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Abstract

In complex adaptive systems approaches to perceptual-motor control the mapping between

the different categories of task dynamics: namely, task outcome, collective variable, neuro-

muscular synergies and individual joint configurations is a central theoretical issue, that has

been primarily studied in bimanual tasks. Here we report an investigation in the roller ball

task of how the task goal and multiple degrees of freedom of the arm-hand complex affords

degeneracy between the respective properties of the task dynamics. The relation of the can-

didate collective variable, namely, the synchrony of the inner ball to outer shell motion of the

roller ball and its relation to the task goal (continued increasing in ball speed), was examined

as a function of the initial ball speed acting as a control parameter. Within trial analysis

revealed initial search behavior for synchrony of ball and shell motion that was longer in

duration with initial lower ball speed conditions. In contrast, higher initial ball speed condi-

tions reduced the search time for and enhanced the rate of stabilization of the synchrony of

inner ball and outer shell motion–features that facilitated the continued increase of ball

speed and the probability of task success. Participants adopted one of three wrist-elbow

neuromuscular synergies to manipulate the roller ball, the distribution of which was not influ-

enced by either initial ball speed or task outcome. The pattern of findings over the different

properties of task analysis of the roller ball provides evidence for the distinct but complemen-

tary dynamics of searching to form, stabilize and exploit a collective variable that satisfies

the task goal through a small redundant set of arm-hand synergy motions.

Introduction

A contemporary umbrella perspective to perceptual-motor control is that of complex adaptive

dynamical systems [1–2]. There have been several theoretical and experimental instantiations

in the perceptual-motor domain that reflect this perspective that have a number of common

elements concerning movement coordination, control and skill (e.g., [3–6]). These include the

system properties of multiple degrees of freedom (DFs), interacting subsystems within and
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between levels of analysis, emergence of movement coordination modes, and the exhibition of

varying levels of the complexity of system output that continually evolve with learning and

development over the lifespan [5].

Within this adaptive dynamical systems framework, a central theoretical and experimental

strategy from coordination dynamics is the determination of the collective variable of the per-

ceptual-motor system and the control parameter(s) that change the state (stability/instability) of

the system. In the experimental paradigm of bimanual coordination increasing the frequency of

oscillations of the two fingers induces a phase transition from an anti-phase to an in-phase coor-

dination mode [7–8]. This foundational phenomenon supports the dynamical interpretation of

frequency acting as a control parameter and relative phase of the two fingers reflecting an order

parameter or collective variable in the Haken-Kelso-Bunz (HKB) model [7].

There have been many experimental investigations of the dynamics of the bimanual para-

digm [9–10] with a few theoretical elaborations [11–12] but the essential properties of the

HKB model have been preserved. However, there has been almost no investigation of the col-

lective variable dynamics outside of the various bimanual paradigms. One limitation of the

original bimanual finger wiggling paradigm is that the collective variable (relative phase of the

motion of the two fingers) in essence also reflects the neuromuscular synergy for the task.

There has emerged a significant theoretical place for synergies in motor control but with it

there has been a broadening range of the definitions of a synergy (see [13–15]). Here, following

Bernstein [41], we draw on the more traditional anatomical-neuromuscular interpretation of

movement synergies as a collective of muscles given that the movement coordination of the

arm-hand complex in the roller ball corresponds with these foundational movement units. In

many perceptual-motor tasks, however, it can be anticipated that the collective variable will be

on a dimension distinct from the neuromuscular synergy due to the flexibility in task dynam-

ics arising from the multiple joint space DFs that are available for coordination and control.

Moreover, in the bimanual paradigm of learning a new relative phase (e.g., 90 degrees [16]),

the to-be-achieved relative phase is also the task goal leaving no degeneracy between the task

outcome and the relative phase–a direct mapping that in our view is not present in most per-

ceptual-motor skills.

In a series of recent experiments we have investigated the dynamics of learning and per-

forming the roller ball task [17–19]. The roller ball is made up of an inner top that can spin

about a rod within another outer ball-shaped casing that is held in the hand. The performer

initiates the spinning of the inner top when holding the roller ball in one hand and tries to

keep it spinning with the arm-hand motion. Inside of the outer casing, there is a grand circular

groove that allows the two ends of the rod of the inner top to move along. When the inner top

starts to spin about the rod, the angular momentum generated from the spin motion will push

the rod moving along the circular groove. If a synchronous motion from the outer ball-shaped

casing can be applied to the precessional motion of the inner top, it will enhance the speed of

the inner top from the initial spin [20].

The roller ball, although generally considered a child’s game or an exercise task where keep-

ing the inner ball moving at the same initial speed or greater for a period of time is considered

a successful performance, has been analyzed for its mechanical principles [21–22]. Further-

more, we have shown that the roller ball is attractive as a perceptual-motor task for the study

of motor learning and control because it requires a rich set of dynamics that depend on the

tight relation between the haptic feedback and the movement of the rolling effector arm-hand

complex to solve the task demand but it is not too complicated to decompose the dynamics

thereof. The experiment presented here was set-up to map the distinctive properties of task

dynamics and their relations, including, between the task outcome (ball speed and probability

of success), the ball-shell synchrony (candidate collective variable) and the arm-hand motion

Collective variable
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synergy as a function of initial conditions (ball speed). A goal was to experimentally separate

these task properties and in particular distinguish the candidate collective variable from the

neuromuscular arm-hand synergies and task goal.

The arm-hand complex with its many DFs (muscles and joint configurations) affords a rich

array of prehensile movements including established patterns of neuromuscular organization

that support limb motions and their use in the actions of reaching and grasping [23–25].

There are neuromuscular synergies for the core motions of hand pronation/supination, wrist

rotation and digit opposition that can be organized into functional adaptive movements in

prehensile tasks. In our view, however, they do not represent the collective variable of the roller

ball task or perceptual-motor skills more generally. One of our goals within the multiple vari-

able approach to task dynamics was to distinguish the adaptation of the collective variable

from the neuromuscular synergies used in support of executing the task.

Our previous studies have provided evidence for the initial conditions of ball speed and

practice acting as dual control parameters in the roller ball task performance, with the S-shape

increase in the probability of task success and learning modeled as a 1st order non-equilibrium

transition [17–19]. In general, participants have a greater probability of success in enhancing

ball speed and performing the task the higher the initial ball speed. Higher initial ball speeds

generate stronger precession motion of the ball [20–21], and the resulting movement of the

rod along the grand groove on the outer shell, we hypothesize, provides the source of the hap-

tic feedback that mediates arm-hand motion in performing the roller ball task. Practice leads

to an enhanced probability of success in performing the task that is dependent on the initial

ball speed conditions.

The roller ball is a task that tends to have an all or none functional character at the behav-

ioral performance level in that individuals can in essence either perform the task (enhance ball

speed) or not. The learning process of this type of task has been modeled using saddle-node

dynamics where increasing practice time, which acts as the control parameter of the learning

dynamics, may lead to a transition from failure to success in performing the task. Being on or

around the critical point of the saddle-node dynamics produces an unstable performance [18–

19]. Bicycle and unicycle riding [26] and hoola-hooping [27] along with the roller ball appear

to fall into this type of task and that produce different but related functions of learning [19, 28]

than the traditional accounts of learning movement scaling tasks as exponential and power law

change [29], but they have been considerably less studied.

Our previous studies on the learning and performance of the roller ball tasks were deter-

mined on the basis of the probability of enhancing the ball velocity as a function of initial ball

speed conditions and practice time. In other words, the dynamics of learning and performance

were assessed only at the task outcome level (probability of success). Although the roller ball

task is performed with the multiple joint space degrees of freedom of a single arm-hand kine-

matic chain, the task success we have conjectured requires the synchrony of the inner ball and

outer shell motion–in essence making the collective variable functionally a 2-degree of free-

dom coupling task. The nature of the roller ball task also leads this hypothesized collective vari-

able to be defined over the relation of the motion of the end effector (hand gripping the outer

shell of the roller ball) and a property of the environment (the motion of the inner spinning

ball). The collective variable can be distinct from the neuromuscular synergy in the task

dynamics of perceptual-motor skills, such as bicycle riding and hula hooping, in part because

it is defined over the individual, environment and task constraints [30–31].

We have proposed that the key dynamic property determining task success in the roller ball

task is the synchrony of the inner ball motion to that of the outer shell motion [17–19]. And,

furthermore, that the roller ball task affords a separation of the neuromuscular effector syner-

getic motions from the candidate collective variable (ball-outer shell synchrony). Thus, the

Collective variable
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roller ball task provides the potential of degeneracy [32] to the mapping of the dynamics of the

roller ball degrees of freedom and the ball speed solution of the task outcome.

In summary, this experiment investigated in an adaptation paradigm the effect of the con-

trol parameter (initial ball speed) on the performance outcome of the roller ball task. The spe-

cific focus was to map the relations between the task outcome (ball speed and task success), the

ball-shell synchrony (candidate collective variable) and the arm-hand motion synergies. We

tested hypotheses derived from findings of our earlier studies [17–18] that: 1) task perfor-

mance would be dependent on producing a synchronous motion of the outer shell to the inner

ball supporting the proposition that this is the collective variable for the task; 2) higher initial

ball speed would increase the likelihood of producing the task relevant inner ball to outer shell

synchronous motion; 3) higher initial ball speed conditions would reduce the duration of the

search behavior for the ball-shell synchrony within a trial before adapting into a stable task

performance, and 4) that there is movement degeneracy between the synchronous ball and

shell motions, the arm-hand synergies and the initial ball speed in producing a successful roller

ball task. Thus, it was anticipated that the experimental roller ball task provides the context to

map the adaptive conditions of a control parameter (initial ball speed) to the distinctive but

related properties of task dynamics–task outcome, collective variable, neuromuscular synergies

and joint space DF [33–34].

Methods

Participants

Sixteen healthy, adult volunteers (3 females) between 22 and 36 years of age participated in the

experiment. All the participants had some but different levels of experience with the roller ball

task so that they could successfully accelerate the roller ball at least for the 40 rps initial speed.

The experimental procedures and the participation consent form were approved by the

Research Ethics Committee of National Taiwan University. Each participant read and signed

the consent form before taking part in the experiment, and was paid a small honorarium after

completing the experiment.

Apparatus

We customized a rollerball system with a commercially available roller ball (E-Neng Tech, Tai-

wan), a desktop computer running on the Windows OS, and a data collection program devel-

oped with the LabVIEW system design software (National Instrument, version 11). The

rollerball consists of an inner ball (diameter of 6 cm) that is covered by a spherical outer shell

(diameter of 7 cm) and can be held in one hand (see [17, 35] for detailed description of the

roller ball device). The outer shell movement is directly manipulated by the arm-hand motion

and therefore the movement characteristics of the outer shell is used to represent the effect of

the arm-hand coordination. There is a 3.5 cm diameter circular opening on the outer shell of

the roller ball that provides a direct contact to the inner top. Two fiber optic wires were

inserted to the outer shell of the roller ball on the opposite side of the circular opening to detect

the black and white differential light reflections from the inner top when it spins. The output

of the fiber optics was sent to the desktop computer via a digital fiber amplifier (Riko, Taiwan,

BR2-N) and a 16 bit A/D board (National Instrument, 6034E) at a sampling rate of 200 Hz.

We tested the roller ball’s performance before the experiment. Only those roller balls that dem-

onstrated a stable deceleration rate of 3 ± 0.4 rps/s from 40 rps initial speed to stop were used

in the experiment [19].

A 4-camera, 200 frames per second (fps) video system (Jai Pulnix TM-6740GE, AZ: Aegis

electronics; Stream pix 4.0, Montreal Canada: NorPix) was used to capture the 3-D movement

Collective variable
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of the outer shell (hand) and the precession motion of the inner ball that was visible through

the opening of the outer shell. The cameras were synchronized to the roller ball system through

a light signal on the computer screen that indicated the beginning of a trial.

Task

The task was to accelerate the roller ball above the respective initial speed by the end of the 10 s

trial. To start the ball spinning, a string was inserted into a hole in the inner ball and wrapped

around the inner ball on the groove. The inner ball would start to spin when the string was

pulled out of the hole. The harder the string was pulled, the higher the spinning speed. The

spinning speed started to decrease after the string was out of the ball. The spinning speed was

monitored on the computer screen and a warning signal followed by a go signal would alert

the participant when the spinning speed reached the pre-set value for the specific initial speed

condition. There were 5 initial-speed conditions: 40 rps, 30 rps, 20 rps, 15 rps, and 10 rps, and

10 blocked trials were performed at each initial-speed condition. All participants performed

the task in the same order of 40 rps, 30 rps, 20 rps, 15 rps, to 10 rps initial-speed. Although par-

ticipants were in general encouraged to accelerate the roller ball as fast as possible as soon as

they heard the go signal, they were informed not to continue to accelerate the roller ball for the

trial if the spinning speed exceeded 60 rps due to the limitation of the system.

Procedures

Because there are many different ways to hold the roller ball and many different movement

patterns to accelerate the roller ball, the participant was required to demonstrate the way he/

she performs the roller ball before we set up the positions/orientations of the cameras. One

reflective marker was attached to the edge of the circular opening of the outer shell. The partic-

ipants were asked to hold the roller ball in such a way that would not cover the marker and the

circular opening when they perform the roller ball task at all times. All the participants were

able to perform the task under these requirements without any difficulty.

After the participant demonstrated her/his individual roller ball movement comfortably

and consistently, the cameras system was set up in such a way that the circular opening of the

outer shell was in the viewing area of at least 2 cameras at the same time. This arrangement

facilitates the reconstruction of the 3-D kinematics of the marker on the outer shell as well as

the rotation position of the inner ball (see Fig 1). A painted groove rotated around the circular

opening and the rotational position of the inner ball was identified by the intersection of the

painted groove and the edge of the circular opening. The experimenter started spinning of the

roller ball above the designated initial speed by pulling the inserted string out of the hole in the

inner ball and then handed the roller ball to the participant.

The computer screen showed the current spinning speed of the roller ball and an alert sig-

nal would light up at 10 rps above the designated initial speed (for example, 50 rps for the 40

rps condition) to remind the participant to get ready to begin the trial. Another alert signal

would sound when the roller ball speed descended to the designated initial speed and the par-

ticipant would start to accelerate the roller ball. Ten seconds after the start audio signal, two

different audio signals indicated whether the roller ball speed was above the initial speed or

not. This end-point signal provided an outcome feedback of the trial for the performer.

Data analyses

The roller ball performance outcome was analyzed in terms of the number of success and fail-

ure trials and the slope of the roller ball speed profile within a trial for each initial speed condi-

tion. A trial was considered as a success when the roller ball speed was above the initial speed

Collective variable
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at the end of the 10s trial. A simple linear slope was calculated from dividing the speed differ-

ence by the time duration between the start and end points (Fig 2). The Chi-squared test of

independence was used to examine the association between the outcome of the roller ball trials

and the initial speed condition. A one-way (5 initial speed) ANOVA with repeated measure

was used to examine the slope of the speed profile.

In addition to assigning the result of success and failure to each trial, the slope of the roller

ball speed profile in a trial provides a fine-grained measure of the trial performance. In general,

a positive slope would result from the continuous increase (up to 60 rps due to the limitation

of the equipment) of the ball speed after the latent period, and if the ball speed continued to

decrease would result in a negative slope. When the ball speed decreased below 5 rps, there

were occasionally random fluctuations that did not result in a persistent increase of ball speed

[19], therefore, the time when the ball reached 5 rps was used as one criterion to calculate the

end point of the slope. Using the lower and upper bound of the speed to calculate the slope

also eliminated the floor and ceiling effect of the measurement system and provided a more

accurate evaluation on the roller ball performance under the task constraints. The search dura-

tion, which is the time period of the initial decrease in ball speed that includes the time to the

“go” signal and the exploratory motions to increase the ball speed, was defined as the time

period from the start of the trial to the initial increase of the ball speed. Ten seconds would be

registered as the search duration if the ball speed continued to decrease until the end of the

trial. The one-way (5 initial speed) ANOVA with repeated measure was used to analyze the

search duration. Fig 2 illustrates the start and end points on the example ball speed profiles for

calculating the slopes. The average slopes over the initial speed conditions were fitted with the

4-parameter sigmoid function [18].

The arm-hand movements of the roller ball task were observed and categorized as the first

step to describe the movement patterns of the roller ball task. Two observers who were experi-

enced with the roller ball tasks established the general categories of the movement patterns

based on the extensive viewing of the videotapes of the experimental tasks. A general principle

for categorizing the movement patterns was established and used as the basis for categoriza-

tion. Twenty percent of the total 800 trials were randomly selected for intra- and inter-

Fig 1. Illustrations of the marker locations of the outer shell and the inner ball of the roller ball.

https://doi.org/10.1371/journal.pone.0215460.g001
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observer reliability tests. One week after the first categorization of the arm-hand motions the

observers performed the categorization of the roller ball movement patterns again. Cohen’s

Kappa was used to evaluate the intra- and inter- observer reliability, and the Kappa values ran-

ged from 0.85 to 0.95.

Due to the labor-intensive digitization work, the kinematics of the outer shell and the inner

ball of the roller ball were digitized from the videos for a selected portion of the trials. The

selection principle was as follows: every participant had at least one trial randomly selected for

each initial speed condition. If a participant had both success and failure trials in one initial

speed condition, at least one successful trial and one failed trial were randomly selected for

analysis. Qualitatively different performance within the same outcome group of a participant,

for example, barely made the criterion of success vs. easily passing the criterion with continu-

ous acceleration, also added another trial for analysis. Overall, there were 113 trials selected

from 800 total trials, which included 16 trials from the initial condition of 40 rps, 20 trials from

30 rps, 28 trials from 20 rps, 32 trials from 15 rps, and 17 trials from 10 rps, used for analyzing

the inner ball-outer shell kinematics of the roller ball movement.

The outer shell-inner ball movement videos were digitized using video digitizing software

Simi Motion 9.0.6 (Simi Reality Motion Systems GmbH, Germany). The digitized data were

smoothed with the 20 frames (0.1 s) moving windows. The resultant velocity calculated from

the markers on the outer shell and the inner ball were used in the Fast Fourier Transformation

(FFT) to obtain the dominant frequencies of the inner ball and outer shell motions. A

Fig 2. Example roller ball speed profiles and the identification of the beginning and end of the slope calculation of individual trials. The 10 s trial starts when the

rollerball speed reached the initial speed of the condition. The square markers represent the beginning and the circle markers indicate the end of the slope calculations.

https://doi.org/10.1371/journal.pone.0215460.g002

Collective variable
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matching frequency trial was identified when the dominant frequencies of the inner ball and

outer shell motions were the same. A one-way (5 initial speed) ANOVA was used to analyze

the outer shell dominant frequency, which was determined by the greatest power within the

spectrum. Another one-way (3 movement synergy) ANOVA was also used on the outer shell

dominant frequency. The resultant speeds of the inner ball and outer shell motions were also

used in the Hilbert transform [36–37] to calculate the relative phase over the 10 s trials. Rela-

tive phase measure falls under the category of angular (circular) data, the summary statistics

such as mean and standard deviation are not appropriate for angular data. Information

entropy measures the probability distribution of the data. Information entropy of the relative

phase was used to identify the successful trials where synchronous movement between the

outer shell and the inner ball resulted in a fixed (concentrated) relative phase therefore a lower

information entropy. Information entropy [38] was calculated for the relative phase of each

trial with bin size of 10 degrees over 360 degrees.

The 113 selected trials were divided into the success and failure outcomes. The Chi-squared

test of independence was used to examine the association between the outcome of the roller

ball trials and the matching frequency trials. In addition, information entropy of the relative

phase was examined using paired t test to compare the relation between the outer shell and

inner top for the success vs. failure trials. For the repeated measure ANOVA, the Greenhouse–

Geisser method was used to correct for violations of sphericity. The statistical significance level

was set at α = .05.

Results

Roller ball outcome

The Chi-squared test for independence showed that the outcome of the roller ball task had a

significant association with initial speed conditions, X2
4 = 49.98, p< .01, Cramer’s V = .79.

Table 1 shows the cross tabulation of the outcome and the initial speed conditions. In general,

the number of success trials increased as a function of initial ball speed condition.

The slope of the roller ball speed profile in a trial provides a fine-grained measure of the

trial performance. There was a time gap between the “go” signal and the start of the movement

and so there was a brief dip of the roller ball speed before the rolling movement had an effect

on the roller ball speed. Furthermore, there was the remainder trial time of 10 s for the partici-

pant to increase the roller ball speed to reach the required speed criterion. It is possible that

although the roller ball speed increased following the first dip the increasing rate was not steep

enough to reach the criterion speed at the end of the 10 s trial. In this case, the slope may be

positive, but the trial is considered a failure. It is also possible that the roller ball speed did not

Table 1. Cross tabulation of the outcome and the initial speed conditions.

Initial speed condition (rps)

Outcome 10 15 20 30 40 Total

Failure Count 16 9 4 0 0 29

Percentage 20 11.25 5 0 0 36.3

Adjusted residual 5.9 1.9 -1.0 -3.4 -3.4

Success Count 0 7 12 16 16 51

Percentage 0 8.75 15 20.0 20.0 63.7

Adjusted residual -5.9 -1.9 1.0 3.4 3.4

Total Count 16 16 16 16 16 80

Percentage 100

https://doi.org/10.1371/journal.pone.0215460.t001
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increase, but the participant managed to slow down the ball deceleration leading to a failure

trial and a flatter negative slope.

Examples of speed profile of individual trials are depicted in Fig 2. The one way repeated

measure ANOVA result showed a significant ball speed effect on the slope, F(4, 60) = 100.23,

p< .01, ηp
2 = .87. The post hoc comparisons revealed significant differences for all pairs of

conditions except for the 30 and 40 rps comparison.

For the search duration analysis, the ANOVA showed a significant initial speed effect, F
(1.38, 20.71) = 64.33, p< .01, ηp

2 = .81. Paired comparisons revealed that the durations for the

40 rps, 30 rps, and 20 rps were not different from one another, but they were all significantly

shorter than those of the 15 rps and 10 rps conditions. In addition, the search duration for the

15 rps condition was significantly shorter than that of the 10 rps condition. Because the search

duration was defined as the time from the start of the trial to the time when the arm-hand

movement effectively increased the ball speed, the search duration for most of the failure trials

was registered for 10 s.

An additional analysis on the success trials only was implemented for the 4 initial speed

conditions (there were no success trials in the 10 rps condition). The ANOVA result showed a

significant initial speed condition effect on the search duration of the success trials, F(3, 33) =

20.20, p< .01, ηp
2 = .65. Paired comparisons revealed that the search durations for the success-

ful 40 rps and 30 rps trials were significantly shorter than those of successful trials in the 15 rps

condition, and the search duration of the successful 30 rps trials was also significantly shorter

than that of the 20 rps condition (ps< .01) (Fig 3). The average slope over the 16 participants

for each initial speed condition was also fitted with a sigmoid function: f ¼ y0 þ
a

1þe�
x� x0
b

where

y0 represents the lower bound of the slope, a is the difference between the lowest and the high-

est slopes, x0 is the inflection point and b-1 is related to the rate of change. Fig 4 shows the

mean and SD of the slopes for each initial speed condition over 16 participants and the sig-

moid function.

Candidate collective variable

The 113 trials selected for the roller ball movement analysis were divided into the success and

failure results. The X2 cross-tabulation analysis showed the significant associations between

the outcome of the trials and the matching of the dominant frequencies between the outer

shell and the inner ball, X2
1 = 35.13, p< .05, Cramer’s V = .56. Table 2 shows the cross tabula-

tion of the outcome of the trials and matching of the dominant frequencies. The one way

ANOVA on the outer shell movement frequency showed a significant initial ball speed effect,

F(4, 108) = 5.13, p< .01, ηp
2 = .16. Paired comparison results revealed that the outer shell

movement frequency in the 10 rps and 15 rps conditions was significantly higher than those in

the 30 and 40 rps conditions, ps< .05.

Further examining the difference of outer shell movement frequency between the success

and failure trials, we used the independent sample t test on the 15 rps and 20 rps initial speed

condition where both failure and success trials were found. The results showed a significant

difference for the 15 rps initial speed condition where failure trials had a higher outer shell

movement frequency than those of the success trials, t30 = 2.59, p< .05. No significant differ-

ence was found, however, for the 20 rps initial speed condition, t26 = .77, p = .45 (Fig 5).

Although the high association between the matching frequency of the outer shell and the

inner ball was found in the success trials, we did not observe any particular positional value of

the relative motion that was associated with the success or failure trials. This was expected

because of the circular nature of the movement of the ball and the shell. Further examination

of the relative phase of the ball and outer shell of the successful trials revealed that they tended
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Fig 3. Average search duration for the initial speed condition over 16 participants (top panel) and average search duration of the success trials for the initial speed

condition (bottom panel).

https://doi.org/10.1371/journal.pone.0215460.g003
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to show a stable synchronous motion although the specific position of the ball to outer shell

may be different between trials.

Fig 6 shows single set of trial time series of movement characteristics for a successful (top

segment) and a failed (bottom segment) performance. The time series clearly show the ran-

dom-like initial search for the collective variable and the subsequent synchronous motion of

Fig 4. The sigmoid function fit of the average slope over 5 initial speed conditions. The error bars indicate the between participants SD.

https://doi.org/10.1371/journal.pone.0215460.g004

Table 2. Cross tabulation of the outcome and matching of the dominant frequencies of the outer shell and inner ball motions.

Frequencies

Outcome Different Matching Total

Failure Count 29 11 40

Percentage 25.7 9.7 35.4

Adjusted residual 5.9 -5.9

Success Count 12 61 73

Percentage 10.6 54.0 64.6

Adjusted residual -5.9 5.9

Total Count 41 72 113

Percentage 36.3 63.7 100

https://doi.org/10.1371/journal.pone.0215460.t002
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Fig 5. The top panel shows the average outer shell movement frequency of each initial speed condition from the 113 trials. The bottom panel shows the

average outer shell movement frequency of the success and failure trials for the 15 rps and 20 rps initial speed conditions.

https://doi.org/10.1371/journal.pone.0215460.g005
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ball and outer shell. The transition point of a drop in ball speed to an increment in ball speed

was related in time to the formation of the synchronous motion of the collective variable.

A t test on information entropy, that measures the level of variability of the relative phase,

was performed to examine the successful and failure trials. Thirty-six bins were used in calculat-

ing the distribution over the 360 degrees of relative phase. The t test showed a significantly

lower information entropy for the success trials than the failure trials, t15 = 8.74, p< .001,

Cohen’s d = 2.12 (Fig 7). The lower information entropy of the relative phase from the successful

trials indicates a more concentrated distribution of the relative phase, that is, more stable rela-

tive phase as a result of the synchronous motions between the outer shell and the inner ball.

Synergy

Visually examining the 800 trials of the roller ball task from the video recordings revealed

there were 2 basic categories of the arm-hand movement patterns for the roller ball task:

Fig 6. The roller ball movement performance of example success trial (top panel) and failure trial (bottom panel). There are 5 performance

measures in each trial: from top down, roller ball speed profile, displacement of the outer shell (red/light) and inner top (black/dark), velocity of the

outer shell (red/light) and inner top (black/dark), relative phase of the outer shell and inner top, relative phase distribution from 0 to 360 degrees.

https://doi.org/10.1371/journal.pone.0215460.g006

Fig 7. The average information entropy of the relative phase for the success trials and the failure trials. The error bars indicate the standard deviation over the 16

participants.

https://doi.org/10.1371/journal.pone.0215460.g007
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pronation-supination of the proximal radio-ulnar joint only (type 1) or the radio-ulnar joint

movement together with wrist rotation (type 2)(see Fig 8). The wrist rotation patterns could be

further categorized into clockwise (type 2c) and counterclockwise (type 2cc).

Nine participants performed 100% trials with one movement pattern, five participants had

6% to 8% of trials performed with different movement patterns from their main patterns.

Among these fourteen participants, five participants used mainly type 1 movement pattern,

three participants used mainly type 2c movement pattern, and six participants used mainly

type 2cc movement pattern. Two participants had similar percentage of trials performed with

2 different movement patterns, one of them used type 1 and type 2c and the other one used

type 2c and type 2cc. There were six participants performed 2%-18% trials with two movement

patterns in a trial. The ANOVA on the outer shell movement frequency showed no difference

among the 3 movement patterns, F(2, 107) = 1.98, p> .05, ηp
2 = .04, the mean (SD) frequency

for type 1, type 2c, and type 2cc was 3.82 (1.14) Hz, 3.47 (0.66) Hz, and 3.40 (1.07) Hz,

respectively.

Discussion

The purpose of the present study was to investigate the mapping of collective variable and syn-

ergy dynamics with task outcome within the general context of the multi-layered framework

of complex adaptive dynamical systems [2–6]. In particular, we examined the effect of a con-

trol parameter, namely, the initial condition of ball speed in the roller ball task, on short-term

Fig 8. Two basic roller ball movement patterns observed from the experiment. The top 2 pictures show the pattern of pronation-supination of the proximal radio-

ulnar joint only; the bottom 3 pictures depict the movement pattern composed of proximal radio-ulnar joint and the wrist rotation movement. The bottom pattern was

observed rotating in both clockwise and counterclockwise directions.

https://doi.org/10.1371/journal.pone.0215460.g008
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adaptation in task dynamic properties of the perceptual-motor system. The perceptual-motor

properties analyzed were task outcome, the candidate collective variable (inner ball-outer shell

relative motion) and neuromuscular synergies of the arm-hand kinematic chain.

Task outcome

The findings were clear in showing a strong adaptive effect of initial ball speed on task success

[17–18] that was defined as the ball speed reaching above the initial ball speed condition for

the respective trial. Indeed, the task performance ranged from zero trial success in all partici-

pants at the lowest initial ball speed of 10 rps (where no participant was able to increase ball

speed from the initial speed) that progressed to a 100% success for all individuals at the higher

initial ball speeds of 30 and 40 rps. This finding is consistent with the view that the system

changed from a highly stable but failure state as a task-relevant solution at the slow initial ball

speeds to highly stable success state at the high initial ball speeds.

The increment of short-term adaptive performance from the limited trial practice structure

used here was not linear with initial ball speed. It was not a main focus of the experiment to

determine this performance function–hence, the limited ball speed conditions. Nevertheless,

the task success data (Table 1), when considered in conjunction with the slope of the incre-

ment in ball acceleration (Fig 4), point to a sigmoid function for the effect of initial ball speed

on task performance. These findings on the difficulty of the initial ball speed condition manip-

ulation are consistent with those of our earlier studies [17–19] on S-shape learning where prac-

tice time was considered as the control parameter to elicit a successful outcome. Furthermore,

they provide the basis to interpret the new findings obtained here of the parallel adaptive fea-

tures at other task properties of the system organization in the roller ball.

The ball speed trajectory that reflected the within-trial performance was analyzed in addi-

tion to the qualitative task outcome of success or failure of ball speed determined at the single

point in time at the end of the trial. Within a trial, the ball speed showed an initial decrease

prior to a transition and subsequent increment that was dependent on the initial ball speed

condition. Thus, we characterized the total within trial task performance of the ball speed tra-

jectory into 2 sequential components.

There was an initial perceptual-motor search component [39] of the inner ball-outer shell

relative motions to form the relevant collective variable for the task that was followed by the

stabilization of the inner ball-outer shell synchronous motion that facilitates the progressive

increase in ball speed. The initial search component was characterized by the duration of this

initial drop in ball speed at the beginning of a trial and was shown to be longer in the lower ini-

tial speed conditions indicating a longer search time to form the task relevant collective vari-

able of the synchronous relation of inner ball to outer shell frequency.

The effect of ball speed on this search process is, we hypothesize, related to the haptic feed-

back that mediates the motion of the arm-hand kinematic chain particularly in the enhanced

precession force arising during the high initial ball speed conditions. When the initial ball

speed is low, it could be that the resulting slow precession provides weak haptic feedback to

the arm-hand system through the motion of the outer shell; therefore, a longer search duration

is needed for generating a synchronous outer shell to inner ball motion. Failure to form the

synchronous outer shell to inner ball motion during the initial search duration will result in a

continuing decrease of the ball speed and the eventual failure in the task.

The second component of the performance trajectory where the ball speed starts to increase

was also influenced by the initial ball speed. The low initial ball speed not only takes a longer

initial search duration due to the weak haptic feedback of the slow precession, it also has lower

acceleration for the ball spinning. The synchrony between the outer shell and the inner ball
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may be intermittent due to the weak haptic feedback that hampers the steady increase of the

ball speed. This indicates that the rate of stabilization of the collective variable was influenced

by the initial ball speed acting as a control parameter. When the value of the control parameter

increases, the search duration of the synchrony between the outer shell and inner ball motions

is shortened due to the stronger precession force from the initial ball speed, which leads to the

strengthening of the spinning roller ball attractor state. On the other hand, the value of control

parameter decreases, the diminishing precession force from the low initial ball speed may

result in an increased search duration for the synchrony that leads to an eventual stop of the

inner ball. In the middle range of the control parameter, the dynamical state of the roller ball

may fluctuate between spinning and stopping depending on the performer’s skill level (prac-

tice experience).

Synchrony of inner ball and outer shell motion as the collective variable

The findings provide strong evidence that the key task dynamic property for a successful trial is

the synchrony of the respective frequencies of the motions of the inner ball and outer shell. The

analysis of the matching frequencies mapped well with, respectively, success and failure in the task

(Table 2). This role for frequency coupling rather than relative phase as the collective variable in

this continuous, rhythmic roller ball task is because the motion of the ball is not restricted to a par-

ticular spatial position within the shell as would be the case with a relative phase relation. When

the shell and the ball are matched in frequency, however, a consistent relative phase between the

two parts would be observed given any fixed pair of points on the system. These contrasting find-

ings on the collective variable are consistent with coordination dynamics that the collective vari-

able is to be determined from the interactions of the constraints to action [3].

The information entropy analysis on the distribution of the relative phase showed that the

entropy of the failure trials was significantly larger than that of the successful trials, further

supporting the synchrony of the outer shell-ball relation as the collective variable in the roller

ball task. This is one way in which the roller ball task provides a different and richer set of con-

straints to the coupling of the dynamics of the inner ball motion and the product of the arm-

hand movement system (the outer shell motion) than the more restricted constraints on per-

forming or learning a given relative phase in bimanual finger control [16]. More generally, it

reflects an example of the specific influence of task constraints in the determination of the col-

lective variable that is based on the mechanical principles of the task.

The roller ball task allows the separation of the collective variable from the neuromuscular

synergies of particular joint motions that drive the movement sequence–variables that are in

essence the same in the bimanual finger coordination task [7]. The task goal of many other

motor activities, such as basketball shooting or hula hooping, are not defined by the coordina-

tion of the body-limbs system but are determined by the interaction between the coordination

of the body-limbs system and an external object or property of the environment. An under-

standing of the task dynamics of these types of tasks would involve comprehensive analysis of

the movement system of the actor in conjunction with that of an object property [23]. The cur-

rent study provides an example for examination of a fuller range of the related levels of task

dynamics than the body-limb coordination tasks [33–34].

Considering performance in the roller ball task as that arising from a complex adaptive sys-

tem, allows for and anticipates the adaptive contributions of degeneracy [32] to the properties

of the task dynamics. The different characterizations of degeneracy between the neuromuscu-

lar synergy and the collective variable and between the collective variable and the task outcome

is, we conjecture, typical of many perceptual-motor skills considered in context of a complex

adaptive system [5].
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Neuromuscular synergies

We were able to separate the motions of the neuromuscular arm-hand synergies from the

motions of the collective variable in the roller ball task. Two types of neuromuscular synergy

structures were identified in execution of the task: namely, the pronation-supination of the

proximal radial-ulnar joint and this radio-ulnar joint motion with the addition of wrist motion

[23–24]. The latter category was further separated into clockwise and counter-clockwise

motions of the hand to create three qualitatively distinct neuromuscular synergy motions used

by participants in the execution of the roller ball task. These three synergy motions accounted

for most of the variance in the qualitative dynamics of the neuromuscular system in perform-

ing the roller ball task.

The majority of participants used only one of the arm-hand neuromuscular synergies while

two participants used two of the synergies in approximately even numbers. Significantly, the

prevalence of the three synergetic movement patterns was not related to the initial ball speed

condition or whether the trial was a success or failure at the task level. This finding supports

the interpretation that the participants brought to the roller ball task particular neuromuscular

synergy preferences (intrinsic dynamics) but given the degeneracy afforded by the confluence

of constraints each of these synergies could satisfy the task demands. Whether further practice

or different sets of task constraints would lead to a different profile or effect of neuromuscular

arm-hand synergy use is an empirical question. McDonald, Oliver and Newell [40] showed

that the search strategies arising from within- and between-limb neuromuscular synergies fol-

lowed similar principles.

Mapping between task outcome, collective variable, and synergy

The findings provide strong evidence for the adaptive mapping of task outcome, the collective

variable of inner ball–outer shell synchronous motion, and neuromuscular arm-hand syner-

gies. This mapping, however, is not of a one to one relation of within-trial dynamics at each of

the three properties of task dynamics examined. Rather, there is variability and degeneracy of

the solutions within and between the synergies and the collective variable and between the col-

lective variable and task outcome [32].

A critical process in performing the roller ball task successfully is the search for the forma-

tion of the collective variable: namely, the task relevant synchronous motion between the

inner ball and outer shell. Indeed, this synchronous variable seems to be the critical dynamic

feature to task success in the roller ball. The short-term adaptation to the roller ball task as a

function of ball speed affords the operational distinction of the three variable properties of task

outcome, collective variable and neuromuscular synergy [33–34]. These categories of variables

reflect the distinction from Bernstein [41] of the synergy, space and action levels of control.

Furthermore, the control variable of ball speed was the factor that determined success and fail-

ure in the task and allowed us to investigate the mapping of categories of task dynamics under

different stability regimens.

In the framework of coordination dynamics there is reciprocal causality between the collec-

tive variable and the motions of the individual components and synergies [3]. The roller ball

task with its capacity to separate the collective variable from the neuromuscular synergies

affords the potential of a representative test of this hypothesized mapping across task variables.

Indeed, the integrated findings of the task dynamics provide support to the view that an

important direction for research in motor control and skill acquisition is the unpacking of the

collective variable across the varieties of perceptual-motor skills.

Most experiments in motor learning and control use a task such as mirror tracing and limb

positioning/timing in which the participants can already form a task-relevant collective
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variable and coordination mode leaving the adaptive scaling of the task outcome as reflected in

the functions of exponential and power law learning curves [42, 43]. However, in tasks that

require the acquisition of a new (that is, previously unperformed) coordination mode the for-

mation of the qualitative nature of the task relevant coordination mode is essential in the very

early stage of learning [44]. Indeed, the theoretical construct of collective variable provides a

principled way to examine the evolving formation of new patterns of movement coordination

[44], regardless of whether the task goal is the movement pattern per se, or a particular out-

come from the movement pattern–context interaction.

Finally, characterizing the emergence of the collective variable and its relation to other

properties of task dynamics may also be a way to formalize from a dynamical perspective of

Fitts’ [45] notion of ‘getting the idea of the task’ in the early stage of motor learning [46]. The

emergence and formation of the coordinative structure early in learning has not been an issue

in the motor skill domain because until the introduction of the dynamics of coordinative struc-

tures [3,6] there has been no theoretical framework to investigate such phenomena. And, even

if the relevant stimulus of theory had been present earlier to guide experimentation on move-

ment coordination, it would have required the learning of tasks different than the usual candi-

dates of choice for motor learning. Motor learning experiments have typically finessed

investigation of the essence of Bernstein’s [41] DF problem by using tasks where the partici-

pant can already produce the dynamics of the collective variable on the initial trial(s) of the

practice session [44]. In short, understanding the influence of task dynamics on coordination

and control of movement and posture requires a fuller set of the available DFs to be examined

if the general Bernstein problem of skill as the mastery of redundant DFs is to be decomposed

and understood.
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