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Abstract

The mechanical properties of the extracellular matrix (ECM)–a complex, 3D, fibrillar scaffold

of cells in physiological environments–modulate cell behavior and can drive tissue morpho-

genesis, regeneration, and disease progression. For simplicity, it is often convenient to

assume these properties to be time-invariant. In living systems, however, cells dynamically

remodel the ECM and create time-dependent local microenvironments. Here, we show how

cell-generated contractile forces produce substantial irreversible changes to the density and

architecture of physiologically relevant ECMs–collagen I and fibrin–in a matter of minutes.

We measure the 3D deformation profiles of the ECM surrounding cancer and endothelial

cells during stages when force generation is active or inactive. We further correlate these

ECM measurements to both discrete fiber simulations that incorporate fiber crosslink

unbinding kinetics and continuum-scale simulations that account for viscoplastic and dam-

age features. Our findings further confirm that plasticity, as a mechanical law to capture

remodeling in these networks, is fundamentally tied to material damage via force-driven

unbinding of fiber crosslinks. These results characterize in a multiscale manner the dynamic

nature of the mechanical environment of physiologically mimicking cell-in-gel systems.

Author summary

Many cells in the body are surrounded by a 3D extracellular matrix of interconnected pro-

tein fibers. The density and architecture of this protein fiber network can play important

roles in controlling cell behavior. Deregulated biophysical properties of the extracellular

environment are observed in diseases such as cancer. We demonstrate, through an inte-

grated computational and experimental study, that cell-generated dynamic local forces
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rapidly and mechanically remodel the matrix, creating a non-homogeneous, densified

region around the cell. This substantially increases extracellular matrix protein concentra-

tion in the vicinity of cells and alters matrix mechanical properties over time, creating a

new microenvironment. Cells are known to respond to both biochemical and biomechan-

ical properties of their surroundings. Our findings show that for mechanically active cells

that exert dynamic forces onto the extracellular matrix, the physical properties of the sur-

rounding environment that they sense are dynamic, and these dynamic properties should

be taken into consideration in studies involving cell-matrix interactions, such as 3D trac-

tion force microscopy experiments in physiologically relevant environments.

Introduction

The Extracellular Matrix (ECM) is a scaffolding medium that helps transmit mechanical sig-

nals among cells in cancer [1,2], fibrosis [3,4], vascular networks [5,6], and more generally,

morphogenesis [7,8]. The mechanical and biochemical properties of the ECM impact cell

behavior. The stiffness of the local environment and the tensional response from cells can

induce invasive phenotypes in tumors [9–12], guide differentiation in stem cells [13], and alter

vascular function [14]. The fibrillar nature and local architecture of the ECM can lead to

directed cell migration [15], and increased density and alignment in the tumor stroma are cor-

related with more aggressive disease and worse prognosis in preclinical and clinical samples

[16,17]. ECM remodeling through cell contractility is also potentially a fundamental factor in

tissue folding and shaping during development [18]. It is not clear, however, how ECM spatio-

temporal evolution in living systems is controlled by cells to promote physiological and patho-

logical states.

Many studies have quantified the mechanical signals transmitted by ECMs, mostly assum-

ing ideal ECM material properties. Studies usually derive the magnitude of forces exerted by

cells through imaging of fluorescent markers tethered to the ECM [19,20]. Because it is diffi-

cult to back-calculate forces in heterogeneous, dynamic environments, these approaches rely

on 3D biopolymers or 2D substrates with time-invariant mechanical responses. The spatio-

temporal evolution of the ECM is however relevant in many mechanobiological processes

[3,18,21,22]. For instance, in angiogenesis and vasculogenesis, together with chemical signal-

ing driving formation or inhibition patterns [23], endothelial cells mechanically sense each

other [24], and cooperate to form tubular shapes by remodeling the fibrous 3D ECM [5,6].

Furthermore, mechanical signals are amplified, resulting in long-range force transmission,

when ECMs are fibrillar, via local alignment and force-driven anisotropy [4,25,26]. More com-

plex descriptions of fibrous materials are taken into account in recent 3D studies of forces in

biological processes [27].

ECM remodeling remains very challenging to decipher, despite its biological ubiquity.

Remodeling entails dynamic molecular processes such as cell-fiber interactions, proteolytic

degradation, and crosslinking sites binding and unbinding that ultimately lead to global

changes in the ECM network. Additionally, cell-scale forces are sufficient to drive ECM

remodeling, and remodeled ECMs can in turn modulate mechanosensing in cells, resulting in

dynamic feedback. The dynamic mechanical states of cells and the ECM, especially in physio-

logically relevant conditions, are not well understood.

Here we investigate cell-induced remodeling of physiologically relevant 3D fibrillar ECMs,

specifically fibrin and collagen. We focus on cell force-induced non-reversible remodeling of

the ECM, which interestingly occurs on the time scale of minutes and drastically changes local
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architectures. By toggling the tensional state of the cell, we capture and distinguish both plastic

and elastic strains in the ECM. We find that cell-generated mechanical forces are sufficient to

accumulate ECM at the cell periphery in a dynamic process that depends on actin nucleation

factors. We then perform computational simulations using a network model with discrete

ECM fibers to examine quantitatively the impact of dynamic, filopodial-like cellular forces and

reaction kinetics at the ECM component level on tension and concentration profiles within

the ECM network. We lastly propose that constitutive damage and plastic softening at the con-

tinuum level are capable of recapitulating both experimental and fiber-level simulation find-

ings. Collectively, these findings might have profound implications in mechanobiology,

especially in the context of cell traction force studies.

Results

ECM mechanical remodeling experiments

We explore remodeling by quantifying ECM dynamics in two physiologically relevant cell-

ECM combinations cultured in 3D in vitro conditions. As a first combination, we use endothe-

lial cells in fibrin gels given the well-known ability of these cells to form physiologically mim-

icking microvascular network structures [28]. As a second combination, we use breast cancer

cells in collagen I gels, a highly abundant component in the tumor stromal microenvironment.

Using both combinations, in one set of experiments, we inhibit cell-generated forces at the

time of gelation and seeding by pre-treating cell-ECMs with Cytochalasin D. This treatment

allows us to start from a force-free configuration (Fig 1A). After cells are seeded, we remove

the Cytochalasin D and let the cells recover their ability to generate forces over a period of sev-

eral hours. Finally, after recovery, we lyse the cells (decellularization) with a detergent to fully

relax all forces in the cell-ECM construct. We use confocal microscopy to quantify deforma-

tions through 3D Digital Volume Correlation (DVC) algorithms using fluorescent signal

intensity from pre-labeled fibrin and collagen gels [29–31].

In both cell-ECM combinations, we find that remodeling involves non-elastic, i.e. non-

recoverable, deformations of the ECM. This plastic remodeling of recruited fibers is mainly

force-driven; it is prevented by Cytochalasin D pre-treatment that inhibits cell-generated

forces (Fig 1A). Also, increasing the crosslinking of fibrin results in a decrease in the displace-
ment length, a measure of the average radial displacement of the ECM toward the cell (see

Methods for details) (Fig 1B). Crosslinking has an important effect on plastic remodeling, with

poor crosslinking resulting in the enhancement of fiber concentration at the cell-matrix

boundary (Fig 1A–1C). For each cell, this effect is quantified by the densification factor (DF),
the ratio of the average ECM fluorescence intensity near the cell to that far from the cell (Fig

1C). We further quantify elastic recoverability through the metric recoverability index (RI), the

ratio between the reduction in displacement length caused by decellularization and the dis-

placement length prior to decellularization, expressed as a percent. Details of these metrics can

be found in the Methods section.

For all cases, after washing Cytochalasin D from the cells, we observe a significant degree of

matrix remodeling in less than 1 hour (Fig 1B and 1C). To discriminate the time scale for elim-

inating Cytochalasin D from the cell from that for intrinsic cell contraction, we also quantify

deformations immediately after seeding without Cytochalasin D pre-treatment (Fig 1D). We

demonstrate that (i) the intrinsic cell contraction and ECM remodeling dynamics occur over

the course of minutes and (ii) the remodeling rate diminishes within an hour (Fig 1D, S1 Fig,

and S1 Video (MDA-MB-231 cell in 3mg/mL collagen), S2 Video (MDA-MB-231 cells in

1.5mg/mL collagen), and S3 Video (MDA-MB-231 cells in 1.5mg/mL collagen, overlay of fluo-

rescent F-actin and collagen)). All tested cell-ECM combinations exhibit a plateau in
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displacement length indicating that remodeling stabilizes in the course of hours with substan-

tial irreversible components (Fig 1B and S2 Fig). For endothelial cells in fibrin, lower crosslink-

ing increases the degree of plastic deformation corresponding to a lower RI (Fig 1E).

We further consider how remodeled ECMs absorb and transmit forces in space. In general,

both endothelial and cancer cells apply centripetal tractions, as demonstrated by the directions

of the local ECM displacements (Fig 2A–2C). Plastic recruitment leads to a substantially higher

magnitude of cumulative matrix displacement magnitudes kuoverallk than the elastic displace-

ment kudecellk alone (Fig 2C). To assess how cell-generated ECM deformations propagate

Fig 1. Non-elastic remodeling occurs in the course of minutes and depends on crosslinking in 3D biopolymer networks. (a) Z-projected confocal images of

human cells including HUVECs and MDA-MB-231s suspended in 3D biopolymer networks of fibrin (3 mg/mL) and collagen (1.5 mg/mL), respectively. For fibrin

gels, crosslinking was lowered using a transglutaminase inhibitor (DDITS, 0.2 mM). White arrows indicate the assumption of the type of deformation, overall

(elastic and non-elastic) or elastic only, expected between two force configurations. Scale bar, 20 μm. (b, c) Quantification of the effect of crosslinking in terms of

(b) displacement length (N = 8 cells per condition) and in terms of (c) densification factor (N = 7 cells per condition). Times (1h, 2h, 3h and 4 hours) are defined as

the time after Cytochalasin D is removed and prior to decellularization. Decell. indicates at least 1 hour after decellularization. (d) Representative ECM remodeling

dynamics by MDA-MB-231 cells for two different collagen gel densities. To assess the dynamics without the possible delay in force generation due to drug washout,

Cytochalasin D pre-treatment was not used in these experiments. The average matrix displacement length in a ROI (~30x30 μm2) containing the cell and the newly

recruited ECM fibers is obtained starting at the reference configuration shortly after seeding. These relatively fast dynamics measurements are calculated from

time-lapse images of projected z-stacks. (e) Summary of RI for all cell-matrix pairs studied.

https://doi.org/10.1371/journal.pcbi.1006684.g001
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spatially, we measure the radial profile (from the cell) of ECM displacement magnitudes (or

lengths), normalized by the displacement magnitude at the cell boundary (Fig 2B). We find

that force transmission depends strongly on the specific cell-ECM pair, with the displacements

decaying steeper in collagen than fibrin. In all cases, displacements decay with a lower gradient

than in the ideal case of an isotropic linear elastic material, which confirms the long-range

mechanical reach of cell forces in fibrous ECMs (Fig 2B). Fully and partially crosslinked fibrin

matrices behave similarly in their ability to propagate displacements (Fig 2B, solid lines). We

also observe similarities when comparing the decay of the overall displacement during remod-

eling to the decay of the purely elastic component of the displacement (based on measure-

ments right before and after decellularization).

We next investigate possible mechanisms of cell force-driven remodeling at the ECM fiber

scale by targeting actin nucleating factors that are important in filopodial dynamics; CK666

inhibits Arp2/3 and SMIFH2 inhibits formins. Both of these are observed to significantly

reduce ECM remodeling (Fig 3A and 3B). We further show that proteolytic activity, when

inhibited with GM6001 during the early remodeling process, does not appear to have a sub-

stantial effect on matrix recruitment on the timescale of hours (Fig 3A and 3B). These findings

implicate dynamic cell force generation transmitted to the ECM fibers via filopodial projec-

tions in ECM accumulation, with little or no reliance on matrix degradation.

Fiber network simulations with active remodeling

Our experimental results demonstrate that mechanical forces, mediated by dynamic actin

nucleation-driven processes, and ECM crosslinking can modulate the plastic recruitment of

ECM to the vicinity of cells. Here, through discrete fiber network computational simulations,

we examine how the interplay between applied dynamic mechanical forces, mimicking filopo-

dia-driven events, and kinetic fiber-fiber connections (crosslinks) lead to varying degrees of

Fig 2. Mechanical signaling through long-range displacement propagation is cell-matrix specific and can be modified by remodeling. (a) 3D displacement

vectors from the FIDVC algorithm, color-coded according to the magnitude of the cumulative displacement, for three representative cells in the three different

matrices tested. Cumulative displacement includes both elastic and plastic components over the duration of the ECM remodeling process. (b) Normalized

displacement length vs. distance from the cell membrane for the matrix cases analyzed (N = 5 cells per condition, with displacement lengths vs. distance being

averaged from four radial directions per cell). A theoretical representation for isotropic materials, decaying as (distance)-2, is shown for comparison. (c) 3D

displacement fields for a representative case of a breast cancer cell in collagen: (left) force recovery with matrix remodeling, with cumulative displacements being both

plastic and elastic; (center) the plastic (non-elastic) component; and (right) force relaxation after decellularization, with displacements presumed to be the elastic

component.

https://doi.org/10.1371/journal.pcbi.1006684.g002
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Fig 3. ECM recruitment by dynamic actin-driven processes. (a) Representative confocal images of HUVECs suspended in 3D biopolymer networks of fibrin (3

mg/mL) fixed and stained after 4h treatment with several cytoskeletal drugs and inhibitors. Blue is DAPI, red is phalloidin, and cyan is the fluorescently labeled

fibrin fibers. Scale bar is 20 μm. (b) Statistical comparison for all treatments with drugs, in terms of densification factor (N>15 cells per case; �� p<0.01with one-

way ANOVA with post-hoc Tukey HSD Test). (c) Computational simulation of an ECM fiber network shows network morphology before (left) and after (right)

the application of loading forces near the left boundary. Colors on fibers indicate tension level according to the color bar (-300 to 300pN). Yellow spots are

crosslinks (places where fiber-fiber crosslinking can occur). See also S4 Video and S5 Video. (d) Overlay of the time evolution of fiber concentration profiles,

normalized by the initial concentration, in the force-loading direction as loading forces are exerted from the left boundary. Loading forces mimic dynamic

filopodia pulling from the loading boundary, such that fibers within 2μm of that boundary experience a force pulling them toward the boundary. As new fibers or

fiber segments move within that distance, new loading forces are exerted on them. Different colored curves represent different normalized times of: 0 (lower blue,

uniform), 0.03 (red), 0.37 (yellow), 0.7 (purple, dashed), 1.03 (green), 1.37 (light blue), 1.7 (magenta), 2.03 (blue), where time is normalized to the total time of

force application (starting at right after 0 and ending at 1). Some relaxation occurs after applied forces end, but matrix remodeling here is not reversed. The

simulation setup is 100pN loading per fiber segment in the loading region, 1x crosslink zero-force unbinding rate, 0.3x crosslink mechanosensitivity, and 1x

crosslink density (see S1 Table for default values). (e) MDA-MB-231 cells expressing fluorescent F-actin (green, left) inside a 3D collagen matrix (white, middle)

with a concentration of 1.5mg/mL display many dynamic actin protrusions (blue arrows). Overlay image of actin and collagen is on the right. Images are

maximum intensity z-stack projections. The scale bar is 20μm. See also S3 Video. (f) Schematic of ECM recruitment by dynamic filopodia. Step 1: Filopodia

Mechanical remodeling of the ECM through dynamic cellular forces
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ECM remodeling and stress profiles. We extract quantitative details of how local molecular

features can influence global reorganization dynamics of the ECM under cell-generated forces.

A 3D fiber network, mimicking the ECM, is generated by polymerizing monomeric units into

elastic fibers that can stretch and bend. Each fiber is a chain of cylindrical segments, and each

segment follows the following potentials:

Us ¼
1

2
keDr

2 ð1Þ

Ub ¼
1

2
kbDy

2
ð2Þ

where Us is the potential energy from stretching, Ub is the potential energy from bending, κe is

the extensional stiffness, κb is the bending stiffness, Δr is the deviation from the equilibrium

length, and Δθ is the deviation from the equilibrium angle. Each monomeric unit adds a cylin-

drical segment to the fiber during polymerization, and fibers nucleate in random directions

during initial network formation. Neighboring fibers are connected with crosslinks, if present,

that can unbind in a force-sensitive manner in accordance with Bell’s model [32]:

ku ¼ ku0e
lF
kBT ð3Þ

where ku is the crosslink unbinding rate, ku0 is the zero-force unbinding rate, λ is the mechan-

osensitivity (i.e. mechanical compliance) of the crosslink, F is the magnitude of the extensional

force acting on the crosslink (only positive stretching forces contribute), kB is the Boltzmann

constant, and T is temperature. Model parameters are listed in S1 Table.

The network is athermal and the components (fiber segments, crosslinks) follow the equa-

tion of motion:

Fc;i þ Fi � zi
dri
dt
¼ 0 ð4Þ

where i is the index of the component under consideration, Fc,i is the cell generated loading

force near the–z boundary, Fi is the mechanical force from the fiber network, which includes

extension, bending, and repulsion (volume exclusion) [33] of the fibers and crosslinks, zi is the

drag coefficient, and ri is the position. Eq 4 is solved over time through Euler integration at dis-

crete time steps to determine the position of each element in the network. Crosslink unbinding

is modeled stochastically. Each bound crosslink has an unbinding probability at each time step

Δt equal to:

Punbind ¼ 1 � expð� kuDtÞ ð5Þ

Additional details of the discrete fiber network model, which has been applied previously to

simulate other filamentous networks, can be found in [33,34]. Sample simulation are shown in

Fig 3C and 3D, S4 Video (high loading forces, high ECM recruitment), and S5 Video (moder-

ate loading forces, moderate fiber recruitment). Force loading in these simulations mimics

filopodia and is described in more detail later.

Parameter values for the simulated fibers and network are chosen based on plausible values

for ECM fibers (collagen I and fibrin) [35–39], and experimental network features (S3 Fig).

attach to fibers in the vicinity of the cell (loading zone). Step 2: Filopodia contract, via actomyosin-based contractile forces, pulling attached fibers toward the cell

and breaking force-sensitive crosslinks. Step 3: New filopodia form and attach to new fiber regions in the loading zone. Step 4: Contraction cycle repeats, further

pulling ECM fibers toward the cell. This dynamic filopodial force loading condition is applied in our discrete network simulations.

https://doi.org/10.1371/journal.pcbi.1006684.g003
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We simulated moderately thick ECM fibers, which are ~ 100nm in diameter [40,41]. The

Young’s modulus of an ECM fiber can be on the orders of tens of MPa’s for fibrin [35] and

hundreds of MPa’s for collagen [37–39]. For simplicity, we picked an arbitrary value in this

range (125MPa) and focused on the kinetic features of the model, driven by the force-sensitive

unbinding of the crosslinks. Crosslinks have two arms, each 20nm, mimicking ECM molecular

subunits that can connect fibers [42]. We explored a range of crosslink behaviors that spans

relatively extreme cases (near permanent to highly transient), relative to expected fibrin bonds

[36] to capture limiting network-level behaviors. For simplicity and computational feasibility,

we only consider the thick fiber structures and one type of crosslink (fiber-fiber connections),

which enable us to capture the dynamic connectivity of the ECM network, of focus here (S3

Fig, which shows that fiber-fiber contacts are prominent).

Once the crosslinked network is generated, it is allowed to relax to a stable state, in which

the prestress built up during network formation has relaxed to a plateau close to zero. Thereaf-

ter, loading forces simulating filopodia are applied on one side of the network for a fixed dura-

tion of time and then reduced to zero to allow the network to relax to a new, potentially

remodeled state. In our time series analyses, t = 0 corresponds to the initiation of force loading

and t = 1 corresponds to the cessation of active forces, where t is the normalized time. In our

simulations, the fiber ends at the +z boundary are fixed to mimic the resistance from fibers far

away. The x and y boundaries are periodic, and the domain size is 20x20x20μm3. Filopodial

force loading is applied such that any fiber segment that reaches within a certain distance

(2μm) of the–z boundary experiences a local point force pulling it toward that boundary. We

explore a range of force magnitudes from 1pN to 1nN to capture the impact of physiologically

plausible cell generated forces. This loading condition mimics a pulling process where new

filopodia are continuously generated that adhere to and pull new fiber segments near the cell.

This type of loading is needed in order for fibers to be continuously recruited toward the cell,

and many dynamic actin protrusions are indeed observed on the periphery of cells embedded

inside a 3D ECM as shown in Fig 3E and S3 Video (overlay of fluorescent F-actin and collagen

fibers during dynamic ECM remodeling). A schematic illustrating this loading condition is

shown in Fig 3F.

We then examine the network remodeling dynamics under different conditions, modulat-

ing experimentally tunable or physiologically relevant parameters. Specifically, we consider

different loading forces, crosslink densities, zero-force unbinding rates of crosslinks, and

crosslink bond mechanosensitivities. These parameters aim to capture the impact of cell trac-

tion, the degree of ECM crosslinking, and the kinetic nature of crosslinks. ECM fibers are ini-

tially recruited to the loading boundary once applied forces are activated (Fig 3C and 3D).

Temporal profiles of ECM accumulation near the cell boundary (region within 3μm of the

force loading boundary) and the peak accumulated ECM concentration (over time) under var-

ied loading forces are shown in Fig 4A and 4B, respectively. Similar plots for varied crosslink

concentrations are shown in Fig 4C and 4D, respectively. The temporal profiles show that in

some conditions (relatively low applied force magnitudes, high crosslink concentrations), after

the loading forces are deactivated (at the normalized time of 1), the network recovers primarily

elastically and the normalized ECM concentration in the accumulation region returns close to

1, the uniform network state prior to loading. Note that for high crosslinking cases, the accu-

mulated concentration does not fully reverse after relaxation due to crosslink unbinding still

having occurred, resulting in some plastic remodeling (Fig 4C). For very low loading forces,

near full recovery is observed after relaxation (Fig 4A). Conversely, higher loading forces and

lower crosslink concentrations lead to relatively high plastic remodeling, in which the

recruited ECM fibers do not relax back to their original positions after force loading is stopped.

S4 Video, S5 Video, and Fig 3D show the 3D ECM network evolution and fiber recruitment

Mechanical remodeling of the ECM through dynamic cellular forces
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due to loading forces. In these cases, the network permanently remodels over time with

recruited fibers remaining near the loading boundary after the cessation of applied forces.

Note that after forces are relaxed, there are no adhesions between fibers and the force-loading

boundary, mimicking decellularization in our experiments. The elastic restoring forces will

then tend to pull the accumulated fibers away from the loading boundary, thus shifting the

position of the maximum concentration (Fig 3D, S4 Video, S5 Video).

Furthermore, fiber recruitment vs. loading force (log scale) displays a sigmoidal trend, in

which minimal ECM fiber recruitment occurs under low loading forces below a threshold,

increasing ECM fiber recruitment occurs with increasing loading forces at an intermediate

range, and a plateau is reached for forces above a second threshold (Fig 4B). Under the same

Fig 4. ECM recruitment profiles from discrete network simulations showing dependence on loading forces and crosslink concentration. (a) Normalized

ECM concentration within the region 0–3μm from the cell vs. time (normalized by the duration of force application) for different loading forces (per fiber), as

indicated by the arrows and color legend (in pN). (b) Peak normalized ECM concentration in the accumulation region as a function of the loading force. For

the simulations of (a,b), the relative crosslink zero-force unbinding rate is 1x, the relative crosslink mechanosensitivity is 0.3x, and the relative crosslink

density is 1x. (c) Normalized ECM concentration within the accumulation region vs. time for different relative crosslink concentrations, as indicated by the

arrows and color legend. (d) Peak normalized ECM concentration in the accumulation region as a function of the relative crosslink concentration. In (c,d)

the loading force is 100pN, the relative crosslink zero-force unbinding rate is 0.1x, and the relative crosslink mechanosensitivity is 0.3x. See S4 Fig for statistics

of triplicate simulations for selected configurations. See S1 Table for 1x values of relative parameters.

https://doi.org/10.1371/journal.pcbi.1006684.g004
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loading forces, increases in crosslink concentration first lead to more ECM recruitment, fol-

lowed by a trend reversal and decline in network remodeling (Fig 4D). This suggests that the

network gains connectivity with higher crosslink concentration, enabling connected fibers far-

ther away to be recruited. However, beyond a certain concentration, plastic recruitment is

reduced, as loading forces are distributed between more crosslinks, leading to reduced cross-

link unbinding rates. Note that while the crosslink reactions in our model are simulated in a

stochastic manner, the overall network behavior is robust, as demonstrated by the results from

repeated simulations of selected conditions (S4 Fig). We additionally explore ECM concentra-

tion profiles for different crosslink kinetics (S5 Fig). Notably, relatively high zero-force

unbinding rates and mechanosensitivities, i.e. weak crosslinks, lead to plastic accumulation of

the ECM, and there is a biphasic relationship between the amount of recruited ECM and the

crosslink mechanosensitivity, similar to the effect of varying crosslink concentration.

We next consider the overall stress profiles in the ECM network under our loading condi-

tion. Stresses are calculated by summing the normal component of forces acting on fibers

crossing a plane parallel to the cell surface divided by the area of the plane. Stress profiles dur-

ing loading (normalized time 0 to 1) are highly dynamic, often exhibiting a sharp initial peak

followed by relaxation, especially under high force, as fibers are being recruited plastically and

fiber crosslinks unbind (Fig 5A–5D). At relatively low applied forces, the stress profile does

not decay and instead reaches a plateau, as crosslink unbinding and network relaxation are

minimal during the loading period. Larger loading forces lead to larger overall peak stresses in

the network, but also more unstable stresses (Fig 5B and 5C). When crosslink concentration is

varied under the same loading forces, network stress is low at low crosslink concentrations as

unbinding prevents a high build-up of stress. Network stress can build up to a plateaued level

with more crosslink support (Fig 5D–5F, S6 Fig). Furthermore, when the kinetics of the cross-

links is tuned, more stable crosslinks lead to larger stress build-up and sustained stress levels,

while crosslinks that unbind more quickly lead to reduced and less sustainable network

stresses (S7 Fig). Note that the simulations discussed so far do not consider the possibility of

the rebinding of unbound crosslinks. We find that enabling rebinding partially diminishes

ECM recruitment and network stress dissipation (S8 Fig). Overall, our simulation results dem-

onstrate that filopodial or filopodial-like forces acting on a kinetically connected ECM can

spontaneously lead to ECM densification near the cell surface and dynamic stress profiles in

the surrounding microenvironment. The amount of ECM recruitment and the temporal stress

profile depend on the interplay between the magnitude of the dynamic pulling forces and the

concentration and kinetic properties of the ECM crosslinks.

A direct comparison of our simulation and experimental results (Fig 6) shows that by vary-

ing crosslink concentration alone in our simulations we can capture some of the differences

observed in our experimental results between fibrin (low crosslinking), fibrin (high crosslink-

ing), and collagen. Fibrin (high crosslinking) displays relatively low ECM accumulation, fol-

lowed by recovery toward the initial state after relaxation, consistent with highly crosslinked

simulated networks (crosslinking of 0.5–1). Both fibrin (low crosslinking) and collagen dem-

onstrate high accumulation, much of which is non-recoverable, consistent with weakly cross-

linked simulated networks (crosslinking of ~0.1).

Continuum simulations and implication for cell traction forces

Our results implicate possible consequences for traction force microscopy (TFM) in complex

3D ECMs. In TFM studies, typically a continuum material model is used for calculating forces

from strains measured through imaging fluorescent markers embedded in a deformable sub-

strate. Here, we develop a continuum model that essentially coarse-grains fiber-level
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mechanics and kinetics into continuum scale parameters, and we emphasize the impact of

crosslink unbinding on material properties. To capture the impact of crosslink unbinding at

the continuum material scale, we utilize viscoplastic and damage features that enable creep

and stress relaxation responses, as guided by our fiber network simulation results. We start

from a general viscoplastic model (Norton-Hoff) (Fig 7A and S1 Note). In this model, the vis-

cous element simulates the creep response, and the plastic element simulates permanent,

inelastic deformations. To further recapitulate the effects of crosslink unbinding on the elasto-

plastic properties, we add both (i) ‘elastic damage’, i.e. an exponential decay in elastic stiffness

(E) starting from above a critical maximum tensile elastic strain ðε1Þ; E ¼ Ae� Bε1 , and (ii)

‘plastic damage’ (softening), i.e. a linear decay of yield stress starting from above a critical plas-

tic strain (Fig 7B). For elastic damage, we use a general form of the exponential decay, with

positive parameters A and B obtained from fitting based on start and end points (ε1s, Es) and

(ε1e, Ee), respectively, of damage principal strain and stiffness (see below for a sensitivity study

on the damage start and end points). For softening, a linear decay is used in the yield stress–

plastic strain space (Fig 7B and S1 Note). Conceptually, the elastic damage feature relates to

the stiffness of the material becoming lower as crosslinks unbind, and the softening feature

relates to the higher unbinding rate of crosslinks as fewer bound crosslinks remain due to the

increased load per remaining crosslink.

We test this viscoplastic model with damage and softening in a finite element simulation

with spherical symmetry of a cell contracting centripetally and displacing the surrounding

Fig 5. Stress generation in the dynamic ECM from discrete network simulations. (a) Overall stress vs. time in the ECM network during dynamic force

loading for different loading force magnitudes as indicated by the arrows and color legend (in pN). (b) Peak stress in the network as a function of the loading

force. (c) Ratio between the stress immediately before stopping loading forces (t = 1) and peak stress as a function of the loading force magnitude. (a,b,c)

correspond to the same simulations as Fig 4A and 4B. (d) Overall stress vs. time in the ECM network during dynamic force loading for different relative

crosslink concentrations as indicated by the arrows and color legend. (e) Peak stress in the network as a function of the relative crosslink concentration. (f)

Ratio between the stress immediately before stopping loading forces (t = 1) and peak stress as a function of the relative crosslink concentration. (d,e,f)

correspond to the same simulations as Fig 4C and 4D. Statistical assessment from triplicate simulations are shown in S6 Fig.

https://doi.org/10.1371/journal.pcbi.1006684.g005
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ECM with similar magnitudes as in the experiments. We then relax the contractile force to

simulate the experimental decellularization. This force is applied slightly outward from the

edge, simulating the action of filopodia recruiting relatively close fibers (Fig 7C). The force is

meant to produce mostly tensile stresses in the continuum but also some degree of local com-

pression at the cell-ECM interface. The presence of elastic damage recapitulates (i) the

decrease in equivalent stress at the edge in perfect viscoplasticity (Fig 7D, blue lines), which is

further decreased by the presence of plastic softening (red lines), in agreement with the fila-

ment model when lowering the density of crosslinks (Fig 5D) and (ii) the increase in bulk dis-

placement at the edge with long-term loading (Fig 7E) observed when lowering the density of

crosslinks (Fig 1B). However, as the elastic damage lowers the elastic modulus, it still results in

more elastic recoverability than the stiffer, non-damaged material, and thus contradicting the

experimental RI (Fig 1E). Instead, plastic softening is needed to reproduce the loss in recover-

ability observed experimentally as the density of crosslinks decreases (Fig 7F), which occurs in

conjunction to the increase in plastic strain (Fig 7G).

We next run parametric analyses to assess how sensitive the predictions of both the elastic

recoverability and the accumulation of ECM damage are to the level of force and creep time

(Fig 7H and 7I). We find that both an increase of cell traction forces and persistence in loading

and recruitment simulated through longer creep periods can lead to a dramatic decrease in

elastic recoverability, which is accompanied by an increase of damaged regions. Thus, larger

forces and longer creep times will lead to more irreversible remodeling, as also suggested by

the discrete model. We also study the model sensitivity to elastic damage parameters. Note

that damage is programmed to initiate at an onset strain level, ε1s, and ends at a saturating

strain level, ε1e (Fig 7B). Because both of these are elastic strain constants, we chose to link ε1e
to the maximum elastic strain observable experimentally during relaxation (S9 Fig), and leav-

ing the choice of ε1s as arbitrary. Nonetheless, we assess how these constants can influence the

Fig 6. Comparison of simulations and experiments. Experimental profiles for fibrin and collagen intensities over

time are compared with simulations for varying crosslink concentration. For consistency, the accumulation zone for

measuring ECM density is here set to 5μm from the cell/loading surface for both experiments and simulations. For

simulations, loading forces are stopped at the normalized time of 1. For experiments, time is normalized to 4 hrs, when

the intensity levels appear to plateau, and experimental data points after the normalized time of 1 indicate post-

decellularization as in Fig 1. Different colored curves represent simulation results with different crosslinker

concentrations, as indicated in the legend. Simulation results are from the same conditions and data as in Fig 4C.

Circles are experimental data, and error bars are SEM, with N = 5 cells per experimental condition.

https://doi.org/10.1371/journal.pcbi.1006684.g006
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damaged region at the end of the loading process (S10 Fig). As expected, an earlier onset strain

(e.g. 1%) for Young’s modulus decay will produce larger damaged regions. Also, increasing the

end strain will lead to a lower damage radius, since more strain is required in order to reach

larger damage levels (S10 Fig). We further show that the damage radius plateaus and can be

from one to three cell diameters away from the cell edge, and it expands as the loading is held

constant during creep (Fig 7H and 7I, S10B and S10C Fig, S12B Fig).

For the applicability of these continuum concepts toward quantifying cellular traction

forces, we finally seek to estimate the errors introduced when elastic and plastic damage phe-

nomena are ignored. For example, tracking the cumulative ECM deformation from an initial

zero-force state via imaging, on its own, does not enable the separation of elastic and plastic

Fig 7. A strain-dependent plastic softening with elastic damage constitutive law recapitulates the effect of crosslinking in fibrous

matrices. (a) Schematic of the constitutive viscoplasticity of the Norton Van’t Hoff type used to model the ECM. (Parameters provided in

S2 Table). (b) The model is modified and alternatively tested to include phenomenologically the features of damage, simulating breakage of

crosslinks with tensile strain, and plastic softening, simulating the drop in yield stress with plastic strain. (c) The constitutive model is

implemented in the commercial finite element solver ABAQUS using existing standard viscoplastic material models and custom subroutine

implementation for the damage model. An axisymmetric mesh is shown to model the ECM around a contracting cell. The zoom inset

shows the surface where the load is applied to simulate the action of filopodia farther away from the edge. (d) Von Mises equivalent stress

and (e) displacement length for the continuum viscoplasticity cases with or without damage and softening. Displacement lengths are

calculated at the cell-ECM interface, and Von Mises stresses are calculated at approximately 5μm from the loading surface (toward the

ECM), which exhibits mostly tensile stress states. In (d) the boundary applied loading history is plotted, with � showing the typical time

discretization for the FE analysis. Loading starts at 0 and stops at the normalized time of 1. (f) Recoverability index at the cell-ECM interface

(elastic deformation divided by total deformation) for the cases with or without damage and softening, along with the experimental data

from Fig 1E for comparison. (g) Plastic equivalent strain for the cases with or without damage and softening, all calculated at the cell-ECM

interface. (h) Recoverability index and damage radius, i.e. the radius up to regions with half-max damage (as pictured in S10 Fig), as a

function of the magnitude of the applied load p. (i) Recoverability index and damage radius as a function of the creep loading time during

which the load is kept constant (p = 0.1 kPa).

https://doi.org/10.1371/journal.pcbi.1006684.g007
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deformations. An ‘apparent’ stress, back-calculated based on this total deformation and

assuming linear elasticity of the ECM material, would be higher than the true stress because of

plastic yield. The ratio between the true stress and the apparent stress is given by the recover-

ability index that has been defined and studied experimentally in Fig 1. Furthermore, a typical

traction force study quantifies reference cellular stresses based on relaxing substrate deforma-

tions at the experimental end time, e.g. via cell relaxation by trypsinization, lysis, or actomyosin

inhibition, and assuming nominal substrate stiffness values. Our model suggests that this

quantification would be inaccurate due to plastic changes to the substrate material properties.

Considering only the phenomena introduced here, i.e. elastic damage and plasticity, we esti-

mate–with the set of parameters chosen, and experimental evidence available–that this appar-

ent stress can again be much higher than the true stress (S11 Fig, S12C Fig, up to five time

higher). We find that this is largely due to the damage process locally degrading the initial elas-

tic modulus, but the creep duration can also have a notable effect (Fig 7I, S11 Fig, S12 Fig).

Discussion

Many questions remain regarding the mechanics and dynamics of cell-ECM interactions in

complex 3D matrices. Early studies demonstrated that cells, particularly fibroblasts, can contract

collagen gels in a manner in which the degree of reversibility was dependent on the duration of

contractile activity [43]. Furthermore, the mechanical properties of ECMs are irreversibly

altered due to remodeling by cells [44]. These findings point toward non-elastic mechanical

responses in ECMs due to cell force-mediated mechanisms. In more recent studies, confocal

reflectance microscopy imaging has been widely used as a label-free technique to visualize and

characterize heterogeneities in collagen matrices under cellular forces [27,45], e.g. assessing

strain stiffening during cell migration [46]. Recently, using this imaging method, Mohammadi

et al. found that fibroblasts seeded on top of a thin collagen gel induce inelastic matrix deforma-

tions, which can influence mechanosensing [47]. However, this flat “2D” cell-substrate geome-

try is non-physiological when considering cancer cells inside the tumor stroma or endothelial

cells undergoing angiogenesis or vasculogenesis–scenarios better mimicked by cells embedded

inside a 3D ECM. The geometry of the microenvironment has been shown to be critical in regu-

lating cell phenotypes [48–50]. Moreover, confocal reflectance microscopy is a non-specific,

label-free technique, which produces signals that are influenced by the presence of cells and

fiber orientation, thus hindering accurate quantification of local ECM concentrations [51]. In

another study, Nam et al. provided mechanistic, molecular-level insights into the plastic remod-

eling of biopolymer networks and implicated the unbinding of fiber-fiber bonds in stress relaxa-

tion, although the results were not based on direct, physiologically relevant cellular interactions

with the ECM [52]. Recently, in a study using instead 3D DVC algorithms on fluorescently-

labeled fibrin matrices, Notbohm et al. characterized the remodeling process and inferred that

fibroblasts plastically push and pull fibrin to form tubular, protrusion-like permanent structures

[53]. Other assessments using fluorescently labeled fibers in experiments have focused on con-

tinuum properties and characterizing the viscoplasticity of the ECM in reconstituted and living

microtissues [54,55]. While useful and informative, these studies do not provide full assessment

of the effects of crosslink concentration and dynamic actin-driven processes on ECM accumula-

tion mechanics and dynamics by cells. Also, while molecular-level mechanistic insights were

recognized, a multiscale computational approach linking physiological cellular forces and dis-

crete fiber networks with local force-sensitive crosslink kinetics to a coarse-grained continuum

representation of the ECM has not be fully investigated.

Our study takes an integrated computational and experimental approach toward under-

standing mechanical remodeling in heterogeneous, inelastic physiologically relevant
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biopolymer ECMs–collagen I and fibrin. We established an experimental strategy to capture

sequentially the 1) initial zero-stress configuration, 2) rapid remodeling steps, and 3) final,

plastically remodeled, cell stress-free state of cell-ECM systems. We used this strategy to assess

the importance of the degree of crosslinking in fibrous ECMs in matrix remodeling. Increasing

crosslink density has been shown to produce more than a two-fold increase in shear storage

modulus, and a ten-fold increase in single filament stiffness in fibrin gels [35].

By disrupting key steps in intracellular actin dynamics, we found that ECM remodeling

could be prevented, suggesting an important role for cell contraction, presumably in combina-

tion with filopodial protrusion and adhesion. This leads to a conceptual model in which the

cell sends out filopodia via actin polymerization that adhere to individual matrix fibers, then

retract, pulling the fibers closer to the cell. These forces then disrupt bonds between or within

the matrix fibers, which may potentially form again in a new configuration, leading to matrix

remodeling and plastic deformation.

Our findings confirm that mechanical force propagation is enhanced in fibrous ECMs as

compared to ideally isotropic matrices. This has been previously attributed to non-linear phe-

nomena such as strain stiffening [24], or local fiber alignment by cell-generated forces–a load-

driven anisotropic effect in elastic matrices [25,26]. Here, we further show that such mechani-

cal signals can change dynamically because the matrix is plastically remodeled–crosslink

unbinding leads to force relaxation. Note that in our study, it is not possible to directly com-

pare how far a cell can sense in collagen vs. fibrin, because different cell types were seeded in

different gels at different concentrations, and we cannot precisely control cell-generated forces

exerted on these biopolymers. Moreover, the same cells can have different affinities for differ-

ent ECMs. However, from the normalization in Fig 2B, we can speculate that differential cross-

linking or remodeling would not significantly alter displacement propagation profiles,

pointing to the robustness of the connectivity of these networks for the purpose of long-range

force transmission and mechanosensing [25]. These results point to the need for more investi-

gations on the possible role of force-induced ECM remodeling in cell mechano-sensing

dynamics in 3D physiological environments.

While ECM networks are rich with multiscale features that can influence their behavior, in

this study we focus specifically on the roles of transient crosslinks and dynamic filopodial

forces on ECM accumulation at the cell periphery. Our experimental and computational

results show consistency (Fig 6) and indicate that the interplay of kinetic crosslinks and

dynamic loading modulates the amount of accumulation and plastic remodeling of the ECM

in the vicinity of the cell. Intuitively, molecular bonds can break under mechanical forces, and

various simplified models have been developed to capture the unbinding kinetics of molecular

bonds under load, including slip bonds and catch bonds, which have increased and decreased

unbinding rates, respectively, when under tension [56]. For simplicity, we model crosslinks as

slip bonds following Bell’s law [32]. We note that many types of bonds can exist that link ECM

fibers together, such as molecular knob-hole connections that link fibrin fibrils [36], hydrogen

bonds, and various intermolecular and polypeptide bonds that can slip and rupture [57]. In

our simplified ECM model, we reduce the system to having only one type of bond that con-

nects fibers, and we define that bond as a crosslink. In our simulations, we explore crosslinks

with both high and low unbinding rates, thus examining the impact of both highly transient

and relatively permanent bonds, providing insights toward the impact of diverse bond types

(S5 Fig, S7 Fig). Future, higher resolution experimental studies and higher order, multiscale

computational work can help reveal the impact of finer features on global ECM remodeling

dynamics. ECM fibers are typically complex, multiscale, hierarchical structures. For example,

during gelation, collagen and fibrin molecules polymerize into fibrils that bundle into thicker

fibers. Thicker fibers can be linked to other fibers, forming a connected network [58,59]. The
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bundled fibrils in a fiber can also split, leading to branching [40]. It is possible that mechanical

forces can disrupt both inter-fiber and intra-fiber bonds (fibril-fibril bonds within a fiber). It is

possible that intra-fiber bonds can lead to additional effects. For example, the unbinding and

rebinding of fibril-fibril bonds inside a fiber can lead to intra-fiber sliding and fiber elongation

[60]. If unbinding occurs at a branch point, that can lead to the further splitting of a fiber and

eventually the peeling off and breakdown of the fiber into thin fibrils. In these cases, we would

expect an increase in the ratio of thinner to thicker fibers in the vicinity of the cell during force

loading. Furthermore, as intra-fiber bonds unbind, it may be possible in the extreme limit for

the fiber to break and fail, resulting in further relaxation mechanisms in the network.

At the coarser, material continuum level, unbinding and elastic failure of crosslinks would

translate in (elastic) damage and (plastic) softening, the latter simulating the drop in average

material yield stress onset, as fewer crosslinks are present. We show that both might act syner-

gistically and be necessary to model inelastic remodeling of the ECM. Plasticity at the level of

collagen fibrils has been tested experimentally and has shown high variability in plastic

response, spanning from hardening to softening [61]. Further experimental assessment is

needed to separate the effect of elastic damage and the effect of softening at the level of ECM

fibrous hydrogels. Both effects could be present as the material is remodeled and fiber net-

works are re-arranged, with damage assumed to act on the elastic component and softening

attributed to the plastic response to yield.

We can infer from our continuum model the effect of such elasto-plastic damaging features

on the values of traction forces that one can back-calculate in a 3D experiment using these

cell-ECM systems. ECM viscoplasticity has already been recently targeted for accurate descrip-

tions of tissue dynamics [54,62]. We have additionally integrated novel experiments with dis-

crete fiber and continuum simulations to elucidate mechanistic insights toward the dynamic

physical state of the ECM during cell-matrix mechanical interactions. For instance, damage

parameters can ultimately be linked to the degree of crosslinking in our experiments and dis-

crete simulations. An early damage onset and rapid modulus decay mimic weak network

crosslinking and increased force-driven crosslink unbinding, while a late damage onset and

more gradual modulus decay simulate strong network crosslinking. We finally relate these

experiments and simulations to a continuum reasoning that is very useful for traction force

microscopy studies. Although 3D fibrous biopolymer networks have been recently character-

ized from a material point of view for traction microscopy [27], as well as viscoelastic inverse

numerical algorithms been recently introduced for more accurate force computation [63], our

study is explicitly targeting inelastic behavior of such networks. We have assessed that most

traction forces would be highly overestimated in the presence of elastic damage—linked to fila-

ment-level crosslink unbinding—which is thus highlighted here as an important continuum

feature that requires future experimental investigations.

Overall, our results suggest that during ECM recruitment, cells do not exhibit a stable ten-

sional state, but rather a highly dynamic one due to relaxation from crosslink unbinding.

Thus, for highly motile cells that recruit matrix, including endothelial cells and metastatic can-

cer cells, as they migrate to and recruit fibers from new locations inside a 3D ECM, their ten-

sional profile is dynamic rather than static. This is a starkly different picture compared to cells

on 2D artificial elastic substrates, as those cells tend to exhibit relatively stable stress profiles

since the substrates do not undergo remodeling [64]. Many studies have shown that substrate

stiffness affects cell tension and this, in turn, affects cell behavior. However, the dynamic state

of cell tension, which appears to be characteristic of cells inside a more physiologically relevant

environment of a 3D ECM, has not been fully investigated. Our study shows that certain key

properties–cell loading forces, ECM crosslink density, and the kinetic nature of the crosslinks–
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are important in regulating this dynamic tensional state in cells, which can help guide future

experiments in systematically tuning these parameters to assess cell behavior.

Conclusion

The physiological microenvironment is often composed of a complex, fibrillar ECM that

exhibits non-linear, non-elastic properties. We have demonstrated that dynamic forces gener-

ated by the actomyosin machinery are capable of mechanically reassembling the local ECM,

leading to substantially increased local ECM density in the course of minutes, which is not

fully reversible when the cells are relaxed. Differences in ECM ligand density can alter cell sig-

naling and overall phenotypes [65–67]. The results demonstrated here highlight the dynamics

of cell-ECM interactions in a more physiological context. The local environment sensed by

cells, both physically and biochemically, is highly distinct from acellular matrices and gels in

their initial states, with nominal concentration values based on stock solutions. ECMs with

active cells are rapidly remodeled by cells to generate heterogeneous local environments with

significantly different ligand densities and architectures. This behavior is often not considered,

as only nominal ECM concentrations are usually reported, and is not captured by widely used

non-physiological, elastic substrates that cannot be plastically remodeled by cells. Physical

properties of the microenvironment have already been shown to lead to diverse ramifications

in cell behavior, from guiding stem cell differentiation to modulating tumor dissemination

and tissue morphogenesis. Our results directly implicate cell mechanics–the actomyosin

machinery and dynamic filopodial or filopodial-like forces–in driving active remodeling of the

ECM and the creation of new microenvironments that can dynamically modulate cell

behavior.

Methods

Cell culture

For fibrin experiments, we culture Human Umbilical Vein Endothelial Cells (HUVEC)

(Lonza) on collagen I-coated flasks in EGM-2 (Lonza) growth medium and used in experi-

ments between passages 6–8. For collagen experiments, we culture MDA-MB-231 cells

expressing fluorescent actin filaments (via LifeAct, gift from the Lauffenburger Lab at MIT)

were cultured at 37˚C, 5% CO2 with DMEM supplemented with 10% fetal bovine serum and

1% penicillin-streptomycin.

Gel preparation and encapsulation

Both rat tail collagen I, solubilized in 0.02N acetic acid, (Corning) and bovine fibrinogen pro-

teins (Sigma) are fluorescently labeled in stock solutions. A fluorescent reactive dye binding to

free amine groups (Alexa Fluor 647 NHS Succinimidyl Ester, ThermoFisher) is used to pro-

duce cell-compatible, purified gels that can be visualized in 3D confocal live imaging with no

known alterations of functionality of monomers reported in previous mechanobiology studies

of the ECM[31,53,60]. Stock solutions are purified from the unreacted dye by using dialysis

cassettes (Thermo Fisher) with a 7 kDa molecular weight cut-off. Fluorescently labeled fibrin

is then obtained by mixing over ice (i) bovine fibrinogen dissolved in PBS (Lonza) at twice the

final concentration (6 mg/mL) and (ii) bovine Thrombin (Sigma), dissolved at 2U/mL in

EGM-2 growth medium with HUVECs. Briefly, HUVEC’s are spun down at 1200 rpm for 5

min and the cell pellet is resuspended in EGM-2 growth medium containing the thrombin and

mixed with the fibrinogen solution at a 1:1 ratio. The mixture is quickly pipetted into a micro-

fluidic device using the gel filling ports. The device is placed in a humidified enclosure and
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allowed to polymerize at room temperature for 10 min before fresh growth medium is intro-

duced before the experiment to hydrate the gel.

For the lowering crosslinking in fibrin gels, a synthetic inhibitor of transglutaminase

(1,3-dimethyl-4,5-diphenyl-2[2(oxopropyl)thio] imidazolium trifluoromethyl-sulfonate)

(DDITS, Zedira) is used. Fibrin gels were polymerized in the absence (high crosslinking) and

presence (low crosslinking) of 0.2 mM DDITS. This method has been characterized previously

in fibrin gels[35]. Furthermore, it has been shown at the molecular level that in the absence of

this inhibitor, there is ligation of the γ chains and α chains of fibrin, which results in an

increase in instantaneous bulk stiffness[68,69].

Collagen gels are prepared by mixing acid solubilized type I rat tail collagen with a neutral-

izing solution (100mM HEPES buffer in 2X phosphate buffered saline at pH 7.3) at a 1:1 ratio

and then diluting with 1× PBS and suspended cells in media to a final collagen concentration

of 1.5 mg/mL[70]. The final solution is then allowed to gel in a humidified chamber at 37˚C

and 5% CO2.

3D chambers

Microfluidic devices with gel and media chambers are used because of the convenient fluid

flow access for on-stage media and reagent exchange necessary for the experiments. Device

design and protocol are described previously[71]. Briefly, 130 μm thick devices were fabricated

using PDMS soft lithography. The chambers are 1.3 mm wide and are injected with the gel

encapsulating cells. Similarly shaped chambers for media flank these gel chambers and allow

the quick washing and re-introduction of small volumes of reagents in all stages of the experi-

mental procedure.

Experiments and quantitative measurements

For assessing the effect of cytoskeletal drugs on densification and plasticity, the fluorescently

labeled gels are polymerized together with cells treated with each of the tested drugs at the fol-

lowing concentrations: Latrunculin A (Calbiochem, 0.8 μM), GM6001 (Calbiochem, 10 μM),

CK-666 (Sigma, 100 μM) and SMIFH2 (Sigma, 50 μM). These working concentrations, for

substantial inhibition effects, were taken from literature data [72,73]. Control cases–both

untreated and vehicle (1μL/mL dimethyl sulfoxide (DMSO), which is the maximum concen-

tration for drug-treated conditions)–are included in the study. Cells are cultured for 4h with

the same concentration of drug in the culture media, fixed with PFA4% and stained (DAPI,

phalloidin). In the dynamic force recovery experiments, the gels are polymerized together with

cells treated with Cytochalasin D (Santa Cruz Biotechnology, 5 μM), which is an inhibitor of

actin polymerization and leads to highly diminished cellular force generation [74]. First,

images are captured of cells encapsulated in the 3D ECMs under the action of Cytochalasin D

to have a force-free initial configuration. Second, the chambers are washed through the micro-

fluidic channels with fresh media on-stage three times to remove the Cytochalasin D, and to

observe the onset of ECM remodeling. During this process, fluorescently labeled fibers are

imaged at small time increments and these sequential images are cross-correlated through the

Fast Iterative Digital Volume Correlation (FIDVC) algorithm [30] to determine the 3D dis-

placement field while remodeling occurs. After plastic remodeling of the ECM begins to pla-

teau (~4h), a non-ionic detergent (Triton X, 0.1%) that preserves the gel structure while

permeabilizing the cell membrane is used to lyse cells. Thus, active cellular forces are fully

relaxed, as cells are eliminated from the system, at the final fiber network configuration [19].

To obtain an estimation of the remodeling dynamics without the delay from Cytochalasin D
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recovery, FIDVC-based displacement estimations are also performed on time-lapse videos of

cells right after seeding.

We apply three key metrics to quantify our experimental data: the displacement length, the

densification factor (DF), and the recoverability index (RI). The displacement length, kuk, is

defined as the spatially averaged displacement magnitude, computed from FIDVC, inside a

60x60x60μm3 ROI containing one cell. DF is calculated as Idens/Ifar, where Idens is the integral

of the radial intensity profile calculated within 5 μm from the cell membrane (averaged over 4

profiles per cell) and Ifar is the integral of the intensity profile of a 5 μm line far away from the

cell (averaged over 4 profiles per cell). RI is defined as the percent from the ratio between the

displacement length caused by decellularization and the displacement length right before

decellularization (i.e. overall displacement length), RI = 100×kudecellk/kuoverallk. Note that RI
aims to quantify elastic recoverability, as decellularization is expected to cause elastic relaxa-

tion, kudecellk~kuelast.k, and the overall displacement contains both elastic and non-elastic

deformations, i.e. kuoverallk~kuelast.+non−elast.k.
All confocal images in Figs 1 and 2 and related quantifications were acquired with a 20×

objective and an Olympus IX81 microscope (Olympus America, Inc.). Images in Fig 3 and

related quantifications were acquired with a 60× or 63× oil-immersion objective using a spin-

ning disk confocal microscope (Yokogawa) or a spectral confocal microscope (SPE, Leica

microsystems).

Supporting information

S1 Video. Fast remodeling dynamics in collagen network (3mg/mL). The time step between

frames is 120s, and displacement fields (both arrows and contours) are superimposed onto the

corresponding confocal time lapse images (maximum intensity z-stack projections) using

image transparency. The color bar indicates the cumulative displacement range in μm. The

contour plot is cropped to focus on the cells and to reflect the exclusion of regions with poten-

tial boundary artifacts from the Digital Image Correlation algorithm. The cell boundary, from

tracing the corresponding fluorescent (LifeAct) MDA-MB-231 cell, is depicted in black in the

first and last frames.

(AVI)

S2 Video. Fast remodeling dynamics in collagen network (1.5mg/mL). Image and plot

details are the same as in S1 Video.

(AVI)

S3 Video. Actin and fiber recruitment dynamics. MDA-MB-231 cells expressing fluorescent

F-actin (green) embedded inside a 1.5mg/mL collagen gel (white) exhibit dynamic actin pro-

trusions during ECM recruitment. The video frame rate is accelerated 1000x and the scale bar

is 20μm. Images are maximum intensity z-stack projections.

(AVI)

S4 Video. Simulation of ECM fiber recruitment (high). The domain size is 20x20x20μm3
.

See captions of Fig 3C and 3F for color and force loading schemes. The simulation setup is

100pN loading per fiber segment in the loading region, 1x crosslink zero-force unbinding rate,

0.3x crosslink mechanical compliance, and 1x crosslink density.

(AVI)

S5 Video. Simulation of ECM fiber recruitment (moderate). The domain size is

20x20x20μm3
. See captions of Fig 3C and 3F for color and force loading schemes. The simula-

tion setup is 50pN loading per fiber segment in the loading region, 1x crosslink zero-force
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unbinding rate, 0.3x crosslink mechanical compliance, and 1x crosslink density.

(AVI)

S1 Fig. Fast remodeling through fluorescent intensity local accumulation. Representative

ECM intensity dynamics due to fast local remodeling by MDA-MB-231 cells in collagen gels

of different concentrations. Percent change in intensity is calculated as (Ia/Ii-1)�100 where Ia is

the average intensity at specific times and Ii is the average intensity at the beginning of the

experiment. Intensities are averaged over a ROI (~30x30 μm2) containing the cell and the

newly recruited ECM fibers.

(TIF)

S2 Fig. ECM fibrin and collagen local displacement profiles in the experiment. Displace-

ment length over time for MDA-MB-231 cancer cells in collagen matrices and for HUVECs in

fibrin matrices, (i) starting from inhibition of forces, (ii) gradually recovering forces up to 4

hours (max recovery), and (iii) ending with complete decellularization that removes all cell

forces applied onto the ECM.

(TIF)

S3 Fig. Fluorescently labeled fibrin. 3D fibrous microenvironment rendering of a fibrin

ECM network used in the experiments. Scale bar is 5 μm.

(TIF)

S4 Fig. Statistical assessment of ECM concentration profiles for selected simulations. (a,b)

Triplicate simulations for the indicated loading forces (pN), corresponding to the network

configurations and plots of Fig 4A and 4B. (c,d) Triplicate simulations for the indicated rela-

tive crosslink concentrations, corresponding to the network configurations and plots of Fig 4C

and 4D. Error bars are s.e.m.

(TIF)

S5 Fig. Additional ECM profiles from discrete network simulations and statistical assess-

ment for robustness. (a) Normalized ECM concentration at the accumulation region vs. time

for different relative zero-force crosslink unbinding rates, as indicated by the arrows and color

legend. (b) Peak normalized ECM concentration in the accumulation region as a function of

the relative zero-force crosslink unbinding rate. For the simulations of (a,b), the loading force

is 100pN, the relative crosslink density is 1x, and the relative crosslink mechanosensitivity is

0.3x. (c,d) Selected configurations from (a,b) are simulated 3 times each for statistical assess-

ment. (e) Normalized ECM concentration at the accumulation region vs. time for different rel-

ative crosslink mechanosensitivities, as indicated by the arrows and color legend. (f) Peak

normalized ECM concentration in the accumulation region as a function of the relative cross-

link mechanosensitivity. For the simulations of (e,f), the loading force is 100pN, the relative

zero-force crosslink unbinding rate is 1x, and the relative crosslink density is 1x. (g,h) Selected

configurations from (e,f) are simulated 3 times each for statistical assessment. Error bars are s.

e.m.

(TIF)

S6 Fig. Statistical assessment of stress profiles for selected simulations. (a–c) Triplicate sim-

ulations for the indicated loading forces (pN), corresponding to the network configurations

and plots of Fig 5A–5C. (d–f) Triplicate simulations for the indicated relative crosslink con-

centrations, corresponding to the network configurations and plots of Fig 5D–5F. Error bars

are s.e.m.

(TIF)
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S7 Fig. Additional overall stress profiles from discrete network simulations. (a) Overall

stress vs. time in the ECM network during dynamic force loading for different relative zero-

force crosslinking unbinding rates as indicated by the arrows and color legend. (b) Peak stress

in the network as a function of the relative zero-force crosslink unbinding rate. (c) Ratio

between the stress immediately before stopping loading forces (t = 1) and peak stress as a func-

tion of the relative zero-force crosslink unbinding rate. (a–c) correspond to the same simula-

tions as S5A and S5B Fig. (e–g) Selected configurations from (a–c) are simulated 3 times each

for statistical assessment. (h) Overall stress vs. time in the ECM network during dynamic force

loading for different relative crosslink mechanosensitivities as indicated by the arrows and

color legend. (i) Peak stress in the network as a function of the relative crosslink mechanosen-

sitivity. (j) The ratio between the stress immediately before stopping loading forces (t = 1) and

peak stress as a function of the crosslink mechanosensitivity. (h–j) correspond to the same sim-

ulations as S5E and S5F Fig. (k–m) Selected configurations from (h–j) are simulated 3 times

each for statistical assessment. Error bars are s.e.m.

(TIF)

S8 Fig. Effects of crosslink rebinding. Temporal profiles of the normalized concentration at

the loading edge (a) and stress (b) of an ECM network with a crosslink density of 1x, zero-

force unbinding rate of 1x, and mechanical compliance of 0.3x. The loading force is 100pN,

and force loading starts at the normalized time of 0 and ends at the normalized time of 1.

Crosslink rebinding is allowed (red) or not allowed (blue).

(TIF)

S9 Fig. Example of local ECM strains as computed from the experiments. (a) Absolute max-

imum principal strain (AMPS) around an MDA-MB-231 cell in collagen in a 3D sliced view.

(b) In-plane slice view of AMPS around an MDA-MB-231 in collagen ECM for (top) 4h exper-

iment showing cumulative overall–plastic and elastic–deformation and (bottom) showing

relaxation–elastic component–after 1h treatment with cell lysant. (c) In-plane slice view of

cumulative and relaxation AMPS for HUVEC in fibrin ECM.

(TIF)

S10 Fig. Parametric study of local damage in the continuum model. (a) Maximum principal

strain parameters that control the damage model exponential decay (Fig 7B, reported also on

the left) are varied. The baseline (ε1s = 0.02 or 2% and ε1e = 0.06 or 6% strains) and three addi-

tional variations are shown in the figure along with their effect on the spatial profile of the

Young’s modulus (undamaged Young’s modulus Es is 1 kPa, and fully damaged Young’s mod-

ulus Ee is 0.2 kPa, see S2 Table). These plots are organized in two rows depending on whether

the Young’s modulus damaging process is shown at the end of 300s creep (constant loading

with p = 0.1 kPa), or 1 hour creep. On the right, a magnification shows how the damage radius

is calculated, i.e. the radius up to regions with half-max damage. For clarity, the locations of

the loading application and cell in the model are also indicated. (b) 2D heat map of damage

radius as a function of the start, or onset damage strain ε1s and end strain ε1e at the end of 300s

creep loading (p = 0.1 kPa) and (c) at the end of 1 hour creep. Note that the heat maps show

reduced parameter space because the condition ε1s<ε1e must hold.

(TIF)

S11 Fig. Local ECM stress-strain cycles of loading, creep, and unloading, and example of

stress overestimation if no damage and plasticity are considered in traction force relaxa-

tion. (a,b) Stress-strain response in viscoplastic (red) vs. purely elastic (blue) ECM continuum

models. Different loading regimes are indicated along with loading rate (a) with damage and

(b) without damage included in the constitutive material formulation. Note that in the
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viscoplastic models, plastic softening causes a drop in yield stress as plastic deformation

increases during creep (creep period = 1500s, red dashed lines). (c,d) Local (at the load appli-

cation region) errors in stress back-calculation based on comparing the viscoplastic and the

purely elastic models of (a,b). All models have the same initial elastic stiffness: dashed grey

lines represent the initial stiffness of undamaged Young’s modulus of ~1 kPa. (c) Comparison

with damage in both elastic and viscoplastic formulations and (d) comparison without dam-

age. Note that as expected, error is null with a purely elastic model with no damage (d, blue

line) is calculated. The small error in d (red line) is due to a competition between softening

(producing a negative slope during creep) and viscous effects during unloading. Note also that

the stress axis limit is highly rescaled in (c) as compared to the same profiles in (a) to help visu-

alize the magnitude of the error, indicated by the vertical solid line.

(TIF)

S12 Fig. Damage profiles and corresponding error in local stress as a function of distance

from edge. (a) Example of the spatial profile of the damaged Young’s modulus in the contin-

uum model of the ECM. (b) Radial profile of Young’s modulus in two times of the load history:

upon increasing the load p linearly from 0 to 0.1 kPa (blue), and at the end of 1 hour creep

(red). (c) Spatial variation of the ratio between apparent stress–as if no ECM damage or plastic-

ity was considered–and real stress. This ratio is estimated as in S11 Fig.

(TIF)

S13 Fig. Schematic of the Norton-Hoff viscoplasticity with hardening/softening capability

(light colored spring).

(TIF)

S1 Table. Parameters used for the discrete model simulations.

(DOCX)

S2 Table. Parameters used for the finite element continuum model simulations.

(DOCX)

S1 Note. Viscoplasticity theory and finite element calculations.

(DOCX)
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