3 Phase 4

SMA (aircraft) 76.7 ± 9.4 75.0 ± 13.7 78.9 ± 5.9 77.3 ± 8.0 75.5 ± 2.9
SMA (complete) 75.1 ± 7.6 73.1 ± 5.3 79.8 ± 4.1 77.7 ± 6.2 77.1 ± 7.8
KORUS-AQ area (aircraft) 75.8 ± 5.3 74.6 ± 6.5 77.7 ± 6.2 76.0 ± 4.3 73.9 ± 2.9
KORUS-AQ area (complete) 70.5 ± 9.2 70.4 ± 7.2 75.5 ± 6.6 70.0 ± 8.7 72.4 ± 8.3
East Asia (complete) 70.2 ± 9.3 69.6 ± 7.2 72.0 ± 6.6 68.7 ± 8.9 73.4 ± 8.4

Note. The results corresponding to the Seoul metropolitan area (SMA), the KORUS-AQ domain (defined as 31.5°N–37.5°N, 123°E–132°E), and the East Asia domain
(defined as 29°N–45°N, 110°E–132°E) using the DC-8 aircraft sampling and complete sampling 8-h daytime (9 am to 5 pm) mean chemical reanalysis fields at
700 hPa are shown.
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3.1.4. Analysis Uncertainty
Important information regarding data assimilation performance is provided by the error covariance. Analysis
spread is estimated as the standard deviation across the ensemble simulations, and it can be regarded as
uncertainty of the analysis fields. It is caused by errors in the model input data, model processes, and errors
in the assimilated measurements, and it is reduced if the analysis converges to a true state (e.g., Houtekamer
& Mitchell, 2005; Houtekamer & Zhang, 2016).

The analysis spread showed distinct variations in both time and space (Figure 6). In phase 1, the analysis
spread was relatively small (<4 ppbv) over central and southern China, because of eastward transport of
air with small spread from the central Eurasian continent. In phase 2, the spread was small within the
anticyclone over northeastern China and Korean Peninsula. Within the high-pressure system, more obser-
vations are available due to the lack of clouds, and observational information can be accumulated effec-
tively, with reduced influence of polluted air from China, which generally has a larger forecast spread. As
a result, the analysis spread over the SMA was decreased by approximately 30% from phases 1 (3.8 ppbv)
to 2 (2.8 ppbv). In phase 3, when polluted air was transported from China, the analysis spread over the
SMA increased again to approximately 4.1 ppbv. In phase 4, both the analysis concentration and its
spread increased over central China, whereas the spread over the Korean peninsula decreased to
approximately 3.3 ppbv.

The changes in the analysis spread suggest that the impact of data assimilation on the analysis, espe-
cially for direct ozone assimilation, will be sensitive to meteorological conditions. The small spread could
lead to a small increment from ozone assimilation in phase 2. This suggests that accurate and dense
observations of precursors could be more important than ozone measurements to improve ozone analy-
sis for stagnant conditions. In contrast, phase 1 saw dynamic weather conditions (i.e., dynamically varying
weather conditions) and a relatively large spread over a wide area in East Asia; as a result, both local and
remote measurements of ozone and precursors can be expected to be important to improve the regional
ozone distribution.

Overall, the analysis spread was smaller than the actual analysis and observation difference, with the lar-
gest discrepancy in phase 2 when the analysis spread was smallest (as described above) and the
analysis-observation difference was large (cf., section 3.1.2). The mean value and standard deviation of
the actual OmF evaluated using the DC-8 measurements in the lower troposphere (between 860 and
700 hPa) in May 2016 were 6.1 ± 4.5 ppb, in contrast with the estimated analysis spread of
3.9 ± 1.1 ppb. The small analysis spread could reflect the lack of effective observations for measuring
analysis uncertainties and the stiff chemical system. The ozone analysis spread in the lower and middle
troposphere was sensitive to the spread in surface NOx emissions when excluding direct ozone assimila-
tion. These results indicate the need for additional observational information and/or stronger covariance
inflation for forecasting error covariance and measuring analysis spread corresponding to actual analysis
uncertainty. Note that the obtained ozone analysis spread was affected by the choice of inflation factor
for NOx emissions to some extent (cf., section 2.2.2). The applied inflation factor was chosen to obtain the
best agreement with the observed profiles of NO2 and ozone.

Figure 6. Spatial distribution of mean analysis spread (in ppbv, shaded) and mean ozone concentration (in ppbv, contour) from the reanalysis at 700 hPa averaged
during the individual phases (from left to right, phases 1 to 4) for the reanalysis calculation.
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3.2. Various Reactive Gases

Figure 7 compares the mean vertical profiles of various reactive gases observed from DC-8 measurements
averaged during the campaign over and outside of the SMA. The observedmean boundary layer NO2 concen-
tration is approximately 12 ppbv over the SMA and 1.6 ppbv outside of the SMA. The model underestimates
NO2 by 65% over the SMA and 40% outside of the SMA. Data assimilationmostly removes themodel negative
bias and reproduced the observed NO2 profile throughout the troposphere outside of the SMA, whereas the
improvement was small over the SMA. The remaining negative bias over the SMA suggests that model pro-
cesses, such as the diurnal cycle, boundary layer mixing and venting, the chemical lifetime of NOx, and the
chemical equilibrium state, may not be described well over the polluted area. Meanwhile, the model resolu-
tion is not sufficient to resolve local enhancements of NO2 in such a small area. NO is underestimated by 88%
over the SMA and by 70% outside of the SMA within the boundary layer by the model. Data assimilation
reduced approximately 20% of themodel negative bias outside of the SMA. The remaining NO error both over
and outside of the SMA indicates a requirement to improve the NOx chemistry to better proportion of NO
and NO2.

The model underestimates CO by up to 120 ppbv over the SMA and 70 ppbv outside of the SMA below
approximately 800 hPa (Figure 7), as commonly reported in the Copernicus Atmosphere Monitoring
Service analysis for the same campaign (Tang et al., 2018) and in other global chemical transport models
(e.g., Strode et al., 2016). This may reflect underestimated emissions and too short chemical lifetime of CO.
Data assimilation removes most of the negative CO bias both over and outside of the SMA, because of the
increased surface CO emissions (cf., section 4).

The model largely overestimates SO2 below approximately 600 hPa by a factor of up to 3 both over and out-
side of the SMA. Data assimilation mostly removed the positive SO2 bias above approximately 800 hPa,
because of the reduced surface emissions by OMI SO2 measurements (cf., section 5). In the lower tropo-
sphere, however, data assimilation led to negative SO2 biases. This probably reflects errors in local emissions,
model processes within the boundary layer, vertical transport between the lower and middle troposphere,
and in the assimilated retrievals and setting (e.g., constant retrieval errors were assumed for OMI SO2).
Further, the assimilated SO2 columnmeasurements will have a reduced sensitivity near the surface compared
to the free troposphere, but this effect was not considered in the observation operator because of the lack of
information in the retrievals. The model underestimated PAN below approximately 850 hPa over the SMA
and throughout the troposphere outside of the SMA, whereas data assimilation reduced the negative bias
associated with the increased NO2.

The model overestimates the mean OH concentration by up to a factor of 2 in the lower troposphere and
underestimates it by up to 35% in the upper troposphere. The overestimation in the lower troposphere is
smaller (by approximately 25%) outside of the SMA. The data assimilation increases OH above approximately
700 hPa, showing a closer agreement with the observed profiles with bias reductions of 75–95% in themiddle
and upper troposphere (between 650 and 350 hPa), whereas the improvement is small in the lower tropo-
sphere. The increase in ozone increased OH throughout the free troposphere, while the increase in CO
decreased OH in the lower troposphere. These adjustments led to a closer agreement with the observed
OH profile outside of the SMA. As OH modulates the chemical lifetimes of many species and improves emis-
sion inversions (Miyazaki, Eskes, & Sudo, 2012; Miyazaki, 2015, 2017), the significant improvements in OH con-
firm the usefulness of multiple-species assimilation in tropospheric chemistry analysis.

Model errors remain in the analysis of some nonassimilated species; these include overestimations in
HNO3, HO2, and H2O2 in the lower and middle troposphere both over and outside of the SMA and
underestimations in CH2O in the lower troposphere over the SMA. HNO3 is removed from the tropo-
sphere by deposition processes, while the chemical production of HNO3 drives the observed increase
in HNO3 toward the surface over polluted areas. The large positive bias in the simulated HNO3 could
be caused by too weak depositions and/or too strong chemical productions. In addition, an underesti-
mated formation of nitrate aerosol, due to the lack of formation with sea-salt particles and dust in the
model, could be one of the causes of the overestimation of HNO3 in the lower troposphere. Further
investigations, for instance, using in situ measurements of deposition and aerosol concentration would
facilitate in improving the model performance.
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Figure 7. Comparison of mean vertical profile between observations (black), model (blue), and reanalysis (red) for CO (ppbv), HNO3 (ppbv), SO2 (ppbv), NO2 (pptv),
NO (pptv), OH (pptv), H2O (ppbv), HO2 (pptv), CH2O (pptv), and PAN (pptv) averaged over the Korea-United States Air Quality campaign period. Results are shown for
the profile (a) over and (b) outside of the Seoul metropolitan area (SMA).
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The model includes the heterogeneous HO2 loss by aerosols and cloud droplets. However, it assumes the
final product of this HO2 reaction to be H2O2 not H2O. The absence of this loss process could lead to the over-
estimations in H2O2 and HO2, as suggested by Mao et al. (2013). Kanaya et al. (2009) and Kanaya et al. (2016)
discussed that inclusion of this loss would reduce daytimemaxima of HO2 and daytime net ozone production
rate at Mt. Tai, in the center of the North China Plain and at Fukue Island, near Korea, respectively.

A lack of direct observational constraints limits improvements on these species. For instance, the assimilated
satellite measurements contain limited information to reduce model errors due to fast chemistry such as
model processes that determine the NO2/NO ratio. The remaining model errors prevent the data assimilation
improvement, forexample, in NO in the boundary layer, both over and outside of the SMA. Further, model
errors in transient transport processes, e.g., owing to convection and boundary layer mixing, and in planetary
boundary layer mixingmay yield errors in the NO profiles because the NO2/NO ratio changes with height. The
remaining errors after data assimilation are generally larger over the SMA than outside the SMA for several
species (CO, SO2, NO2, NO, PAN, and OH). The spatial representativeness errors due to the limited resolution
of the model could contribute to the disagreement over the SMA.

Any systematic error in themodel processes will have a negative influence on the analysis including the emis-
sion estimates. For instance, the underestimation in SO2 within the boundary layer could suggest a possible
overestimation of an atmospheric sink of SO2 in the model, which will result in an overestimation in esti-
mated SO2 emissions. From model sensitivity calculations, simulated SO2 concentrations in the boundary
layer were found to be sensitive to model parameters such as the heterogeneous reaction rate on dust sur-
faces. Changes in the chemical scheme are expected to affect the estimated sources. Similarly, an overesti-
mate of NOx removal processes could lead to an overestimation in NOx emissions. Assimilating additional
observations and adjusting more model parameters (e.g., VOC emissions, deposition, and/or chemical reac-
tions rates) could be required to reduce model errors in these species and improve emissions estimates.

Figure 8 compares the spatial distribution of the tropospheric NO2 column between the OMI measurements,
model simulation, and data assimilation. The model overestimates high NO2 columns over polluted areas in
China and underestimates it over the Korean peninsula and the oceans. The area mean bias is
�1.5 × 1015 molecules/cm2 (approximately 50% of the regional mean concentration) for South Korea and
+1.7 × 1015 molecules/cm2 (approximately 75%) for eastern China. The a priori emissions were constructed
for the year 2010. The simulation did not consider the influence of a rapid NOx emission reduction after
2010 for China that was reported by Miyazaki et al. (2017) and Liu et al. (2017). For South Korea, most of
the top-down estimates revealed increases after 2010 (Ding et al., 2017). The use of the 2010 emissions, along
with large uncertainty in emission factors, could explain a part of the overestimation over China and the
underestimation over South Korea. Data assimilation increases tropospheric NO2 columns by approximately
1.4 × 1015 molecules/cm2 over South Korea and by 0.4–1.0 × 1015 molecules/cm2 over the oceans and
decreases over most of eastern China (by 3.5 × 1015 molecules/cm2 over northeastern China and by
5 × 1015 molecules/cm2 around Hangzhou and Shanghai). As expected, data assimilation greatly improved
the agreements with the assimilated OMI measurements, with a reduced regional mean bias from 0.07 to
0.02 × 1015 molecules/cm2 and RMSE from 1.5 to 0.7 × 1015 molecules/cm2 and an increased spatial correla-
tion from 0.86 to 0.93 for the monthly mean fields for East Asia (defined as 30–45°N, 90–130°E). The model
negative bias was reduced by approximately 40% (from 4 to 2.6 × 1015 molecules/cm2) over Seoul and by
70% (from 1.4 to 0.4 × 1015 molecules/cm2) for the country-average concentration in South Korea.

3.3. Impact of Individual Assimilated Measurements

To demonstrate the relative importance of individual assimilated measurements on the improvements in the
ozone profile analysis, we conducted Observing System Experiments, by separately assimilating individual
measurements into the data assimilation system. The total averaged changes in ozone by the multiple-
constituent data assimilation over South Korea reached approximately 10 ppbv in the lower troposphere
and approximately 20 ppbv in the middle and upper troposphere (cf., section 3.1.1).

As shown in Figure 9, for the lower tropospheric ozone analysis, NOx emission optimization by OMI and
GOME-2 NO2 data assimilation was most important. The NO2 impact generally increased with decreasing lati-
tude over the East Asia domain because of greater ozone production efficiency by NOx and larger corrections
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made to regional NOx emissions at lower latitudes; meanwhile, the impact around South Korea varies largely
with meteorological conditions. At 700 hPa, the smaller contribution in phase 1 around South Korea is asso-
ciated with weak influences of either Korean and Chinese emissions, whereas the large contributions in
phases 2–4 are associated with enhanced ozone productions through local (in phases 2 and 4) and remote
(in phase 3) emissions.

The changes in NOx emissions increased mean ozone concentration by 5.3 ± 0.6 ppbv (5.5 ± 0.7 ppbv) in
phase 1 and by 6.0–6.3 ± 0.3–0.7 ppbv (6.1–6.2 ± 0.3–0.9 ppbv) in phases 2–4 over the SMA (over South
Korea) at 700 hPa. Below 800 hPa over the SMA (figure not shown), the NO2 assimilation explains most of

Figure 8. Spatial distributions of tropospheric NO2 column (in 1015molecules/cm2) from the QA4ECV OMI retrievals (upper left), model (upper center), and reanalysis
(upper right). The lower panels show the difference between the assimilation and model simulation (left), between the model simulation and the satellite retrievals
(center), and between the data assimilation and the satellite retrievals (right).

Figure 9. Spatial distributions of differences in the mean ozone concentrations (in ppbv) between the NO2 assimilation and model at 700 hPa averaged during indi-
vidual phases.
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the increase in mean ozone concentrations, except in the case of phase 4. The impact of NOx emission opti-
mization on the boundary layer ozone (at 900 hPa, figure not shown) reached 7.5 ± 1.6 ppbv in phase 4 over
South Korea at 900 hPa (in contrast to 4.9–6.2 ppbv in other phases). By assimilating all the measurements,
the total ozone increase reached 10.8 ± 3.8 ppbv in phase 2 and 10.7 ± 3.2 ppbv in phase 4 at 700 hPa (in
contrast to 7.8–8.9 ppbv in other phases) and 12.0 ± 2.0 ppbv in phase 4 at 900 hPa (in contrast to 2.8–
7.2 ppbv in other phases) over the SMA.

Figure 10 compares the Observing System Experiment results with the DC-8 aircraft measurements over SMA.
The NO2 assimilation leads to large error reductions both at 700 and 400 hPa, mostly throughout the cam-
paign period. Assimilation of stratospheric MLS ozone measurements provides additional important correc-
tions to the middle and upper tropospheric ozone, with up to 10 ppbv positive increments over South Korea
and other areas in East Asia. Assimilation of MOPITT CO data mostly increased mean ozone concentration by
1–4 ppbv across the troposphere. The MLS impact in the middle and upper troposphere is large in phase 2,
with mean bias reductions relative to the DC-8 measurements of 35% at 700 hPa and 38% at 400 hPa. In con-
trast, the total adjustment is largely dominated by the NO2 assimilation throughout the troposphere in phase
3, reflecting the strong transport of polluted air from China, which reduces the mean bias by 45% at 700 hPa
and 54% at 400 hPa. The MLS impact reaches to lower tropospheric levels, particularly in phase 4.

These results demonstrate that the simultaneous optimization of concentration and emissions from multi-
constituent data assimilation is an efficient method to correct the entire tropospheric ozone profile in East
Asia and that the assimilation efficiency of individual measurements is dependent on the particular phase.

4. Assimilation of AIRS/OMI Tropospheric Ozone Profiles

Here we evaluate the impact of assimilating the AIRS/OMI multispectral tropospheric ozone profile analysis
during the campaign. We conducted two additional data assimilation experiments: one assimilates only
AIRS/OMI retrievals (AIRS/OMI DA), and the other assimilates the AIRS/OMI retrievals together with other
assimilated retrievals used in the standard data assimilation calculation (Reanalysis+AIRS/OMI DA). Both
the global (GL) and regional (RE for East Asia: 20–50°N, 80–130°E with denser spatial sampling) products were
assimilated. The evaluation results at 510 hPa are depicted in Figure 11, and the statistics are summarized in
Table 2. Themodel underestimated themonthly mean ozone concentrations by 4–28 ppbv in the tropics and
overestimated by up to about 20 ppbv in the southern midlatitudes relative to the AIRS/OMI retrievals at
510 hPa. Even without assimilating the AIRS/OMI retrievals, the reanalysis showed closer agreement with
the AIRS/OMI retrievals than the model simulation for both the global and regional products, with a zonal
mean bias of 3.9 ppbv in the extratropics of both hemispheric and �1.8 ppbv in the tropics for GL, and
0.9 ppbv for RE at 510 hPa. These results suggest good performance of both reanalysis and AIRS/OMI retrie-
vals. By assimilating AIRS/OMI retrievals (AIRS/OMI DA), the ozone analysis shows closer agreement with
AIRS/OMI retrievals than the model and reanalysis for most cases, confirming the capability of the
AIRS/OMI data product for use in data assimilation. The zonal mean bias (RMSE) was reduced by 77%
(36%) in the NH extratropics, 57% (50%) in the tropics, and 97% (55%) in the Southern Hemisphere for GL,
and 98% (43%) for RE at 510 hPa, compared with the model simulation results. Improvements can be found
throughout the troposphere, with reduced improvements in the lower troposphere (i.e., at 750 hPa).

As shown in Figure 12 (upper panels), the mean analysis spread is larger by up to 70% in all phases in
AIRS/OMI DA than in the standard data assimilation calculation without any ozone assimilation (cf.,
Figure 6). The analysis spread is expected to decrease when effective observations are assimilated. In
AIRS/OMI DA, the spread was mainly increased by the covariance inflation process in ozone data assimilation
(cf., section 2.2.2). The analysis spread in the AIRS/OMI data assimilation (typically 6–8 ppbv over South Korea)
provides better agreements with the actual analysis and observation difference (i.e., 6.1 ± 4.5 ppb for the
lower troposphere) than that in the standard data assimilation calculation (3.9 ± 1.2 ppb), which can be
regarded as a more realistic estimate of analysis uncertainty. Note that the applied covariance inflation factor
was chosen to obtain the best agreement with the observed ozone profiles.

The AIRS/OMI observation coverage and retrieval uncertainty were similar between different phases (except
after 29 May when OMI went into survival model and ceased operation). However, the ozone analysis incre-
ments from AIRS/OMI assimilation varied substantially with meteorological conditions (lower panels in
Figure 12). The analysis increment was large over central and southern China in phase 1 and around the
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Korean peninsula in phase 3. In phase 2, the small increment over East Asia corresponds to the small back-
ground spread. These results suggest that the data assimilation efficiency of both direct ozone measure-
ments and precursor measurements (cf., section 3.1.4) varied greatly with meteorological conditions,
associated with changes in the background error covariance.

The varying data assimilation efficiency can also be confirmed from evaluations using the DC-8 measure-
ments. As shown by Figure 13, assimilation of AIRS/OMI data alone (AIRS/OMI DA) reduced the mean model
bias with respect to themean DC-8 ozone profiles in themiddle troposphere by approximately 90% in phases
1 and 2 and by approximately 70% in phase 4. The bias reduction was smaller in phase 3 (by 35%), which is
thought to be associated with the smaller spread and analysis increments in phase 2. With adding AIRS/OMI
assimilation in the standard data assimilation calculation (Reanalysis+AIRS/OMI DA), the error reduction
reaches larger than 80% in all phases, while providing improved error estimates similar to those in
AIRS/OMI DA. As an exception, the error reduction became slightly smaller by adding AIRS/OMI assimilation
in phase 3. The current AIRS/OMI data are only using a small fraction of the available observations. The impact
of AIRS/OMI could become significantly greater when more data are processed. These results suggest that
combining precursors’ emission optimization and direct ozone assimilation is an effective method to improve
the tropospheric ozone profile analysis, independent from meteorological conditions.

5. Estimated Emission Sources

Figure 14 shows regional maps of surface emissions of NOx, CO, and SO2 estimated from data assimila-
tion and the difference from a priori emissions (constructed based on HTAP version 2 inventories) aver-
aged during May 2016. Data assimilation increases NOx emissions over some parts of urban East Asia,
such as over Beijing (by 10%), around Shanghai (by 10%–50%), Hong Kong (14%), Shenzhen (20%),
Seoul (22%), and Busan (54%). The positive increments suggest underestimations in anthropogenic emis-
sions in the inventories. In contrast, the increments are negative over central China (by 10–50%). The
complex spatial structure in the increments indicates large uncertainties in the emission inventories
and different emission biases among cities. The use of the 2010 a priori emissions could also explain

Figure 10. Absolute values of mean ozone bias (ppbv) relative to the DC-8 aircraft measurements over Seoul metropolitan area (SMA) for individual phases for the
model calculation (blue), Ozone Monitoring Instrument (OMI) and Global Ozone Monitoring Experiment 2 (GOME-2) NO2 assimilation (green), Measurements of
Pollution in the Troposphere (MOPITT) CO data assimilation (orange), Microwave Limb Sounder (MLS) O3 and HNO3 assimilation (purple), and reanalysis (red) at 400
(upper panel) and 700 hPa (lower panel).
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Figure 11. Comparison of mean ozone concentrations between the Atmospheric Infrared Sounder/Ozone Monitoring Instrument (AIRS/OMI) retrievals (left col-
umns), model (second left columns), reanalysis (third left columns), and AIRS/OMI assimilation (right columns) at 510 hPa in May 2016. Upper row shows ozone
concentrations for the global product (GL), and second row shows the difference between the model simulation or assimilation and the satellite retrievals for GL;
third row shows ozone concentrations for the regional product (RE), and bottom row shows the difference between the model simulation or assimilation and the
satellite retrievals for RE.

Table 2
Comparisons of Mean Ozone Concentrations Between the Model Simulation (Model), the Standard Data Assimilation Calculation (Reanalysis), and Atmospheric Infrared
Sounder/Ozone Monitoring Instrument (AIRS/OMI) Only Data Assimilation Calculation (AIRS/OMI DA) in May 2016

Calculation

GL SH: 55–15°S GL TR: 15°S-15°N GL NH: 15–55°N RE

BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE

316 hPa Model 14.3 20.1 �2.8 8.3 13.5 27.6 6.7 26.0
Reanalysis 6.7 9.9 5.7 8.7 4.4 17.9 0.2 19.8
AIRS/OMI DA �0.2 7.6 �1.7 5.5 �3.3 15.8 �2.5 15.7

510 hPa Model 4.0 8.3 �12.2 14.4 �1.3 12.0 �5.2 14.5
Reanalysis 3.9 6.0 �1.8 6.6 3.9 9.2 0.9 10.5
AIRS/OMI DA 0.1 3.7 �5.3 7.2 0.3 7.7 0.1 8.3

750 hPa Model 0.3 4.3 �10.5 12.0 �3.0 8.2 �2.0 7.6
Reanalysis 2.2 3.7 �3.1 6.0 3.9 7.6 4.8 6.8
AIRS/OMI DA 0.3 2.8 �3.2 5.9 1.7 6.6 3.5 6.5

Note. Shown are the mean bias (BIAS: the data assimilation minus the satellite retrievals) and the root mean square error (RMSE) in ppbv. From left to right, results
are shown for Southern Hemisphere (SH) midlatitudes (15–55°S), tropics (15°S–15°N), and Northern Hemisphere (NH) midlatitudes (15–55°N) for the global pro-
duct (GL) and for the East Asia regional product (RE).
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the spatial structure of the analysis increment. Over central China, large negative increments can be asso-
ciated with recent emission reductions since 2011, as revealed by Miyazaki et al. (2017), Liu et al. (2017),
and Qu et al. (2017). The large adjustments over South Korea could also be associated with large uncer-
tainties in emission factor and activity used in the inventories (Kim et al., 2013).

The CO emissions increased over most of China, with large increases
in northwestern and southeastern China by 10–40%. The overall
increases can be attributed to emission underestimations in inven-
tories and high bias in northern hemispheric OH, as discussed by
Strode et al. (2016). Conversely, the decrease in CO emissions over
central-eastern China could be associated with the reported decrease
in emissions after 2010 (Jiang et al., 2017). The spatial pattern in NOx

and CO emissions largely differed.

The SO2 emissions decreased by 10–90% over the entire East Asia
domain, with large reductions observed over central and southwes-
tern China. These variations are considered to be associated with
the reductions in China’s total regional emissions after 2010, as
reported by Koukouli et al. (2018), and large uncertainties in the
inventories. The extent of reductions in SO2 emissions was smaller
over northwestern China. This could be associated with the excep-
tional positive trend in this region after 2010 (Ling et al., 2017).

Figure 12. Spatial distribution of mean analysis spread (in ppbv, shading) and mean ozone concentration (in ppbv, contours) from the reanalysis at 650 hPa
averaged during individual phases (from left to right, phases 1 to 3) for the AIRS/OMI data assimilation (upper panels). Spatial distributions of ozone analysis
increments (in ppbv/day) from AIRS/OMI data assimilation are also shown (lower panels). Because the OMI went into survival model on 29 May and ceased operation
afterward during the KORUS-AQ period, the spread and increments in phase 4 are not discussed.

Figure 13. Mean absolute values of ozone bias (in ppbv) relative to the DC-8 air-
craft measurements at 650 hPa for individual phases for the model calculation
(blue), reanalysis (red), Atmospheric Infrared Sounder/Ozone Monitoring
Instrument (AIRS/OMI) data assimilation (green), and reanalysis with assimilating
AIRS/OMI data (orange).
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Table 3 summarizes the total regional emissions of NOx, CO, and SO2 for South Korea (125–129.5°E, 34.2–
38.2°N) and eastern China (100–124°E, 21–43°N) obtained from several bottom-up inventories and estimated
through top-down estimates approaches by using two different NO2 retrieval products from the QA4ECV ver-
sion 1.1 (Boersma et al., 2017a, 2017b) and DOMINO version 2 (Boersma et al., 2004, 2011) for OMI and GOME-
2 but the same observations of other trace gases. Bottom-up emissions were obtained from the HTAP version
2 for 2010 (Janssens-Maenhout et al., 2015), EDGAR version 4.3.2 for 2012 (Crippa et al., 2018), and KORUS-AQ
version 2 inventories. The KORUS-AQ version 2 emissions were constructed based on the improved CAPSS
(Clean Air Policy Support System) 2015 emissions for South Korea (Lee et al., 2011) and the Comprehensive
Regional Emissions for Atmospheric Transport Experiment (CREATE) version 3 for China for 2015 using the
SMOKE-Asia emission processing at 0.1° resolution (Woo et al., 2012). A top-down NOx estimation for 2016,

Figure 14. Spatial distributions of surface NOx emissions (in 1011 kg·N·m�2·s�1, upper panels), surface CO emissions (in 1010 kg·CO·m�2·s�1, middle panels), and
surface SO2 emissions (in 1010 kg·S·m�2·s�1, bottom row) obtained from a priori emissions (left panels), a posterior emissions from the reanalysis (center panels),
and the difference between a posteriori and a priori emissions (right panels) averaged over May 2016. The black square line represents the eastern China region
(100–124°E, 21–43°N) used for the emission analysis.
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based on the DECSO v5.1qa inversion using the OMI QA4ECV v1.1 NO2 products (Ding et al., 2018), and the v1
emission estimates for SO2 using the OMI SO2 BIRA products (Koukouli et al., 2018) for 2014 at 0.25° resolution
were obtained through the GlobEmission project (van der A et al., 2017).

There are large differences between the NOx emission inventories for South Korea (0.30–0.43 Tg N) and east-
ern China (6.2–8.3 Tg N), as similarly discussed by Ding et al. (2017) for 2005–2015. In South Korea, the top-
down emissions of NOx emissions estimated using QA4ECV is 0.42 Tg N, which is about 40% higher than the
KORUS v2 and HTAP v2 inventories but is equivalent to the EDGAR v4.3.2 inventories. Compared with the
GlobEmission top-down estimate, the estimated NOx emissions were higher by 13%, which could be attrib-
uted to the coarser model resolution dilution effects and nonlinear chemistry as well as differences in model
chemistry. The top-down emission of NOx in eastern China is similar to the HTAP v2 emissions, while the spa-
tial distribution is largely different (cf., Figure 14).

When the DOMINO product is used instead of the QA4ECV product, the estimated NOx emissions for South
Korea and eastern China are about 5% and 3%, respectively, lower. This reflects the updated retrievals includ-
ing revised a priori profiles and improved uncertainty estimates. Although higher emissions are estimated by
the QA4ECV product, the retrieved tropospheric columns are generally smaller for polluted areas, associated
with the lower a prior column in the QA4ECV product and the use of the averaging kernel (Eskes & Boersma,
2003). Changes made to retrieval errors in the retrieval products could also be important for obtaining suffi-
cient emission corrections when using the QA4ECV product, especially for highly polluted areas. Because of
the improved error estimates in the QA4ECV product, we used the original retrieval error for both products
in this study, unlike in our previous study (Miyazaki et al., 2017), which reduced retrieval errors of individual
NO2 retrievals by 30% over polluted areas for the DOMINO product.

The top-down CO emission for South Korea is 1.1 Tg CO, which is 22% higher than the KORUS v2 emissions
and 83% higher than the HTAP v2 emission. However, it is approximately 40% of the EGDAR v4.3.2 emissions.
The total CO emission in eastern China varies from 107.5 Tg CO (EDGAR v4.3.2) to 231.3 Tg CO (HTAP v2)
among the inventories; the top-down emission is approximately 19% higher (231.3 Tg CO) than the a priori
emissions (i.e., HTAP v2). The EDGAR v4.2 emission is more than 50% lower than the top-down estimate for
eastern China.

The a posteriori estimates for total SO2 emissions in South Korea are approximately 40% lower than the HTAP
v2 emissions and 73% lower than the KORUS-AQ v2 emissions. In eastern China, the a posteriori estimates are
65% lower than the HTAP v2 emissions and 85% lower than the EGDAR v4.3.2 emissions. These results suggest
large overestimations of SO2 emissions in the bottom-up emission inventories. The overestimations could also
be partly due to the recent rapid emission reduction (Li et al., 2017). However, since the a posteriori emission
led to underestimations in the boundary layer SO2 concentrationswith respect to theDC-8measurements (cf.,
Figure 7), the estimated emission in South Korea could be underestimated, associated with the large uncer-
tainty (e.g., randomnoise of ~0.5 DU for remote areas, as described in Li et al., 2013) and the assumed constant
retrieval errors and air mass factor because of lack of information in the assimilated OMI SO2 retrievals.

Table 3
Regional Total Surface Emissions of NOx (in Tg N/Year), CO Emissions (in Tg CO/Year), and SO2 (Tg SO2/Year) From A Priori and A Posteriori Emissions for South Korea
(125–129.5°E, 34.2–38.2°N) and Eastern China (100–124°E, 21–43°N) in May 2016

Estimate

South Korea Eastern China

NOx CO SO2 NOx CO SO2

HTAP v2 2010 0.30 0.6 0.12 7.6 194.6 12.8
EDGAR v4.3.2 2012 0.43 2.6 0.8 8.2 107.5 29.8
KORUS v2 0.30 0.9 0.26 — — —
Top-down (QA4ECV) 0.42 ± 0.05 1.1 ± 0.2 0.07 ± 0.02 8.3 ± 0.3 231.3 ± 10.0 4.5 ± 1.1
Top-down (DOMINO2) 0.39 ± 0.05 — — 8.0 ± 0.4 — —
GlobEmission 0.37 — — 6.2 — 20.9

Note. The a posteriori NOx emissions were derived using two different satellite NO2 retrievals (QA4ECV and DOMINO2) in this study. The standard deviations of the
estimated daily emissions during the analysis period are shown as the uncertainty information of the a posteriori emissions. The top-down estimates from the
GlobEmission systems are also shown for NOx and SO2 emissions.
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The estimated NOx emissions were sensitive to forecast model resolution. The estimated NOx emissions
became approximately 10% larger in coarser resolution (2.8° × 2.8°) analyses than in fine resolution
(1.1° × 1.1°) analyses for South Korea, using the same data assimilation setting. Sekiya et al. (2018) demon-
strated that coarser resolution models tend to underestimate the tropospheric NO2 column over polluted
areas associated with dilution effects and nonlinear chemistry. Further increases in model resolution could
be crucial to obtain reasonable estimates for the highly polluted cases that are pronounced in East Asia, as
discussed by Valin et al. (2011) and Sekiya et al. (2018).

Using the optimized emission data sets, we conducted model sensitivity calculations to estimate the impact
of precursors’ emissions from different regions on the ozone amount over Seoul. This will be presented in a
separate companion study.

6. Conclusions

Comprehensive chemical reanalyses of multiconstituent concentration and emissions fields, provided by an
assimilation of multiple satellite measurements of ozone, CO, NO2, HNO3, PAN, and SO2 from OMI, GOME-2,
MOPITT, MLS, and AIRS, are used to understand the processes controlling variations in air pollution over East
Asia during the KORUS-AQ campaign of May–June 2016. Various measurements obtained during the KORUS-
AQ provide an opportunity to evaluate data assimilation performance and the value of existing satellite plat-
forms to study air quality over East Asia.

The evaluation of the data assimilation fields demonstrates the importance of multiple species satellite data
assimilation and the simultaneous optimization of the concentration and emission fields. The analyzed
ozone, CO, NO2, SO2, and OH profiles showed improved agreements with DC-8 aircraft measurements from
the lower troposphere to the lower stratosphere. Corrections made to the precursor emissions (i.e., NOx and
CO emissions) were important in reducing the lower and middle tropospheric model ozone bias, while direct
concentration adjustment by ozone measurements in the upper troposphere-lower stratosphere played
important roles in correcting the middle and upper tropospheric ozone. The negative bias in OH was also lar-
gely reduced in the free troposphere because of the combined assimilation of multiple species, which played
an important role in propagating observational information among various species and in modifying the che-
mical lifetimes of various reactive gases. We also tested the assimilation of AIRS/OMI multispectral retrievals
of tropospheric ozone profiles. An additional bias reduction on the tropospheric ozone analysis, especially in
the middle troposphere, was obtained by assimilating the multispectral retrievals, which was also important
to obtain realistic estimates of the analysis uncertainty.

Both the model performance and data assimilation efficiency were sensitive to meteorological conditions.
The observed boundary layer ozone concentration over Seoul exceeded 90 ppbv for stagnant condition
but was 10–30 ppbv lower for dynamic weather conditions. Large reductions on the free tropospheric model
bias by data assimilation were found throughout the campaign. In contrast, the lower tropospheric ozone
bias was only slightly reduced for stagnant and transboundary transport conditions. During these phases,
errors in local photochemical processes and precursor emissions could prevent improvements in the lower
tropospheric ozone. In contrast, for dynamic weather conditions, observational information was propagated
efficiently in time and space, improving the data assimilation performance throughout the troposphere.
Assimilation of AIRS/OMI retrievals provided the largest corrections for dynamic weather conditions, whereas
the improvement was limited just after stagnant conditions because of small background spread in the pre-
vious time period. However, expected increases in AIRS/OMI data density could further ameliorate the perfor-
mance. Our analysis suggests that combining precursors’ emission optimization and direct ozone
assimilation is an effective method to obtain sufficient corrections on ozone for any meteorological condi-
tion. To remove the influence of persistent model error and to further improve ozone analysis, adjusting addi-
tional model parameters, such as VOC emissions, deposition, and/or chemical reaction rates, and optimizing
model error covariance could also be important.

Estimated NOx emissions were 0.42 Tg N in South Korea, which were 40% higher as compared with the
KORUS v2 and HTAP v2 inventories. The data assimilation result suggests an important underestimation of
anthropogenic sources in emission inventories. Total CO emissions for South Korea from data assimilation
are higher than the KORUS v2 by 22% and the HTAP v2 by 83%, but it is 40% of the EGDAR v4.3.2
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emissions. The updated emissions of NOx and CO increased mean ozone concentration by approximately
6 ppbv at 700 hPa over the SMA and South Korea and by up to 7.5 ± 1.6 ppbv over South Korea within the
boundary layer when a blocking pattern determined the large-scale ozone distribution. For SO2, estimated
emissions are 40–73% lower than the KORUS v2 and HTAP v2 inventories for South Korea and approximately
65% lower than the HTAP v2 emissions in eastern China. The optimized emissions can be expected to provide
an accurate estimate of the source-receptor relationship, such as the impact of precursors’ emissions from
different regions on the ozone amount over Seoul. This will be presented in a separate companion paper.

Data assimilation analysis provides comprehensive information on the spatial and temporal variations of glo-
bal ozone; in this study, it was also used to measure the representativeness of the DC-8 aircraft observations.
Our investigation using reanalysis shows that the mean ozone concentration averaged during the campaign
was persistently higher over the SMA (75.1 ± 7.6 ppbv) than over the broader KORUS-AQ domain
(70.5 ± 9.2 ppbv), with the largest mean concentration (79.8 ± 4.1 ppbv) over the SMA for stagnant conditions
at 700 hPa. Our analysis also demonstrated that the DC-8 measurements provide concentrations that may be
considered representative of the monthly mean over the SMA but largely overestimate area mean concentra-
tions of the KORUS-AQ domain by up to 6 ppbv in the lower troposphere.

Although the assimilation of multiconstituent data provides comprehensive constraints on the entire chemi-
cal system and reduces the uncertainty on the emission estimates, the influences of model and observation
errors remain a concern. Model performance is critical for the correct propagation of observational informa-
tion between chemical species and to improve the emission estimation. Biases in the assimilated measure-
ments may seriously degrade the data assimilation analysis including the emission estimation, as
discussed in our previous studies (Miyazaki, Eskes, Sudo, Takigawa et al., 2012; Miyazaki et al., 2015;
Miyazaki & Eskes, 2013). Application of a bias correction procedure for multiple measurements could improve
the data assimilation performance. The relatively coarse model resolution (1.1° × 1.1°) is insufficient to resolve
local air pollution, which will limit improvements in the data assimilation in urban areas close to the surface.

Chemical reanalysis data based on the EnKF approach also has the potential to provide information on long-
term and regional variations of background ozone levels (Miyazaki et al., 2015). Such detailed information on
regional scale ozone variations cannot be obtained from any individual measurements. Our results also con-
firmed the great potential of advanced tropospheric ozone retrievals to improve tropospheric ozone profile
analysis in combination with precursor emission optimization. In the future, assimilating data sets from a new
constellation of LEO sounders (e.g., IASI, AIRS, CrIS, Sentinel-5P [TROPOMI], and Sentinel-5) and GEO satellites
such as GEMS will provide more detailed knowledge of ozone and its precursors for East Asia
(Bowman, 2013).

Data

The chemical reanalysis data can be downloaded through our web site (https://ebcrpa.jamstec.go.jp/tcr2).
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