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Abstract

The regulation of transcription initiation is critical for developmental and cellular processes.

RNA polymerase II (Pol II) is recruited by the basal transcription machinery to the core pro-

moter where Pol II initiates transcription. The core promoter encompasses the region from

-40 to +40 bp relative to the +1 transcription start site (TSS). Core promoters may contain

one or more core promoter motifs that confer specific properties to the core promoter, such

as the TATA box, initiator (Inr) and motifs that are located downstream of the TSS, namely,

motif 10 element (MTE), the downstream core promoter element (DPE) and the Bridge, a

bipartite core promoter element. We had previously shown that Caudal, an enhancer-bind-

ing homeodomain transcription factor and a key regulator of the Hox gene network, is a

DPE-specific activator. Interestingly, pair-rule proteins have been implicated in enhancer-

promoter communication at the engrailed locus. Fushi tarazu (Ftz) is an enhancer-binding

homeodomain transcription factor encoded by the ftz pair-rule gene. Ftz works in concert

with its co-factor, Ftz-F1, to activate transcription. Here, we examined whether Ftz and Ftz-

F1 activate transcription with a preference for a specific core promoter motif. Our analysis

revealed that similarly to Caudal, Ftz and Ftz-F1 activate the promoter containing a TATA

box mutation to significantly higher levels than the promoter containing a DPE mutation,

thus demonstrating a preference for the DPE motif. We further discovered that Ftz target

genes are enriched for a combination of functional downstream core promoter elements that

are conserved among Drosophila species. Thus, the unique combination (Inr, Bridge and

DPE) of functional downstream core promoter elements within Ftz target genes highlights

the complexity of transcriptional regulation via the core promoter in the transcription of differ-

ent developmental gene regulatory networks.
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Introduction

Gene regulatory networks governing developmental processes are tightly regulated at the tran-

scription level [1–5]. Initiation of transcription of protein coding genes, miRNAs and long

non-coding RNAs occurs at the Pol II core promoter, which encompasses the region from -40

to +40 bp relative to the +1 transcription start site (TSS). It is now established that the core

promoter composition is a key component in the regulation of transcription (reviewed in: [6–

13]). Core promoters may contain core promoter elements/motifs that confer specific proper-

ties to the core promoter, such as the TATA box [14], initiator (Inr) [15], and motifs that are

located downstream of the TSS, namely, motif 10 element (MTE) [16, 17], the downstream

core promoter element (DPE) [18–20] and the Bridge, a bipartite core promoter element

(BridgeI and BridgeII) [21].

We had previously shown that the DPE motif has an important role in the gene network

that controls the development of the anterior-posterior axis of the Drosophila melanogaster
embryo [22]. Nearly all of the Hox genes contain DPE-dependent, TATA-less promoters.

Moreover, we have shown that Caudal, a homeodomain sequence specific transcription factor,

which is a key regulator of the Hox gene network, is a DPE-specific activator [22]. Caudal is

the first identified core promoter-specific activator, and it is likely that additional transcrip-

tional factors have a preference for a specific core promoter element. The concept of core pro-

moter-specific activators is also supported by studies that demonstrate enhancer-promoter

specificity (see for example, [23–25](. Interestingly, pair-rule proteins have been implicated in

enhancer-promoter communication in the engrailed locus [26].

fushi tarazu (ftz) is one of the best-characterized pair-rule genes that activates segment

polarity genes. It is a homeodomain transcriptional activator that is expressed in stripes (even

numbered segments) very early in anterior-posterior axis formation [27–30] (reviewed in

[31]). The specificity of Ftz target site selection is achieved by its interaction with its obligatory

co-factor Ftz-F1 [32]. Ftz-F1 is an orphan nuclear receptor that is conserved in bilaterians. Ftz

interacts with Ftz-F1 [33, 34] and cooperatively they bind to DNA as a complex, synergistically

activating more than a dozen target genes [32, 35–38]. Notably, the interaction between the

Ftz protein itself and DNA is very weak [35], and the specificity of Ftz target site selection is

achieved by Ftz-F1, whose DNA binding specificity is much more stringent than that of Ftz

[32, 37, 39, 40].

We have previously demonstrated that the ftz promoter contains both a TATA-box and a

DPE motif, and that Caudal preferentially activates the ftz promoter through the DPE motif

[22]. Thus, we decided to examine whether the Ftz transcription factor, which shares sequence

homology with Caudal, also has a preference for activating transcription of its target genes in a

core-promoter-specific manner. In this study, we have discovered that Ftz and Ftz-F1 synergis-

tically activate transcription with a preference for the DPE motif, and that Ftz target genes are

enriched for a combination of functional downstream core promoter elements that are con-

served among Drosophila species.

Material and methods

Expression plasmids

Ftz and Ftz-F1 coding regions were cloned into the pAc5.1 / V5-His C expression vector

(Thermo Fisher Scientific) without any tags. To that end, RNA was purified from 0–12 hours

old Drosophila embryos using the Trizol reagent (Thermo Fisher Scientific) and reverse tran-

scribed into cDNA using MMLV-Reverse Transcriptase (Promega). The primers that were

used for cloning Ftz (forward: 5’ AAGGTACCATGGCCACCACAAACAGC 3’, reverse: 5'
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AAGGATCCTCATCAAGACAGATGGTAGAGGTCC 3') include a KpnI restriction site in the

forward primer and a BamHI restriction site in the reverse primer. The coding region of Ftz-

F1 was amplified using the Berkeley Drosophila Genome Project (BDGP) LD15303 clone as a

template. The primers that were used for cloning Ftz-F1 (Forward: 5’ CCGAATTCATGGATA
CCTTCAATGTACCTATGCTGGCGGAGAG 3’, Reverse: 5’ TTGGATCCTACTATCCCTTGC
GCTTGGCGTGCAG 3’) include an EcoRI restriction site in the forward primer and a BamHI

restriction site in the reverse primer. All PCR reactions were carried out using PfuUltra II

polymerase (Agilent Technologies). PCR fragments were initially cloned into the pGEM-T

Easy vector (Promega) before cloning into the final expression plasmids. The DNA sequence

of each plasmid was verified by sequencing reactions (Hy Labs).

Luciferase reporter plasmids

Each synthetic Ftz—Ftz-F1 firefly luciferase reporter plasmid contains a total of six Ftz DNA

binding sites (CCACAATTAGG) and three Ftz-F1 DNA binding sites (TCCGAAGGACAC),

based on the engrailed intronic enhancer [32]. The synthetic binding sites were cloned

upstream of the ftz core promoter and the firefly luciferase reporter gene of a pGL3-Basic plas-

mid with a modified polylinker. The DNA binding sites were assembled using three sets of

annealed top and bottom oligonucleotides, each containing a Ftz-F1 DNA binding site flanked

by Ftz DNA binding sites from either side (Ftz binding sites are in bold, Ftz-F1 binding sites

are underlined). The three sets were ligated to each other and to the vector using EcoRI, XhoI,

PstI and SpeI compatible restriction enzyme sites (designated by lower case letters):

aattcCCACAATTAGGAATCCGAAGGACACTGCCACAATTAGGctcgagCCACAATTAGG
AATCCGAAGGACACTGCCACAATTAGGctgcagCCACAATTAGGAATCCGAAGGACACTGC
CACAATTAGGa. The synthetic binding sites were cloned into either a DPE-dependent or a

TATA-dependent ftz promoter firefly luciferase reporter plasmid [22], which are identical

except for the sequences at the DPE and TATA regions. For cloning the minimal promoters of

Ftz and Ftz-F1 target genes into a reporter plasmid, double-stranded oligonucleotides com-

prising core promoter sequences from –10 to +40 were inserted into the EcoRI and PstI sites

of a pGL3-Basic plasmid with a modified polylinker. A 7-nucleotides DPE mutation was gen-

erated by replacing the wild type (WT) sequence with CTCATGT in positions +28 to +34 rela-

tive to the A+1 of the Inr. Mutations in BridgeI were generated by replacing the WT sequence

with ATCCA in position +18 to +22 relative to the A+1 of the Inr [21]. A partial DPE mutation

was generated by replacing the WT sequence with GTA in position +27 to +29 relative to the

A+1 of the Inr. Promoter sequence variants are listed in Table 1.

The Scr (Sex combs reduced)-Renilla luciferase reporter was constructed by replacing the

firefly luciferase gene in the Scr-pGL3 Basic, which contains a genomic Scr fragment encom-

passing from −3103 to +110 relative to A+1 in the Inr [22], with the coding region of the Renilla
luciferase gene. The coding region of the Renilla luciferase gene was amplified by PCR with the

following primers: forward 5’ GAAGATCTGCCACCATGACTTCGAAAGTTTATGATCC 3’
and reverse 5’ GCGGCCGCTCTAGAATTATTGTTC 3’ (restriction enzyme sites are under-

lined) using Pol III-Renilla luciferase reporter plasmid (kind gift of Norbert Perrimon, Harvard

Medical School) as a template. The DNA sequence of each plasmid was verified by sequencing

reactions (Hy Labs).

Transient transfections and reporter gene assays

Drosophila Schneider S2R+ adherent cells were cultured in Schneider’s DrosophilaMedium

(Biological Industries) that was supplemented with 10% heat-inactivated fetal calf serum. Cells

were transfected in 24-well plates by using the Escort IV reagent (Sigma-Aldrich). For dual
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luciferase assays, cells were plated at 6 x 105 cells per each well of a 24-well plate one day prior

to transfection. Each well was transfected with a total of 1 μg DNA composed of 930 ng of a

vector control (mock -pAc empty), 60 ng of firefly luciferase Ftz and Ftz-F1 target gene

reporter constructs and 2 ng of Scr-Renilla luciferase reporter. Co-activation experiments were

performed by transfection of 25 ng of each expression vector (Ftz, Ftz-F1 or vector control).

For the analyses of minimal core promoter constructs, no activator was added. Medium was

replaced one day after transfection, and cells were harvested 36–48 hrs post transfection and

assayed for dual luciferase activities, as specified by the manufacturer (Promega). To correct

for variations in transfection efficiency, firefly luciferase activity of each sample was normal-

ized to the corresponding Renilla luciferase activity. Each transfection was performed in tripli-

cates, and each graph represents an average of at least 3 independent experiments.

In vitro transcription and primer extension analysis

In vitro transcription reactions with Drosophila embryo nuclear extracts were carried out as

previously described [41–43] using 400–500 ng of supercoiled DNA templates with Drosophila

Table 1. Minimal promoter sequence variants of Ftz target genes examined in this study.

gene variant Analyzed promoter sequence (-10 to +40)

en WT gtagtcaaCTAATTCagtcgttgcgctCGATGtgaacAGACGTgcgtgtc

mDPE gtagtcaaCTAATTCagtcgttgcgctCGATGtgaacCTCATGtcgtgtc

mBridgeI gtagtcaaCTAATTCagtcgttgcgctATCCAtgaacAGACGTgcgtgtc

mDPE27-29 gtagtcaaCTAATTCagtcgttgcgctCGATGtgaagTAACGTgcgtgtc

drm WT gtaactttGCAGTTgactctcgcgcacAGAAGcgttcGGAAGTgaaatat

mDPE gtaactttGCAGTTgactctcgcgcacAGAAGcgttcCTCATGtaaatat

mBridgeI gtaactttGCAGTTgactctcgcgcacATCCAcgttcGGAAGTgaaatat

mDPE27-29 gtaactttGCAGTTgactctcgcgcacAGAAGcgttgTAAAGTgaaatat

Sema5C WT tggtgggtTCAGTTtcttgcgactcttTGCGCggtcaACTTCGccgatcg

mDPE tggtgggtTCAGTTtcttgcgactcttTGCGCggtcaCTCATGtcgatcg

mBridgeI tggtgggtTCAGTTtcttgcgactcttATCCAggtcaACTTCGccgatcg

mDPE27-29 tggtgggtTCAGTTtcttgcgactcttTGCGCggtcgTATTCGccgatcg

Ppa WT ctgcgagtTCAGTTtttctttatcatcCGGTTcgtgcACATCGcgtctcg

mDPE ctgcgagtTCAGTTtttctttatcatcCGGTTcgtgcCTCATGtgtctcg

mBridgeI ctgcgagtTCAGTTtttctttatcatcATCCAcgtgcACATCGcgtctcg

mDPE27-29 ctgcgagtTCAGTTtttctttatcatcCGGTTcgtggTAATCGcgtctcg

Cad74A WT aagtccggCCAGAAggtaagcgagcgtCGCTTcgtacAGACGTggtcgcg

mDPE aagtccggCCAGAAggtaagcgagcgtCGCTTcgtacCTCATGtgtcgcg

mBridgeI aagtccggCCAGAAggtaagcgagcgtATCCAcgtacAGACGTggtcgcg

mDPE27-29 aagtccggCCAGAAggtaagcgagcgtCGCTTcgtagTAACGTggtcgcg

noc WT cgttgaatTCAATTcgaattttgacttCGCAGcgttcAGACGTgttcgga

mDPE cgttgaatTCAATTcgaattttgacttCGCAGcgttcCTCATGtttcgga

mBridgeI cgttgaatTCAATTcgaattttgacttATCCAcgttcAGACGTgttcgga

mDPE27-29 cgttgaatTCAATTcgaattttgacttCGCAGcgttgTAACGTgttcgga

opa WT ggagcattTCAGTCctgctgcgcatctTGAAAcgtcaAGTCTTggcattc

mDPE ggagcattTCAGTCctgctgcgcatctTGAAAcgtcaCTCATGtgcattc

mBridgeI ggagcattTCAGTCctgctgcgcatctATCCAcgtcaAGTCTTggcattc

mDPE27-29 ggagcattTCAGTCctgctgcgcatctTGAAAcgtcgTATCTTggcattc

Nucleotides’ match to core promoter element position weight matrices (PWMs) of Inr, BridgeI and DPE are shown by uppercase letters. Mutated nucleotides are shown

in bold. The PWMs used to detect the core promoter motifs are the same as described in [48].

https://doi.org/10.1371/journal.pone.0215695.t001
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high-salt nuclear extracts [44]. The resulting transcripts were subjected to primer extension

analysis with a radiolabeled reverse luciferase primer (5’ TCTTCCAGCGGATAGAATGGCGCC
3’). All experiments were carried out a minimum of three independent times to ensure repro-

ducibility of the data. Image processing and quantification of reverse transcription products

were carried out using either ImageJ or Image Gauge v.3.0 (Fuji Photo Film Co.).

Calculation of core promoter element frequency

The list of Ftz target genes was composed of both previously characterized Ftz target genes [32,

33, 35, 36, 45, 46] and all target genes identified by ChIP-chip data (pooled from Ftz “gene

expression profile analysis”, “ChIP-chip binding sites mapping” and “direct targets” lists) [47].

Core promoter element compositions were taken from the CORE database [48], containing all

Drosophila transcripts based on CAGE data [49]. Only peaked or unclassified promoter types

were analyzed, and different transcripts of the same gene were considered separately. Tran-

scripts were assigned to mutually exclusive groups based on their core promoter composition.

The proportion of each core promoter combination for Ftz target genes was compared to the

expected one (based on the Drosophila genome) using the chi-square test. P-values were

adjusted using Bonferroni correction for multiple testing.

phyloP conservation analysis of the downstream core promoter region

The TSSs positions of each Drosophila melanogaster transcript were downloaded from the

EPDnew database (http://epd.vital-it.ch) [50, 51]. The exon coordinates of every Drosophila
melanogaster transcript were downloaded from the UCSC table browser (https://genome.ucsc.

edu/cgi-bin/hgTables) “RefSeq All (ncbiRefSeq)” table, which is part of the “NCBI RefSeq”

track (within the “Genes and Gene Predictions” group).

The sequence conservation of the -2 to +33 promoter regions of the en, drm, Sema5c, Ppa,

Cad74A, noc and opa Drosophila melanogaster genes and of the corresponding exons was ana-

lyzed using the UCSC “PhyloP (phyloP27way)” table, which is part of the “Conservation” track

(within the “Comparative Genomics” group). The phyloP utility is part of the PHAST (Phylo-

genetic Analysis with Space/Time models) package for comparative and evolutionary geno-

mics [52, 53]. The average exon conservation of a 35 bp window was calculated by locating

windows of 35 bp, starting from a random position within the gene exons. This process was

repeated a 1000 times. The distribution of the average conservation scores of randomly chosen

35 bp sequences within gene exons was plotted and compared to the average phyloP conserva-

tion scores of the 35 bp located at -2 to +33 relative to the TSS of the specific Drosophila mela-
nogaster gene. If the average conservation score of the motif sequence falls in the boundaries

±2 STD in the distribution graph, the null hypothesis is not refuted i.e., the conservation level

of the area of motif sequence (downstream core promoter region) is similar to the conserva-

tion level of its related gene exons. A 35 bp sequence located 200 bp away from the core pro-

moter region (from -241 to -275) was downloaded using the NCBI genome data viewer

(https://www.ncbi.nlm.nih.gov/genome/gdv/) and used for comparison.

Evolutionary conservation analysis of the Inr, BridgeI and DPE combination

Evolutionary conservation analysis of the Inr, BridgeI and DPE combination within the core

promoters of seven Ftz target genes (en, drm, Sema5c, Ppa, cad74A, noc and opa) was per-

formed using the dm6 Drosophila melanogaster genome assembly. As the TSSs of these Dro-
sophila melanogaster genes were experimentally defined, the Multiz alignment from the UCSC

genome browser (http://genome.ucsc.edu) of Drosophila melanogaster and 26 additional insect

species, as well as 6 additional close gene homologs were used towards the analysis of sequence
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conservation, as detailed below. For every Drosophila melanogaster transcript, the position of

the TSS was downloaded from EPDnew database (http://epd.vital-it.ch) [50, 51]. Based on this

position, the UCSC 27 insects Multiz alignments of the genome sequence ±500 bp from the

TSS were downloaded from UCSC genome browser “Multiz Align (multiz27way)” table,

which is part of the “Conservation” track (within the “Comparative Genomics” group). The

insects included in the Multiz alignment are: Drosophila melanogaster, Drosophila simulans,
Drosophila sechellia,Drosophila yakuba, Drosophila erecta, Drosophila biarmipes,Drosophila
suzukii, Drosophila ananassae, Drosophila bipectinata, Drosophila eugracilis, Drosophila ele-
gans, Drosophila kikkawai, Drosophila takahashii, Drosophila rhopaloa, Drosophila ficusphila,

Drosophila pseudoobscura, Drosophila persimilis, Drosophila miranda, Drosophila willistoni,
Drosophila virilis,Drosophila mojavensis, Drosophila albomicans, Drosophila grimshawi,Musca
domestica, Anopheles gambiae, Apis mellifera and Tribolium castaneum. A position weight

matrix (PWM) that combines the three core promoter motifs (Drosophila melanogaster Inr,

BridgeI and DPE) was constructed based on the individual PWMs of these motifs, used in the

core promoter Elements Navigation Tool (ElemeNT) [48]. For en and Cad74A, the mamma-

lian Inr (instead of the Drosophila melanogaster Inr) PWM was used, as these genes contain an

Inr sequence that conforms to the mammalian Inr. For each of the sequences that were down-

loaded from Multiz, a program was run to detect the existence of putative elements whose

PWM similarity is above a specified threshold. As listed above, most of the species’ genome

sequences that were downloaded from the UCSC Multiz alignment belong to the Drosophila-
dea family. To check whether the combined motif also exists in gene homologs in insect fami-

lies other than the Drosophiladea family, the Drosophila melanogaster proteins encoded by

each of the analyzed transcripts were downloaded from NCBI (https://www.ncbi.nlm.nih.

gov/). For each protein, protein blast (BLASTP) was run on non-redundant protein sequences

(nr) database excluding the Drosophilidae family (taxon identifier 7214). From the list of

results of each one of the BLASTP queries, the top six species with highest coverage & identity

were chosen. The gene coordinates for each of these species were downloaded from NCBI.

Since there was no available information on the transcription start sites in these species, the

sequence of ±1000 bp around the annotated gene start position was downloaded from NCBI.

Similarly to the process run for the sequences downloaded from UCSC Multiz alignment,

using a PWM that combines the three core promoter motifs (Inr, BridgeI and DPE), a pro-

gram was run to detect the existence of putative elements whose PWM similarity is above a

specified threshold on every one of the downloaded sequences. Motif sequences with PWM

scores higher than 5 that were located within ±200 bp from the TSS or the annotated gene start

positions were chosen. With these defined thresholds, there was only one motif detected for

most species. In case more than one motif was detected per species, the motif that was closer to

the TSS or gene start was chosen. The motif logos were generated using WebLogo (https://

weblogo.berkeley.edu/) [54, 55].

Results

Ftz and its co-factor Ftz-F1 preferentially activate promoters via the DPE

motif

Caudal is a homeodomain sequence-specific DNA binding transcription factor that has been

shown to bind and activate the transcription of ftz [56]. We had previously demonstrated that

the core promoter of the ftz gene contains a TATA box, an Inr and a DPE motif [22]. More-

over, we had shown that Caudal, as well as the mouse Caudal-related Cdx proteins, activate

transcription of the ftz promoter with a distinct preference for the DPE motif over the TATA

box [22, 57]. We postulated that there are additional sequence-specific transcription factors
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that activate transcription with a preference for a specific core promoter composition. Ftz,

another homeodomain protein and a direct target of Caudal, is a natural candidate. The simi-

larity between Ftz and Caudal is further supported by BLASTP analysis, which indicates that

Caudal and Ftz contain two similar sequence stretches (S1 Fig). Thus, we have decided to test

whether Ftz could activate transcription with a preference for the DPE motif.

It has been shown that the specificity of Ftz activity is achieved by its interaction with its

obligatory co-factor, the orphan nuclear receptor Ftz-F1 [32, 37, 58]. Ftz and Ftz-F1 form a sta-

ble complex and bind cooperatively to DNA, resulting in synergistic activation of multiple tar-

get genes [33, 36, 58]. We therefore sought to examine whether Ftz and Ftz-F1 activate their

target genes with a preference for the DPE motif, as was previously reported for Caudal.

In order to test whether Ftz and Ftz-F1 activate their target genes with a preference for the

DPE motif, we generated firefly luciferase reporter plasmids containing synthetic Ftz and Ftz-F1

binding sites derived from the engrailed enhancer [32], upstream of a ftzDPE-dependent core

promoter (containing a mutation in the TATA-box; mTATA) or a ftz TATA-dependent core pro-

moter (containing a mutation in the DPE; mDPE) (Fig 1A). Importantly, these synthetic reporter

plasmids are identical except for the sequences at the DPE and TATA regions.Drosophila S2R

+ cells, which do not express ftz RNA and only express low levels of ftz-f1 RNA (modENCODE,

[59]), were co-transfected with expression vectors for Ftz and/or Ftz-F1, as well as with a synthetic

DPE- or TATA-dependent firefly luciferase reporter plasmid and a control Renilla luciferase plas-

mid. Cells were harvested 36–48 h post-transfection and assayed for dual-luciferase activity.

Neither Ftz nor the Ftz-F1 co-factor alone significantly activated the TATA-dependent

(mDPE) or the DPE-dependent (mTATA) synthetic reporter (Fig 1B). The synergistic effect of

Ftz and Ftz-F1 reported in the literature [32, 35–37] was observed, with the mTATA reporter

being activated ~55 fold and the mDPE reporter activated ~26 fold (Fig 1C). Remarkably, co-

transfected Ftz and Ftz-F1 activate the synthetic reporters with a preference for the DPE (Fig

1C). Thus, in addition to sharing homologous sequences with Caudal, this data suggests that

Ftz and Ftz-F1 are also able to activate transcription to different levels depending on the core

promoter composition.

The downstream core promoter region of Ftz target genes is enriched for a

combination of Inr, Bridge and DPE motifs

To investigate whether Ftz target genes are regulated via a specific core promoter element, we

first analyzed all Ftz targets based on the previously characterized target genes [32, 33, 35, 36,

45, 46] and on ChIP-chip analysis [47]. We used the Drosophila melanogaster CORE database

and the Elements Navigation Tool (ElemeNT) [48], which annotates CAGE-defined Drosoph-
ila melanogaster TSSs [49] and analyzed the core promoter composition of these genes. Inter-

estingly, many of the Ftz target genes contain downstream core promoter elements, such as

the Bridge, DPE, and MTE. Remarkably, analysis of the fraction of genes containing a unique

combination of Inr, DPE and Bridge core promoter configuration shows a statistically signifi-

cant enrichment among Ftz target genes, as compared to the distribution of core promoter ele-

ments within the Drosophila genome (Fig 2). By definition, this combination of downstream

core promoter elements is distinct from the Inr and MTE combination, which prompted us to

investigate this unique combination.

The Bridge and DPE motifs of multiple Ftz target genes are evolutionarily

conserved

To assess the potential contribution of the downstream core promoter region to the regulation

of Ftz target genes, we analyzed the sequence conservation of the -2 to +33 promoter regions
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of seven Drosophila melanogaster Ftz target genes. The analyzed genes included the well-char-

acterized en [32, 35, 38], as well as the drm, Sema5c, and noc Ftz target genes identified in Ftz-

F1 mutants [36]. In addition, the less characterized Ppa, Cad74A and opa genes [47, 60] were

also tested. Each of these target genes contains a potential Inr, Bridge and DPE combination,

with the exception of opa, which only contains an Inr and DPE. Interestingly, en and Cad74A
sequences conform to the mammalian initiator sequence, while the other promoter sequences

match both Drosophila and mammalian initiator motifs. All of the examined genes are co-
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expressed with Ftz and Ftz-F1 during early embryonic stages of development (modENCODE

data in FlyBase [59], S2 Fig).

We first calculated the distribution of the average conservation scores of 1000 randomly

chosen 35 bp sequences within exons of each of the abovementioned genes. Since the coding

region is known to be highly conserved, the calculated conservation scores were used as a
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reference for the conservation level of the -2 to +33 region of the corresponding gene. The con-

servation analysis was based on the phyloP utility within the PHAST (Phylogenetic Analysis

with Space/Time models) package for comparative and evolutionary genomics [52, 53]. The

analysis demonstrated that the -2 to +33 region of the promoter of each of the seven target

genes is within the boundaries of ±2 STD from the average conservation scores of randomly

chosen 35 bp sequences within the exons of that gene (Fig 3), indicating that the evolutionary

conservation level of the downstream core promoter region of each tested target gene is similar

to the conservation level of its related exons.

We then used a 35 bp sequence located 200 bp upstream of the core promoter region (from

-241 to -275) as a control. This upstream sequence was conserved for en, drm and opa, but not

for Sema5c, Ppa, Cad74A and noc. Notably, the conservation levels of the core promoter

regions of all analyzed Ftz target genes were higher than the conservation levels of the

upstream control regions, further implicating the conserved downstream core promoter

region in the regulation of these genes.

We next analyzed the sequence conservation of the -2 to +33 nucleotides within the core

promoters of each of these seven Drosophila melanogaster Ftz target genes using the Multiz

alignment from the UCSC genome browser (http://genome.ucsc.edu), which includes Dro-
sophila melanogaster, 26 additional insect species, and 6 additional close gene homologs

(Table 2). The generated motif logos for the -2 to +33 promoter regions of en, drm, Sema5c,
Ppa, Cad74A and noc, demonstrate that the combination of Inr, Bridge and DPE and its strict

spacing requirement are evolutionarily conserved in multiple Drosophila species, as well as

non-Drosophila insects (Fig 4 and Table 2). The opa promoter, which does not contain a

BridgeI sequence motif, is also conserved. Interestingly, a G nucleotide at position +24 was

previously identified as overrepresented in Inr-DPE containing promoters [20]. Indeed, the

motif logos of all seven promoters contain a G nucleotide at this position, between the BridgeI

and DPE motifs, highlighting the existence of additional evolutionary conserved positions

within the downstream core promoter region.

Multiple Ftz target genes contain functionally important Bridge and DPE

core promoter motifs

To examine whether the detected highly conserved DPE and Bridge sequence motifs are func-

tional, we have generated reporter plasmids containing different versions of the minimal pro-

moters (-10 to +40 relative to the A+1) for the seven Ftz target genes analyzed above. In order

to distinguish between the effect of the DPE and/or the Bridge motif on the reporter activity,

we have generated four distinct core promoter versions for each gene—WT, mutant DPE

(mDPE), mDPE only (27–29) and mBridgeI (18–22) (Table 1). The location of these motifs is

depicted in Fig 5A.

Mutations in the DPE sequence of each of the seven target genes reduced the activities of

the luciferase reporter by more than 2-fold (Fig 5B). Partial mutations of the relevant regions

(mDPE 27–29 and mBridgeI) had milder effects on the activities of Cad74A and noc luciferase

reporter genes, as compared to their effects on the activities of the luciferase reporters driven

by en, drm, Sema5c and Ppa. In addition, the effect of mBridgeI was more pronounced for en,

drm, Sema5c and Ppa, and less pronounced for Cad74A and noc reporter genes. As expected,

the mBridgeI had no effect on the activity of opa, which lacks a BridgeI motif. Taken together,

these results emphasize the contribution of the downstream core promoter nucleotide compo-

sition to the transcriptional activity.

To gain a better understanding of the functionality of the DPE and BridgeI motifs, we ana-

lyzed the core promoter constructs by in vitro transcription using Drosophila embryo nuclear
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extracts, followed by primer extension analysis (Fig 6). This enables the examination of the

transcriptional output of the promoters using transcription factors present in the in-vivo envi-

ronment of the developing Drosophila embryo. Consistent with the luciferase reporter activi-

ties in S2R+ cells, reduced transcription levels were also observed for the mDPE versions of

these genes by in vitro transcription and primer extension analysis, suggesting that the tran-

scription of these Ftz target genes is DPE-dependent in both cells and embryos. Interestingly,

opa showed the least reduction upon DPE mutation. In addition, whereas transcription of the

mBridgeI versions of en, drm, Sema5c and Ppa were markedly reduced compared to WT, tran-

scription of the mBridgeI version of noc was unaffected and transcription of Cad74A and opa
was only moderately reduced.

The luciferase assay quantitates the enzymatic activity of a reporter gene as an indirect mea-

sure of promoter activity, whereas the primer extension assay analyzes the levels of cDNA gen-

erated from transcribed mRNA as a measure of promoter activity. Although there are some

expected differences between the two assays and although the differences may result from the

absence of certain transcription factors in the S2R+ cells, the overall conclusion of these com-

bined results is that transcription of the examined Ftz target genes is significantly impaired

upon mutation of the DPE motif, and that the BridgeI motif contributes to the expression of

most of these Ftz target genes.

Discussion

Drosophila melanogaster Ftz and Caudal homeodomain transcription

factors share functional characteristics

The Drosophila homeodomain transcription factor ftz evolved from an ancestral homeotic

gene to obtain a novel function in segmentation [61]. Caudal is also a homeodomain transcrip-

tion factor. Anecdotally, it is believed that caudal genes have a common function in axis elon-

gation and segmentation in diverse short-germ arthropods and that this function of caudal
most probably represents an ancestral function, deriving from the common ancestor of all

arthropods [62, 63]. Here we discovered another common characteristic of Caudal and Ftz

(together with its co-factor), i.e., their ability to preferentially activate gene expression via the

DPE core promoter motif. We have previously shown that Drosophila melanogaster Caudal, as

well as the mouse Caudal-related homeobox (Cdx) proteins (mCdx1, mCdx2, and mCdx4),

preferentially activate transcription of the ftz promoters via the DPE core promoter motif [22,

57], and we now demonstrate the preference of Ftz and its co-factor Ftz-F1 for activating tran-

scription from a DPE- versus TATA-dependent core promoter. Firefly luciferase activity val-

ues from plasmids containing the natural Ftz/Ftz-F1 binding site could not be normalized for

transfection efficiency due to normalization bias, despite the use of multiple promoters driving

the Renilla luciferase as normalization controls. This was likely due to the fact that genomic ftz
reporters receive input from multiple cellular regulators. Thus, we have used a unique experi-

mental setting utilizing reporter plasmids containing synthetic Ftz and Ftz-F1 binding sites. It

remains to be determined whether CBP, which has been shown to contribute to DPE-prefer-

ential activation [57], may also be involved in Ftz-regulated transcription.

Fig 3. The conservation level of the downstream core promoter region is similar to the conservation level of its related gene exons.

Sequence conservation analysis (using phyloP) was done to compare the conservation of the -2 to +33 promoter region (indicated by a black

arrow) of seven characterized Drosophila melanogaster Ftz target genes to the average conservation scores of randomly chosen 35 bp

sequences within its related gene exons. The conservation of a 35 bp sequence located 200 bp away from the core promoter region (from -241

to -275) is indicated by a gray arrow.

https://doi.org/10.1371/journal.pone.0215695.g003
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Table 2. The -2 to +33 nucleotides within the core promoters of seven Drosophila melanogaster Ftz target genes are conserved to multiple insect species.

Gene Name / en drm Sema5c Ppa Cad74A noc opa
Species name

Drosophila melanogaster + + + + + + +

Drosophila simulans + + + - + + +

Drosophila sechellia + + + + + + +

Drosophila yakuba + + + + + + +

Drosophila erecta + + + + + + +

Drosophila biarmipes + + + - + + +

Drosophila suzukii + + + + - + -

Drosophila ananassae + + + + + - +

Drosophila bipectinata + + + + - + -

Drosophila eugracilis + + + + + + +

Drosophila elegans + + + + + + +

Drosophila kikkawai + + + - + + +

Drosophila takahashii + + + - + + +

Drosophila rhopaloa + + + + + + +

Drosophila ficusphila + + + - + + +

Drosophila pseudoobscura + + - - + + +

Drosophila persimilis + + - - + + +

Drosophila miranda + + - + + + +

Drosophila willistoni + - + - - + +

Drosophila virilis + + + - + + +

Drosophila mojavensis + - - - + + +

Drosophila albomicans - - - - + + +

Drosophila grimshawi + + - - + - -

Musca domestica + + - + - + -

Anopheles gambiae - - - - - - -

Apis mellifera - - - - - - -

Tribolium castaneum - - - - - - -

Aedes aegypti - - + - - - -

Aedes albopictus - - - - - - +

Anoplophora glabripennis - + - - - - -

Bactrocera dorsalis - - - + + - +

Bactrocera latifrons + - - + - + -

Bactrocera oleae - - - + + - -

Ceratitis capitata - - - - + + +

Dendroctonus ponderosae - + - - - - -

Lucilia cuprina - - + + - - +

Plutella xylostella - + - - - - -

Rhagoletis zephyria - + - - + + -

Stomoxys calcitrans + - - - - + -

Zeugodacus cucurbitae - - - - + + -

Motifs identified in the seven Ftz target genes (en, drm, Sema5c, Ppa, Cad74A, noc and opa) in each of the species marked by +, served for the generation of the motif

logo using the WebLogo application (weblogo.berkeley.edu).

https://doi.org/10.1371/journal.pone.0215695.t002
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The Inr, Bridge and DPE motifs contribute to the promoter activity of

multiple Ftz target genes

We observed an enrichment of genes that contain a combination of Inr, Bridge and DPE

motifs in Ftz target genes, as compared to the core promoter composition of the Drosophila
genome. We thoroughly analyzed the promoter regions of seven Drosophila melanogaster Ftz

target genes: the well-characterized en [32, 35, 38], the drm, Sema5c, and noc Ftz target genes

that were identified in Ftz-F1 mutants [36] and the less characterized Ppa, Cad74A and opa
genes [47, 60]. We demonstrated that the downstream core promoters of multiple Ftz target

genes (en, drm, Sema5c, Ppa, cad74A and noc) contain functional Inr, BridgeI and DPE motifs.
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https://doi.org/10.1371/journal.pone.0215695.g004
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Interestingly, this further highlights the similarity between the well characterized and the less

characterized Ftz target genes.

As demonstrated by both reporter assays in cell culture and in vitro transcription analysis

using embryo extracts, the transcriptional output is mostly dependent on the DPE motif, with

different downstream regions, including the BridgeI motif, contributing to it. This is in line

with a sequence bias revealed in position +19 in DPE promoters [20].

The DPE motif was previously shown to be important for the regulation of the Hox genes,

as well as for the dorsal-ventral gene regulatory network [22, 64]. Here we demonstrate its reg-

ulatory importance to the transcriptional output of several Ftz target genes, which might con-

tribute another layer to transcriptional regulation of the segmentation gene network.
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In general, these results further highlight the importance of the downstream core promoter

region for transcriptional regulation of Ftz target genes, among other developmental pro-

grams. We demonstrated that BridgeI is an “auxiliary” element, which supports the function

of DPE-dependent transcription in the examined promoters, but is not sufficient for fully

restoring the transcriptional activity upon DPE loss. This is also supported by the fact that

most examined functional DPE motifs are accompanied by the Bridge motif, while non-func-

tional ones usually lack it. Potentially, this could promote robustness, where a strong DPE

accompanied by a Bridge motif ensures proper docking of TFIID for accurate transcriptional

activity.

The downstream core promoter combination of Inr, Bridge and DPE

within the promoters of Ftz target genes is mostly conserved in Diptera
The conservation of the combination of Inr, BridgeI and DPE motifs, as well as the strict spac-

ing between them, may suggest the functionality of these regulatory sequences in other Dro-
sophila species. Interestingly, based on this analysis, most of the identified motifs in non-

Drosophiladea belong to the Diptera order. In fact, the only gene with orthologs outside Dip-
tera is drm, which is highly conserved and has homologs in orders that include beetles (Cole-

optera), butterflies and moths (Lepidoptera). Although the Ftz-F1 co-factor is conserved to

bilaterians, no non-Dipteran Ftz orthologs have been identified (Flybase.org). This may

explain why the specific core promoter combination is conserved toDiptera and additional

insects, but not to higher multicellular organisms. This is another indication that it is Ftz,

rather than Ftz-F1, that has the ability to activate with a preference for the specific core pro-

moter motif. This adds another layer of complexity to this complex developmental transcrip-

tional network. Taken together, we identified functional evolutionarily conserved downstream

core promoter elements that are important for the transcriptional regulation of Ftz target

genes.

Supporting information

S1 Fig. Suggested similarity between Ftz and Caudal proteins. Ftz and Caudal protein

sequences, with Homeobox domain highlighted in yellow. Additional similarities, as detected

by BLASTP, are indicated. Each unique color indicates a different stretch of similarity. Graphi-

cal representation of the similarity stretches was generated using MyDomains—Image Creator

(Prosite, https://prosite.expasy.org/cgi-bin/prosite/mydomains/).

(PDF)

S2 Fig. Ftz targets examined in this study are co-expressed with ftz and ftz-f1 in the devel-

oping Drosophila melanogaster embryo. Expression levels of ftz, ftz-f1 (orange color tones)

and the examined Ftz targets (cyan color tones) were based on modENCODE data [59], as pre-

sented in FlyBase.

(PDF)
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