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Abstract

Chronic hepatitis B virus (HBV) infection is associated with functionally impaired virus-spe-

cific T cell responses. Although the myeloid-derived suppressor cells (MDSCs) are known to

play a critical role in impairing antiviral T cell responses, viral factors responsible for the

expansion of MDSCs in chronic hepatitis B (CHB) remain obscure. In order to elucidate the

mechanism of monocytic MDSCs (mMDSCs) expansion and T cell function suppression

during persistent HBV infection, we analyzed the circulation frequency of mMDSCs in 164

CHB patients and 70 healthy donors, and found that the proportion of mMDSCs in HBeAg

(+) CHB patients was significantly increased compared to that in HBeAg (-) patients, which

positively correlated with the level of HBeAg. Furthermore, exposure of peripheral blood

mononuclear cells (PBMCs) isolated from healthy donors to HBeAg led to mMDSCs expan-

sion and significant upregulation of IL-1β, IL-6 and indoleamine-2, 3-dioxygenase (IDO),

and depletion of the cytokines abrogated HBeAg-induced mMDSCs expansion. Moreover,

HBeAg-induced mMDSCs suppressed the autologous T-cell proliferation in vitro, and the

purified mMDSCs from HBeAg (+) subjects markedly reduced the proliferation of CD4+ and

CD8+ T cells and IFN-γ production, which could be efficiently restored by inhibiting IDO. In

summary, HBeAg-induced mMDSCs expansion impairs T cell function through IDO path-

way and favors the establishment of a persistent HBV infection, suggesting a mechanism

behind the development of HBeAg-induced immune tolerance.

Author summary

HBeAg is not a structural component of HBV and is not essential for viral DNA replica-

tion, however, HBeAg positivity is associated with high levels of viremia in patients.
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HBeAg may represent a viral strategy to establish persistent infection, but the mechanism

remains largely ambiguous. Growing evidence suggests that chronic HBV infection may

be shaped by MDSCs-mediated T-cell exhaustion. Here, we report that the frequency of

circulating mMDSCs in HBeAg (+) patients is higher than HBeAg (-) patients and posi-

tively correlates with serum HBeAg levels. The correlation is further demonstrated by in
vitro HBeAg stimulation of PBMCs, which induced mMDSCs expansion. Furthermore,

HBeAg-induced expansion of mMDSCs is dependent upon cytokine IL-6 and IL-1β, and

the indoleamine-2, 3-dioxynase (IDO) plays a critical role in the suppression of T cell pro-

liferation and IFN-γ production by HBeAg-activated mMDSCs. Therefore, our findings

demonstrate a novel mechanism responsible for mMDSCs expansion in HBeAg (+)

patients, and suggest that the HBeAg-mMDSC-IDO axis may serve as an immunothera-

peutic target of chronic hepatitis B.

Introduction

Hepatitis B virus (HBV) is a blood borne pathogen that chronically infects approximately 350

million people worldwide, and more than 780,000 patients die annually due to HBV-related

liver diseases, including cirrhosis and hepatocellular carcinoma (HCC) [1, 2]. It is well

acknowledged that the development of chronic hepatitis B is due to the failure of host immune

system to clear the virus infection, and HBV encodes immunological decoys that cause a per-

sistent infection [3].

HBV is a hepatotropic virus with a small DNA genome of about 3.2 kb. The HBV genome

contains four open reading frames coding for precore/core, polymerase, surface, and X pro-

teins. Among the circulating HBV antigens, HBeAg is derived from endoproteolysis of an

intracellular precursor protein, namely precore, during ER-Golgi constitutive secretion [4].

HBeAg is not a structural component of HBV particle and is not required for viral DNA repli-

cation, however, HBeAg positivity is associated with high levels of viremia in patients [5].

HBeAg seroconversion is an indicator of partial immune control and an important prognosis

in the treatment of CHB, suggesting a role of HBeAg in maintaining HBV persistence [6]. It

has been reported that a vast majority of untreated infants born to HBeAg (+) mothers become

infected, and the CD8+ T cells from these neonates are tolerant to HBV [7]. A recent study in

HBV transgenic mice demonstrated that such impairment of T cell responses is mediated by

hepatic macrophages, which are predisposed by maternal HBeAg to support HBV persistence

through upregulation of inhibitory ligand PD-L1 [8]. Moreover, it has been shown that the cir-

culating HBeAg in CHB patients may impact T-cell response, as evidenced by that the HBV

core-specific T-cell response is significantly weaker in HBeAg (+) patients than that in HBeAg

(-) patients [9]. Thus, HBeAg may represent a viral strategy to establish persistent infection in

the host through inducing immune tolerance and/or exhaustion, but the mechanism remains

largely ambiguous.

The myeloid-derived suppressor cells (MDSCs) is a heterogeneous cell population derived

from myeloid progenitor cells, which can be divided into monocytic MDSCs (mMDSCs) and

granulocytic MDSCs (gMDSCs) based on the presence or absence of CD14 marker on the cell

surface, respectively [10]. MDSCs comprise of only ~0.5% of the peripheral blood mononu-

clear cells (PBMCs) in healthy individuals and are expanded during infection, inflammation,

and cancer. MDSCs have a remarkable ability to suppress T-cell responses through direct cell-

cell contact and secretion of soluble inhibitory molecules, including arginase, inducible nitric

oxide synthase (iNOS) and reactive oxygen species (ROS) [11]. Previous studies in animal
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models have demonstrated that HBV transgenic mice have higher number of intrahepatic

MDSCs than normal mice [12], and the infiltration of γδT cells mobilized MDSCs to the livers

of mice hydrodynamically injected with HBV plasmid in an IL-17-dependent manner, result-

ing in MDSC-mediated CD8+ T cell exhaustion [13]. Another study reported that gMDSCs

are expanded during chronic HBV infection, particularly in the immunotolerance phase with-

out immunopathology, which inhibit T cells in part by secreted arginase [14]. Furthermore, a

higher frequency of MDSCs defined as CD14+HLADR-/low, has been observed in the circula-

tion of HBeAg (+) CHB subjects [15]. Thus, the above studies indicate that chronic HBV infec-

tion may be shaped by MDSCs-mediated T-cell exhaustion. However, the mechanisms

involved in the expansion of MDSCs in HBeAg (+) patients remain unknown. We hypothe-

sized that the HBV antigens in the peripheral blood, especially HBeAg, induce expansion of

mMDSCs and result in the reduction of HBV-specific T cell responses.

We report herein that the frequency of circulating mMDSCs in HBeAg (+) patients is

higher than that in HBeAg (-) patients and positively correlated with HBeAg levels. The corre-

lation was further demonstrated by HBeAg-stimulated human PBMCs. Furthermore, HBeAg-

induced expansion of mMDSCs is dependent on cytokines, IL-6 and IL-1β, and the indolea-

mine-2, 3-dioxynase (IDO) plays a critical role in the suppression of T cell proliferation and

IFN-γ production by HBeAg-activated mMDSCs. Therefore, our findings elucidate a novel

mechanism responsible for mMDSCs expansion in HBeAg (+) patients, and suggest that the

HBeAg-mMDSC-IDO axis may serve as an immunotherapeutic target of chronic hepatitis B.

Results

High frequency of mMDSCs in HBeAg (+) CHB patients

We first compared the frequency and cell count of mMDSCs in the peripheral blood from

CHB patients with those of healthy controls (HC). HBV is not cytopathic and the clinical out-

come of infection is dependent on the complex interplay between HBV replication and host

immune responses [16–18]. We therefore analyzed the circulating mMDSCs frequency and

absolute numbers in CHB patients with different disease states. The clinical characteristics of

enrolled CHB patients and healthy donors are summarized in Table 1.

The percentage of mMDSCs in patient blood was analyzed by flow cytometry. A distinct

population of HLA-DR-/low CD33+CD11b+ cells in the samples were CD14+ rather than

CD15+CD14- (Fig 1A). The representative flow cytometry of mMDSCs frequency in patients

with different disease phases is shown in Fig 1B. Statistically, the frequency of mMDSCs in

both total PBMCs and monocytes was higher in CHB patients compared to the healthy

Table 1. Clinical characteristics of enrolled subjects.

Group HC

(n = 70)

IT

(n = 44)

IA+

(n = 56)

IC

(n = 33)

IA-

(n = 31)

Gender (M/F) 33/37 26/18 39/17 21/12 25/6

Age (y) 39.2±8.02 27.55±5.83 32.87±5.56 38.19±7.92 39.79±7.03

ALT(U/l) 20.02±6.89 30.24±8.61 141.06±80.34 24.10±10.62 95.11±62.60

HBsAg

(log10IU/ml)

undetectable 4.60±0.18 3.95±0.60 2.82±0.71 3.21±0.44

HBeAg

(S/CO)

undetectable 1471.72±185.80 658.17±497.97 undetectable undetectable

HBV DNA (log 10IU/ml) undetectable 7.51±0.20 7.06±0.78 undetectable 5.35±1.07

HC: Healthy controls; IT: immune-tolerant; IA+: HBeAg (+) chronic hepatitis B; IC: inactive HBV carriers state; IA-: HBeAg (-) chronic hepatitis B

https://doi.org/10.1371/journal.ppat.1007690.t001
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controls (HC) (Fig 1C and 1D). Consistent with the increased frequency, the numbers of

mMDSCs was also significantly increased in CHB patients compared to the HC (Fig 1E). Inter-

estingly, HBeAg (+) groups (IT and IA+) have an increased percentage of mMDSCs in PBMCs

and in monocytes compared to HBeAg (-) CHB group (IA-) (Fig 1F and 1G). Cross-section

data showed that the frequency of mMDSCs in PBMCs from the IT group (1.66±0.12%) was

Fig 1. Frequency of circulating mMDSCs in CHB patients. (A) Sequential gating strategy for mMDSC identification (HLA-DR-/low

CD33+CD11b+CD14+) from PBMCs. (B) Representative data plots of mMDSCs from CHB patients in different disease phase including IT,

IA+, IC and IA-. The boxed areas represent the mMDSCs in PBMCs. (C) Statistical analysis of mMDSCs frequency in PBMCs and (D) in

CD14+ monocytes from CHB patients and healthy controls. (E) The numbers of mMDSCs in PBMCs from CHB patients and healthy

controls. (F) Comparison of mMDSCs frequency in PBMCs and (G) in CD14+ monocytes from CHB patients in different disease phase. (H)

The numbers of mMDSCs in PBMCs from CHB patients. Horizontal lines and error bars represent mean ± SEM.

https://doi.org/10.1371/journal.ppat.1007690.g001
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the highest compared to IA+ group (0.86±0.058%; p<0.0001) and IA- group (0.59±0.041%;

p< 0.0001) (Fig 1F). A similar trend has been observed in monocytes from CHB patients (Fig

1G). The expansion of mMDSCs was associated with the increased numbers of mMDSCs (Fig

1H). The above finding was reproduced in a separately sampled cohort (57 CHB patients with

different disease phase and 20 healthy controls) by evaluating the frequency of mMDSCs in

freshly collected whole blood samples from CHB patients (S1 Table) (S1 Fig). The percentage

of mMDSCs in HC between different ages had no statistical significance (S2 Fig), indicating

that the level of mMDSCs in CHB patients is not age-dependent. Collectively, the results dem-

onstrated that the mMDSCs are expanded in HBeAg (+) patients, especially in IT patients.

Correlations between mMDSCs frequency and clinical parameters

Next, the correlations between mMDSCs frequencies and serum HBV markers in CHB

patients were analyzed by Spearman rank correlation. The frequency of mMDSCs in mono-

cytes was found to be positively correlated with the levels of HBsAg (R = 0.52; p< 0.0001; Fig

2A), HBV DNA (R = 0.29; p = 0.006; Fig 2B) and HBeAg (R = 0.57, p< 0.0001, Fig 2C) in

HBeAg (+) patients. However, there was no statistical correlation between the mMDSCs fre-

quency and HBsAg or HBV DNA in HBeAg (-) patients (Fig 2A and 2B). The mMDSCs per-

centage in PBMCs had the similar correlation with the levels of serum HBsAg, HBeAg, and

HBV DNA (S3 Fig). These findings in HBeAg (+) patients were concisely displayed via hierar-

chical clustering by Euclidean distance (Fig 2D). Unsupervised clustering as seen with HBsAg,

HBeAg, and mMDSCs frequencies showed that a high frequency of mMDSCs was concordant

with high levels of serum HBsAg and HBeAg, but not serum alanine aminotransferase (ALT)

levels. It has been recently reported that HBsAg induces mMDSCs expansion in CHB patients

[19]. However, the levels of HBsAg do not significantly correlate with mMDSCs frequencies in

HBeAg (-) patients (Fig 2A, S3 Fig). Our results infer that HBeAg may play a more important

role in mMDSCs expansion than HBsAg in HBeAg (+) patients.

HBeAg induces mMDSCs expansion in vitro
We investigated whether HBeAg induces mMDSCs expansion by using PBMCs isolated from

healthy donors. PBMCs were left untreated, or treated with serial concentrations recombinant

HBeAg (rHBeAg), recombinant HBsAg (rHBsAg), recombinant HBcAg (rHBcAg) for 5 days.

We found that rHBeAg and rHBsAg, but not rHBcAg, markedly induced mMDSCs expansion

in a dose-dependent manner (S4A Fig), and 0.5 μg/ml of rHBeAg and rHBsAg exhibited a

comparable effect on mMDSCs expansion (S4B Fig). The marginal induction of mMDSCs

expansion by rHBcAg suggests an antigen-specific effect, though HBcAg and HBeAg share

large homology at amino acid sequence level. In addition, rHBeAg-induced mMDSCs expan-

sion increased from day 3 to day 5, and started to decline afterwards (S5 Fig).

To further verify the observed effect of rHBeAg on mMDSCs expansion, PBMCs were

untreated or treated with rHBeAg or a non-viral model antigen ovalbumin (OVA) for 5 days.

The result showed that rHBeAg treatment significantly increased the frequency of mMDSCs

in PBMCs and in monocytes compared to OVA treatment and untreated control (Fig 3A–3C).

The mMDSCs expansion, as expected, was due to the increased numbers of mMDSCs (Fig

3D). Moreover, lipopolysaccharide (LPS) inhibitor polymyxin B (PXB) did not attenuate

rHBeAg-mediated mMDSCs expansion, ruling out a possibility of any LPS from the bacterially

expressed rHBeAg inducing the mMDSCs (S6 Fig).

After demonstrating that rHBeAg induced mMDSCs expansion in vitro, we next assessed

whether the serum HBeAg from HBV-infected individuals could induce mMDSCs expansion.

PBMCs from healthy donor were treated with serum from HBeAg (+), HBeAg (-) or healthy
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individuals. To ensure an HBeAg-specific condition, the serum samples were collected from

nucleoside entecavir-treated HBeAg (+) and HBeAg (-) CHB patients with undetectable HBV

DNA and similar level of HBsAg (S2 Table). The result demonstrated a significantly increased

frequency and number of mMDSCs in PBMCs following exposure to HBeAg (+) serum com-

pared to serum from HBeAg (-) or healthy controls (Fig 3E and 3F). In addition, such effect

could be reduced by incubating with anti-HBeAg antibodies, suggesting that HBeAg (+) patient

serum induces mMDSCs expansion in an HBeAg-dependent manner (S7A and S7B Fig). Col-

lectively, these findings suggested that the HBeAg is able to induce mMDSCs expansion.

HBeAg-mediated mMDSCs expansion is dependent on IL-6/IL-1β
It has been reported that the tumor-derived factors and inflammatory cytokines play a role in

the differentiation and expansion of mMDSCs [20]. To evaluate whether HBeAg-induced

Fig 2. Correlation analysis between the frequency of circulating mMDSCs and clinical parameters. The correlation between mMDSCs percentage in

monocytes and the levels of HBsAg (A) or HBV DNA (B) from HBeAg (+) patients (red) and HBeAg (-) patients (blue) were analyzed by Spearman

correlation. (C) Correlation analysis between the frequency of mMDSCs and HBeAg level in HBeAg (+) patients. (D) Unsupervised hierarchical clustering

using Euclidean distance; dendrogram displaying similarity between clusters. Clinically assigned disease phase shown adjacent to plot (not used for analysis).

Increasing color intensity (blue! red) corresponds to increasing mMDSC frequency, serum HBsAg (IU/ml), HBeAg (S/CO), or ALT (U/l).

https://doi.org/10.1371/journal.ppat.1007690.g002
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cytokines lead to mMDSCs expansion, we measured a panel of cytokines in the supernatant of

rHBeAg-treated PBMCs. A significant elevation of IL-1β, IL-6 and IL-10 levels was detected in

the supernatants of rHBeAg-treated PBMCs compared to untreated controls (Fig 4A). It is

known that IL-10 is an effector molecule of MDSCs function without effect on the expansion

Fig 3. HBeAg induces mMDSCs expansion in vitro. PBMCs from healthy donors were treated with rHBeAg (0.5 μg/ml) or OVA

(0.5 μg/ml) and compared to untreated controls. For the serum experiments, PBMCs from healthy donors were cultured in complete

media with 20% serum from healthy subjects, HBeAg (+) CHB patients or HBeAg (-) CHB patients. After 5 days, the percentage of

mMDSCs was analyzed by flow cytometry. (A) The plot of one representative experiment is shown. (B)The percentage of mMDSCs in

PBMCs, (C) in monocytes, (D) and the numbers of mMDSCs in PBMCs after treatment with rHBeAg was determined (mean ± SEM,

n = 9). (E) The percentage and (F) the numbers of mMDSCs in PBMCs after treatment with serum from healthy donors (normal),

entecavir-treated HBeAg (-) and HBeAg (+) patients with undetectable HBV DNA and similar level of HBsAg (S2 Table) (mean

±SEM, n = 4).

https://doi.org/10.1371/journal.ppat.1007690.g003
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of mMDSCs [15], we therefore focused on investigating the role of IL-1β and IL-6 in the

rHBeAg-induced expansion of mMDSCs. To this end, PBMCs from healthy donors were cul-

tured with various concentrations of recombinant human IL-1β (rhIL-1β) or IL-6 (rhIL-6) for

5 days. Both rhIL-1β and rhIL-6 significantly increased the frequency of mMDSCs in PBMCs

and in monocytes (Fig 4B and 4C). Furthermore, blockage of IL-1β or IL-6 by cytokine-spe-

cific antibodies significantly decreased the rHBeAg-mediated expansion of mMDSCs in

PBMCs and monocytes, and anti-IL1β treatment in combination with anti-IL-6 more effec-

tively abrogated mMDSCs expansion (Fig 4D and 4E). In addition, IL-6 and IL-1β neutralizing

antibodies abrogated the HBeAg (+) serum-mediated expansion of mMDSCs, which further

Fig 4. HBeAg promotes expansion of mMDSCs in an IL-6 and IL-1β dependent manner. (A) PBMCs from healthy donors were cultured in the presence of

HBeAg (0.5 μg/ml) for 5 days and the concentrations of cytokines in supernatant were measured. (B and C) PBMCs were treated with various concentrations of

IL-6 or IL-1β for 5 days. The proportion of mMDSCs was analyzed by flow cytometry. Representative plots of mMDSCs frequency in PBMCs are shown. The

histograms show the statistical analysis of mMDSCs frequency in PBMCs and in monocytes after cytokine stimulation (mean ± SEM, n = 3). (D and E) PBMCs

from healthy donors were cultured with HBeAg (0.5μg/ml), and isotype control antibody, or anti-IL6, anti-IL1β or anti-IL6 in combination with anti-IL1β
(15 μg/ml) were added to the cultures for 5 days, followed by flow cytometry analysis of mMDSCs. The representative dot plot is shown. Mean values (±SEM)

are shown for three independent experiments. (F) The plasma concentrations of IL-6 and IL-1β in HBeAg (+) and HBeAg (-) patients were measured by

ELISA, mean ± SEM values are shown for 42 HBeAg (+) patients and 33 HBeAg (-) patients. �p<0.05, ��p<0.01, ���p<0.001.

https://doi.org/10.1371/journal.ppat.1007690.g004
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validated the role of IL-6 and IL-1β in HBeAg-induced mMDSCs expansion (S7C and S7D

Fig). To determine whether the above findings recapitulate the in vivo scenario, we examined

the levels of IL-6 and IL-1β in the plasma of CHB patients. The results demonstrated that the

levels of IL-6 and IL-1β in HBeAg (+) CHB patients were significantly higher than HBeAg (-)

CHB patients (Fig 4F).

These results suggest that the HBeAg-induced mMDSCs expansion is predominantly medi-

ated by cytokines IL-6 and IL-1β.

HBeAg-induced CD33+ cells suppress CD4+ and CD8+ T-cell activation in
vitro
Previous studies have shown that the CD33+ MDSCs, generated from human PBMCs follow-

ing exposure to immunosuppressive factors or immunomodulatory proteins, suppress T-cell

responses [20–22]. To assess whether HBeAg-induced CD33+ MDSCs impairs T-cell func-

tions, we incubated PBMCs from healthy donors with or without rHBeAg (control) for 5 days.

CD33+ cells were then isolated, and HLA-DR, CD11b and CD14 were analyzed by flow cytom-

etry. A significant decrease of surface expression of HLA-DR, low levels of CD11b, and equiva-

lent levels of CD14 was observed on HBeAg-induced CD33 cells compared to control CD33

cells (S8 Fig). CD33 MDSCs were then co-cultured with autologous CFSE-labeled Pan T cells.

As shown in Fig 5A and 5B, HBeAg-induced CD33+ MDSCs markedly decreased CD8+ and

CD4+ T cell proliferation compared to control CD33+ cells, indicating an inhibitory effect of

HBeAg-induced MDSCs on T cells.

Next, we set out to identify the cellular factors responsible for HBeAg-mediated immuno-

suppression of T cells. Several factors including Arg1, iNOS, IL-10, PD-L1, p47phox, gp91 and

IDO have been implicated in mMDSCs-mediated immunosuppression [11, 15, 23]. We, there-

fore, measured the intracellular mRNA levels of these factors by real-time PCR. While PD-L1

and NOX components (p47phoxand gp91) critical for ROS production were modestly upregu-

lated by several folds in rHBeAg-treated monocytes compared to untreated monocytes, the

transcription of IDO was significantly increased (mean ± SEM, 1,828±551 fold) in rHBeAg-

treated monocytes (Fig 5C). We further analyzed IDO expression by intracellular staining and

demonstrated that IDO expression increased significantly at protein level in HBeAg-induced

CD14+ cells and mMDSCs (Fig 5D and 5E). However, the protein expression of PD-L1, Arg1,

and IL-10, or ROS activity in HBeAg-induced mMDSCs did not show statistical differences

compared to untreated controls (S9 Fig).These findings suggest that HBeAg-induced

mMDSCs may functionally suppress T cells via expression of IDO.

mMDSCs from HBeAg (+) CHB patients suppress T cells response via IDO

MDSCs are known to impair T cells immune responses under certain pathological conditions

[24]. Therefore, we assessed whether HBeAg (+) CHB patients-derived mMDSCs can impair

the proliferation and IFN-γ production of autologous T cells. CD33+CD11b+HLA-DR-/low

CD14+ MDSCs were purified from PBMCs of HBeAg (+) subjects and co-cultured with CFSE-

labeled autologous Pan T cells at different ratios. As shown in Fig 6, mMDSCs significantly

inhibited CD8+ T cell and CD4+ T cell proliferation in a dose-dependent manner (Fig 6A and

6B), and markedly decreased the intracellular IFN-γ production in CD8+ and CD4+ T cells

when co-cultured with PBMCs in the presence of PMA (Fig 6C). Furthermore, mMDSCs

from HBeAg (+) patients exhibited a stronger immunosuppression activity against T- cell pro-

liferation than that from HBeAg (-) CHB patients or healthy donors (S10A Fig). The capacity

of T cells to secrete IFN-γ was also markedly impaired by HBeAg (+) patient-derived

mMDSCs in the presence of CD3/CD28 (S10B Fig).
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Furthermore, in order to assess whether the HBeAg-induced mMDSCs suppress the func-

tion of HBV antigen-specific CD4 and CD8 T cells, PBMCs purified from HBeAg (+) patients

were left unstimulated or stimulated with HBsAg (5 μg/ml), or stimulated with HBsAg after

depletion of mMDSCs, or stimulated with HBsAg after the addition of mMDSCs (1:0.5 ratio),

followed by intracellular IFN-γ staining. As shown in S10C and S10D Fig, while HBsAg stimu-

lation slightly induced IFN-γ production in PBMCs, the HBsAg-stimulated PBMCs with

mMDSCs depletion produced much higher level of IFN-γ, and co-culturing HBsAg-stimu-

lated PBMCs with supplemental mMDSCs abolished IFN-γ production. These results suggest

that HBeAg-induced mMDSCs are able to inhibit HBsAg-specific T cell responses.

We further investigated the underlying mechanism by which mMDSCs suppress T cells

responses. Although the mRNA levels of p47phox, gp91 and PD-L1 were up-regulated in

rHBeAg-treated monocytes (Fig 5C), however, the expression of these factors in mMDSCs had

no obvious difference between HBeAg (+) CHB patients and healthy controls (S11 Fig). Con-

sistent with the remarkable upregulation of IDO in rHBeAg-treated mMDSCs, a significantly

higher IDO protein level was found in mMDSCs from HBeAg (+) CHB subjects compared to

Fig 5. HBeAg-induced CD33+ cells suppress T-cell activation. (A) PBMCs from healthy donors were untreated

(control) or treated with rHBeAg (0.5 μg/ml) for 5 days. CD33+ cells were then isolated and incubated with autologous

Pan T cells in the presence of human T-activator CD3/CD28 beads for 3 days (middle and bottom panels). Pan T cells

alone stimulated by CD3/CD28 beads for 3 days served as untreated control (top panel). CD4+ and CD8+ T-cell

proliferation was determined by CFSE dilution. The plots are representative results. (B) The graph shows the results

expressed as the mean ± SEM of 5 independent experiments. (C) Monocytes from healthy donors were treated with

HBeAg (0.5 μg/ml) for 5 days, untreated served as controls. MDSC-related molecules were detected by qPCR

(mean ± SEM, n = 9). �p<0.05, ��p<0.01, ���p<0.001. (D and E) The IDO expression in HBeAg-induced CD14+ cells

and mMDSCs was analyzed by intracellular staining. A representative plot of IDO staining in HBeAg-induced

mMDSCs is shown. The histograms show the MFI (median fluorescence intensity) of IDO in HBeAg-induced CD14+

cells and mMDSCs (mean ±SEM, n = 5).

https://doi.org/10.1371/journal.ppat.1007690.g005
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healthy controls (Fig 6D and 6E). To investigate whether mMDSCs from HBeAg (+) CHB

patients suppressed T cells responses via IDO, we treated the purified mMDSCs with

1-methyl-tryptophan (1-MT), a competitive inhibitor of IDO, while co-culturing the mMDSCs

Fig 6. mMDSCs from HBeAg (+) patients suppresses T-cell response through IDO. (A) Purified mMDSCs from HBeAg

(+) donors were cultured with autologous T cells at different ratios as indicated. Pan T cells without CD3/CD28 activation

serves as unstimulated control. CD8+ and CD4+ T-cell proliferation was evaluated by CFSE dilution. Representative plots are

shown. (B) The histograms show results form 6 individual patients. (C) Purified mMDSCs were co-incubated with PBMCs at

a ratio of 1:2 for 6 hours in the presence of PMA/ionomycin, IFN-γ was measured by intracellular cytokine staining

(mean ± SEM, n = 4). (D and E) Representative plot of IDO expression in mMDSCs from HBeAg (+) patients (CHB, blue

line), healthy donors (HC, red line), and isotype control (Ctrl, green line) determined by intracellular staining. Mean ± SEM

values are shown for 13 HBeAg (+) patients and 9 healthy controls. (F) mMDSCs purified from HBeAg (+) donors were co-

cultured with autologous CFSE-labeled T cells for 3 days with or without 500 μM IDO inhibitor 1-MT. CD8+ and CD4+ T-cell

proliferation was evaluated by CFSE dilution (mean ± SEM, n = 4).

https://doi.org/10.1371/journal.ppat.1007690.g006
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with autologous T cells. The result showed that 1-MT treatment efficiently restored T cell pro-

liferation (Fig 6F), suggesting that the mMDSCs in HBeAg (+) CHB patients dampen T cell

functions in an IDO-dependent manner.

Discussion

Since the discovery of HBeAg in HBV patients almost a half century ago, its biological func-

tions in HBV persistence remain elusive [25]. In this study, we demonstrate that the frequency

of circulating CD33+CD11b+HLA-DR-/lowCD14+ MDSCs is elevated in immune tolerant CHB

patients compared to immune active and HBeAg (-) CHB patients (Fig 1). Moreover, the per-

centage of such cell population positively correlated with the levels of serum HBeAg, suggest-

ing a role of HBeAg in mMDSCs expansion (Fig 2). We further demonstrate that treatment of

PBMCs from healthy donors with rHBeAg or HBeAg (+) patient serum significantly induces

the proliferation of mMDSCs in vitro (Fig 3).

A previous study by Pallet et al reported that the granulocytic MDSCs, rather than

mMDSCs, are significantly expanded in CHB patients [14]. Such discrepancy may be attributed

to several different factors between these two studies. First, the numbers of enrolled total CHB

patients and HBeAg (+) patients in our study are higher than these in Pallett’s study (Table 1)

[14], which might result in a corresponding higher percentage of mMDSCs in CHB patients

compared to health controls than that of Pallett’s study; second, while the mMDSCs population

in Pallett’s study was calculated as a percentage of myeloid cells (CD11bhighCD33+), it is pre-

sented as a percentage of PBMCs or monocyte cells in this study; lastly, it is also possible that

the mMDSC frequency might be influenced by the potential different genetic background of

enrolled patients and/or HBV genotypes in these two studies. Nonetheless, two other previous

studies demonstrated higher frequencies of mMDSCs in CHB patients than healthy controls

[15, 19], which is consistent with our study.

MDSCs have been recognized as a subset of innate immune cells that can alter adaptive

immunity and cause immunosuppression [26], which led to the hypothesis that HBeAg may

suppress T cell functions to support HBV persistent infection through promoting the expan-

sion of mMDSCs. In line with this notion, it has been reported that HBV core-specific T-cell

response in HBeAg (+) patients is significantly weaker than in HBeAg (-) patients, suggesting

that HBeAg may impact T-cell response [9]. It is worth noting that the proportion of circulat-

ing mMDSCs was also found to be positively correlated with HBsAg in HBeAg (+) patients

(Fig 2), which is consistent with a previous study [19], suggesting that HBsAg may also con-

tribute to the MDSC-mediated immunosuppression, especially when HBeAg becomes nega-

tive due to seroconversion or precore-deficiency mutations [27, 28]. Nonetheless, the

correlation between HBsAg and mMDSCs expansion is weaker in HBeAg (-) patients (Fig 2A

and S3A Fig). In addition, while both the recombinant HBsAg and HBeAg could induce

mMDSCs expansion in PBMCs in vitro (S4B Fig), HBeAg (+) patient serum significantly

induced expansion of mMDSCs in PBMCs compared to HBeAg (-) patient serum, though

their HBsAg levels were similar (Fig 3E and 3F, S2 Table), and the mMDSCs expansion

induced by HBeAg (+) patient serum could be blocked by anti-HBeAg antibodies (S7A and

S7B Fig). Therefore, we concluded that the HBeAg plays a more important role in the expan-

sion of mMDSCs than HBsAg.

Previous studies suggest that PBMCs can serve as precursors for mMDSCs under certain

conditions, including virus infections. For example, exposure of PBMCs to HIV gp120 protein

induces expansion of mMDSCs; and HCV core protein, when co-cultured with PBMCs,

enhances the production of mMDSCs from PBMCs in vitro [21, 29]. Our study has demon-

strated that HBeAg could induce the expansion of mMDSCs from healthy donors’ PBMCs,
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and explored the mechanism underlying HBeAg-induced mMDSCs expansion. The expansion

of MDSCs has been shown to be associated with chronic inflammation and the production of

cytokine IL-1β, IL-6, IL-10, TNF-α, GM-SCF, and IL-12 in human and animal models [20, 30,

31]. In HBV mouse model, IL-17 produced by γδT cells is essential for the expansion of

MDSCs [13]. In this study, we speculated that the pro-inflammatory cytokines induced by

HBeAg could result in expansion of mMDSCs, and observed significantly higher levels of IL-6

and IL-1β in the supernatants of HBeAg-induced mMDSCs (Fig 4A). Consequently, the exog-

enous IL-6 and IL-1β induced the expansion of mMDSCs from healthy donors’ PBMCs, and

the neutralization of cytokines abrogated the HBeAg-mediated mMDSCs expansion (Fig 4,

S7C and S7D Fig).

Limited information is available regarding the specific signals required for the generation

of MDSCs, but the list of regulatory factors involved in this process is growing. IL-6, G-CSF

and GM-CSF have been used in in vitro generation of MDSCs [32]. HIV gp120 and HBsAg

can induce expansion of mMDSCs via IL-6/STAT3 feedback signaling [19, 21]. It has been

reported that tumor-derived IL-1β induces MDSCs accumulation and suppressive activity via
NF-κB pathway, suggesting a relationship between inflammation, cancer, and immune sup-

pression. Mice bearing 4T1 tumor cells that ectopically express functional IL-1β or lack the IL-

1 receptor antagonist exhibit increased MDSCs accumulation and their immune suppressive

activity [31, 33]. Furthermore, it has been shown that the transfected 4T1 tumor cells constitu-

tively expressing IL-6 induced expansion of MDSCs and restored MDSCs accumulation in

tumor-bearing IL-1 receptor knockout mouse, suggesting that IL-6 is likely to be a relevant IL-

1β downstream mediator [31]. Consistently, we show herein that IL-6, in collaboration with

IL-1β, is crucial for HBeAg-mediated mMDSCs expansion in vitro (Fig 4E and 4F, S7C and

S7D Fig). Nonetheless, the underlying mechanism of IL-1β and IL-6 induction by HBeAg

awaits further investigation.

Furthermore, we found that HBeAg significantly enhances the immunosuppressive activity

of mMDSCs in vitro, as the HBeAg-induced mMDSCs reduced the proliferation of CD4+ and

CD8+ T cells (Fig 5A and 5B). Consistent with our in vitro data on mMDSCs-mediated immu-

nosuppression of T cells (Fig 6A), the purified mMDSCs from HBeAg (+) CHB patients

markedly decreased the proliferation and IFN-γ secretion of autologous T cells (Fig 6B and

6C). It is well acknowledged that MDSCs impair T cell functions by multiple suppressive

mechanisms, including PD-L1 expression, production of ROS and NO, and induction and

secretion of IDO [34]. Previous studies have demonstrated that the CD14+HLA-DR-/low

MDSCs suppress T-cell activation through their PD-L1 molecule, and the granulocytic subset

gMDSCs develop their suppressive function via Arg1 expression in persistent HBV infection

[14, 15]. In this study, we found that IDO was significantly upregulated in HBeAg-induced

mMDSCs in vitro (Fig 5C–5E) and in mMDSCs from HBeAg (+) CHB patients (Fig 6D and

6E), however, the protein expression of PD-L1 in mMDSCs had no obvious difference between

HBeAg-treated and untreated PBMCs (S9 Fig), or between CHB patients and healthy controls

(S11B Fig). Additionally, we confirmed the role of IDO in mMDSCs-mediated T cell suppres-

sion, as evidenced by the restoration of T cell proliferation upon administration of an IDO

inhibitor (Fig 6F). IDO is a rate-limiting enzyme catalyzing tryptophan into kynurenine. Both,

the depletion of tryptophan and the accumulation of kynurenine, cause T-cell suppression and

apoptosis [23, 35]. IL-6 has been found to stimulate STAT3 in breast cancer-derived MDSCs,

and the unregulated expression of IDO was through the activation of STAT3 and NF-κB path-

way [36]. In our study, since the levels of IL-6 was upregulated in HBeAg-stimulated mMDSCs

(Fig 4A), it will be interesting to examine whether the upregulation of IDO by HBeAg requires

the IL-6-mediated STAT3 activation in mMDSCs.
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In CHB patients, HBeAg positivity and high antigenemia mark a high level of HBV replica-

tion and immune tolerance [37]. In this study, we report that HBeAg induces the expansion of

mMDSCs and the upregulation of immune suppressor molecules IDO in mMDSCs, which in

turn inhibits T cell proliferation and IFN-γ secretion, suggesting that HBeAg may induce

immune tolerance or suppression through activation of mMDSCs (Fig 7). Taken together, the

HBeAg-mMDSCs-IDO nexus may play an important role in the establishment and mainte-

nance of chronic hepatitis B, and potentially serve as a novel therapeutic target for developing

therapies to break the virus-induced immune tolerance and reset the immune system to clear

HBV infection.

Materials and methods

Ethics statement

The study was approved by the Research Ethics Committee of Huashan hospital, Fudan Uni-

versity (IRB# 2016–123), and the IRB Committee of Indiana University (IRB# 1808003516).

All the study participants were enrolled in Huashan Hospital, Fudan University, and provided

written informed consent.

Study participants

Fresh blood samples were obtained from 164 Chinese CHB patients infected with genotype B

or C HBV, including 44 HBeAg (+) immune tolerant (IT), 56 HBeAg (+) immune active

(IA+), 33 inactive carriers (IC) and 31 HBeAg (-) CHB (IA-), serological assays and HBV DNA

quantitation were performed as previously described [38]. The lowest detection limit for HBV

DNA is 500 IU/ml. The normal range for serum ALT level is 0–50 U/l. All patients were diag-

nosed according to previously described criteria [39]. Briefly, the IT group is defined as

patients with HBeAg-positive, high levels of HBV replication (HBV DNA> 107 IU/ml), nor-

mal ALT (< 50 U/l), and no liver inflammation or fibrosis. The IA+ group includes patients

with positive HBeAg, relatively low level of replication compared to the immune tolerant

phase (HBV DNA>2,000 IU/ml), increased or fluctuating ALT levels (> 50 U/l), moderate or

severe liver necroinflammation. The IC group was characterized by negative HBeAg, anti-HBe

positive, HBV DNA <2,000 IU/ml, and normal ALT. The IA- group was characterized by

negative HBeAg, HBV DNA>2,000 IU/ml, ALT> 50 U/l, moderate or severe liver necroin-

flammation. None of the above-mentioned patients had received antiviral therapy or immuno-

suppressive drugs within 6 months before sampling. The subjects with coinfections of hepatitis

A virus, hepatitis C virus, hepatitis D virus, hepatitis E virus, or human immunodeficiency

virus, and patients with primary biliary cirrhosis, autoimmune diseases, or HCC, were

excluded. For comparison, 70 healthy controls were age and gender matched to the enrolled

patients. Characteristics of enrolled CHB patients and healthy controls for whole blood stain-

ing are summarized in S1 Table. For serum treatment experiments, the enrolled HBeAg (+)

and HBeAg (-) CHB patients had received entecavir treatment with HBV DNA<500 IU/ml,

HBeAg levels>1,000 S/CO, and similar level of HBsAg in HBeAg (+) CHB patients (S2 Table).

Cell isolation and sorting

PBMCs were isolated from EDTA-anticoagulant venous blood by Ficoll-Hypaque density gra-

dient centrifugation (Cedarlane Laboratories). CD14+ monocytes, CD33+ cells and Pan T cells

were purified using magnetic beads (Miltenyi Biotec) at a purity level of�90%.

CD33+CD11b+CD14+HLA-DR-/low cells were sorted by using a MoFlo XDP cell sorter (Beck-

man Coulter) with purity >95%.
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Flow cytometric analysis

For surface marker staining, PBMCs were labeled with the following mAbs: anti-human CD14

PE-Cy7, anti-human CD33 PE, anti-human CD11b FITC, anti-human PD-L1 PerCp-eFluor

(eBioscience), anti-human HLA-DR APC, anti-human CD8 PE-Cy7, anti-human CD4 PE (BD

Biosciences), anti-human CD3 PB, anti-human CD15 BV421 (Biolegend). After incubation for

20 min at RT, the cells were analyzed using flow cytometer. For whole blood staining, 100 μl of

fresh whole blood was labeled with above-mentioned antibodies for 20 min at RT, then lysed

with red blood cell (RBC) lysis buffer (BD Biosciences), and subjected to flow cytometry.

For intracellular staining, the cells were fixed and permeabilized using Cytofix/Cytoperm

Plus kit (BD Biosciences), and stained with the corresponding intracellular Ab, anti-human

IFN-γ APC (BD Biosciences), anti-human IDO PerCp-eFluor (eBioscience), anti-human IL-

10 BV421 and anti-human Arg1 PE (Biolegend). Data acquisition and analysis were performed

by flow cytometer. Controls for each experiment included cells that were single stained for sur-

face markers or intracellular proteins, unstained cells, and isotype-matched antibodies.

Fig 7. Mode of action of HBeAg-induced expansion of mMDSCs in CHB patients. The frequency of circulating mMDSCs is increased in CHB

patients in the immune tolerant state. HBeAg induces the expansion of mMDSCs in an IL-6 and IL-1β dependent manner. HBeAg-induced

upregulation of IDO expression in mMDSCs dampen T cell functions to promote HBV persistence.

https://doi.org/10.1371/journal.ppat.1007690.g007
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ROS assay

Cells were treated with or without HBeAg for 5days, then stained with 2.5 μM 2’, 7’-dichloro-

fluorescin diacetate (DCFDA) (Beyotime Biotechnology) for 30 min in the presence of 30 ng/

mL PMA, followed by flow cytometry analysis.

Induction of mMDSCs in vitro
PBMCs from healthy donors were cultured in complete media (RPMI 1640 supplemented

with 10% heat-inactivated FBS, 100 U/ml penicillin and 100 μg/ml streptomycin (Life Tech-

nologies)) at a concentration of 1×106 cells/ml for 5 days with rHBeAg, rHBsAg, rHBcAg (Pro-

Spec) or OVA(Sigma-Aldrich). For the serum experiments, PBMCs from healthy donors were

cultured in complete media with 20% serum from healthy subjects, HBeAg (+) CHB patients

or HBeAg (-) CHB patients. 3 μg/ml anti-HBeAg antibody (Abcam) was added into the cul-

tures to assess its effect on HBeAg (+) patient serum-induced mMDSCs expansion, with iso-

type-matched control antibody serving as control. The supernatant was collected on day 5 and

stored at -80˚C. The levels of mMDSCs were analyzed by flow cytometry. Polymyxin B (PXB,

Sigma-Aldrich), an inhibitor of LPS [40], was used to assess potential effect of LPS contamina-

tion in rHBeAg-induced mMDSCs expansion.

PBMCs from healthy donors were cultured at a concentration of 1×106 cells/ml in complete

media with various concentrations (10~50 ng/ml) of rhIL-6 or rhIL-1β (eBioscience) for 5 days.

PBMCs cultured in medium alone were run in parallel as a control. The medium and cytokines

were refreshed every other day. Various concentrations of IL-6-neutralizing antibody and/or

IL-1β-neutralizing antibody was added to rHBeAg-treated or HBeAg (+) patient serum–treated

cultures to determine the effect of blocking IL-6 and/or IL-1β on mMDSCs expansion.

Cytokine detection

The supernatant from the cultured cells were tested for cytokines (IL-10, IL-6, IL-1β, GM-CSF,

IFN-γ, IL-12, IL-13, IL-2 and TNF-α) by using Luminex 200 multiplexing instrument (EMD

Millipore). IL-6 and IL-1β in patient’s plasma were measured using commercial ELISA Kit

(Anogen).

T cell proliferation and IFN-γ secretion assays

CD33+CD11b+CD14+HLA-DR-/low cells purified from HBeAg (+) CHB patients, HBeAg (-)

CHB patients and healthy donors or CD33+ cells purified from HBeAg-treated PBMCs were

co-cultured with autologous CFSE-labeled (Invitrogen) T cells in various ratios. The T cells

were stimulated with human T-activator CD3/CD28 dynabeads (Gibco) for 3 days according

to the manufacturer’s instructions. Cells were then washed and stained with anti-human CD8

PE-Cy7, anti-human CD4 PE, and anti-human CD3 PB. T cell proliferation was analyzed by

MoFlo XDP.

For intracellular IFN-γ detection, the co-cultured cells were stimulated with 50 ng/ml PMA

(Sigma-Aldrich) and 1 μg/ml ionomycin (Sigma-Aldrich) for 6 h or 5 μg/ml HBsAg for 12h.

For intracellular IFN-γ staining, 0.4 mM monensin (BD Biosciences) was concurrently added

during the course of T-cell activation for 5 h to trap IFN-γ secretion. After incubation, the cells

were permeabilized and stained with APC anti-human IFN-γ. The IFN-γ in culture superna-

tant was detected by ELISA (Anogen).

To assess the role of IDO in mMDSCs-mediated T cell suppression, mMDSCs from HBeAg

(+) patients were co-cultured with autologous CFSE-labeled T cells for 72 hours in the pres-

ence or absence of 500 μM of IDO inhibitor 1-MT (Sigma-Aldrich) [41].
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Real-time PCR

A total of 5×105 CD14+ monocytes were treated with or without 0.5 μg/ml rHBeAg for 5 days,

total RNA was extracted by Trizol (Invitrogen) and reverse transcribed into complementary

DNA (cDNA) using a PrimerScript RT Reagent Kit (Takara). mRNA levels were quantified by

real-time PCR (SYBR Premix Ex Taq Kit, Takara). Relative expressions of Arg1, iNOS, IL-10,

PD-L1, p47phox, gp91 and IDO were determined by normalizing the expression of each target

gene to β-actin. Gene-specific primers for RT-qPCR are listed in S3 Table.

Statistical analysis

All data were analyzed by GraphPad Prism6 and expressed as mean values ± standard error of

the mean (SEM) unless otherwise specified. The mMDSCs frequency, number and the levels

of cytokines between different groups were compared using the nonparametric Mann-Whit-

ney U test. Wilcoxon or paired Student t test were used to determine the statistical significance

for in vitro experiments. Correlation analysis was performed using Spearman rank correlation

tests. P<0.05 was considered statistically significant.

Supporting information

S1 Fig. The frequency of mMDSCs is elevated in whole blood of CHB patients. (A) Sequen-

tial gating strategy for mMDSC identification from whole blood. (B) Representative data plots

of mMDSCs from CHB patients in different disease phase including IT, IA+, IC and IA-. The

boxed areas represent the mMDSCs population. (C) Statistical analysis of mMDSCs frequency

in PBMCs and in monocytes from CHB patients and healthy controls. (D) The numbers of

mMDSCs in PBMCs from CHB patients and healthy controls. (E) Comparison of mMDSCs

frequency in PBMCs and in monocytes from CHB patients in different disease phases. (F) The

numbers of mMDSCs in PBMCs from CHB patients in different disease phases. Horizontal

lines and error bars represent mean ± SEM.

(TIF)

S2 Fig. The percentage of mMDSCs in healthy controls with different age. Statistical analy-

sis of mMDSCs frequency in (A) PBMCs and (B) monocytes from healthy controls with differ-

ent age. Horizontal lines and error bars represent mean ± SEM.

(TIF)

S3 Fig. Correlation analysis between the percentage of mMDSCs in PBMCs and virological

parameters. (A) The correlation between mMDSCs percentage in PBMCs and the levels of

HBsAg in HBeAg (+) patients (red) and HBeAg (-) patients (blue). (B) The correlation

between mMDSCs percentage in PBMCs and the levels of HBeAg in IT and IA+ patients. (C)

The correlation between the frequency of mMDSCs in PBMCs and HBV DNA level in HBeAg

(+) and HBeAg (-) patients.

(TIF)

S4 Fig. Assessment of effect of recombinant HBV antigens on mMDSCs expansion.

PBMCs from healthy donors were treated with indicated concentrations of rHBeAg, rHBsAg

or rHBcAg for 5 days, followed by counting of mMDSCs using flow cytometry. (A) The per-

centage of mMDSCs in PBMCs induced by different recombinant HBV antigens at indicated

concentrations. (B) Percentage and the numbers of mMDSCs in PBMCs induced by 0.5 μg/ml

recombinant HBV antigens (mean ± SEM, n = 5, �p< 0.05, ��p< 0.01, ���p< 0.001).

(TIF)
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S5 Fig. The time course analysis of rHBeAg-mediated mMDSC induction. PBMCs from

healthy donors were cultured with or without 0.5 μg/ml rHBeAg for the indicated durations,

and the proportion of mMDSCs were quantified by flow cytometric analysis (mean ± SEM,

n = 3; �p<0.05).

(TIF)

S6 Fig. rHBeAg-induced mMDSCs expansion is not due to possible LPS contamination.

PBMCs isolated from healthy donors were treated with 100 ng/ml LPS or 0.5 μg/ml rHBeAg

with or without 10 μg/ml Polymyxin B (PXB) for 5 days. The percentage of mMDSCs was

determined by flow cytometric analysis (mean ± SEM, n = 3; �p<0.05).

(TIF)

S7 Fig. HBeAg (+) patient serum induces mMDSCs expansion in an IL-6 and IL-1β depen-

dent manner. (A and B) Anti-HBeAg antibody inhibited HBeAg-induced mMDSCs expan-

sion. Purified PBMCs from healthy donors were cultured in the presence of HBeAg (+) serum

with anti-HBeAg antibody or isotype-matched control antibody for 5 day, the proportion of

mMDSCs was analyzed by flow cytometry. The representative plots are shown in panel A and

the mean values (±SEM) from three independent experiments are plotted in panel B. (C and

D) PBMCs from healthy donors were cultured with HBeAg (+) serum for 5 days in the pres-

ence of 10 μg/ml of IL-6 and IL-1β neutralizing antibodies or isotype control antibody. Fre-

quency of mMDSCs was analyzed by flow cytometry. The plots of one representative

experiment are shown in panel C and the mean values (±SEM) from four independent experi-

ments are plotted in panel D.

(TIF)

S8 Fig. The expression levels of surface marker CD14, CD11b and HLA-DR in CD33+ cells

treated with HBeAg. PBMCs from healthy controls were left untreated or treated with

rHBeAg (0.5 μg/ml) for 5 days. The surface expression of CD14, CD11b and HLA-DR were

analyzed by flow cytometer. The rHBeAg-treated cells are represented by blue line, the

untreated control samples are indicated by red line, and the untreated controls stained with

isotype control antibody are indicated by green line.

(TIF)

S9 Fig. FCS analyses of PD-L1, Arg1 and IL-10 expression and ROS activity in rHBeAg-

treated PBMCs. PBMCs from healthy donors were cultured with or without rHBeAg (0.5 μg/

ml). The expression levels of PD-L1, Arg1 and IL-10 were determined by flow cytometry. ROS

activity was measured by staining cells with DCFDA, followed by flow cytometry. (A) Repre-

sentative plots of DCFDA staining, and PD-L1, Arg1, and IL-10 expression following exposure

to HBeAg. (B) The histograms show the MFI of DCFDA, PD-L1, Arg1, and IL-10 in rHBeAg-

induced mMDSCs (mean ±SEM, n = 5).

(TIF)

S10 Fig. HBeAg (+) patient-derived mMDSCs suppress T-cell responses. (A) The inhibition

of CD8+ and CD4+ T cell proliferation by mMDSCs from HBeAg (+) CHB patients, HBeAg

(-) CHB patients and healthy donors was evaluated by FCS. T-cell proliferation without

mMDSCs was set as 100% to calculate the relative inhibition of T-cell proliferation by

mMDSCs from different sources (mean ± SEM, n = 3). (B) Pan-T cells were cultured alone, or

co-cultured with purified mMDSCs from HBeAg (+) patients at 1:0.5 ratio, followed by CD3/

CD28 activation. IFN-γ in supernatant was measured by ELISA (mean ± SEM, n = 5). (C and

D). PBMCs purified from HBeAg (+) patients were untreated or treated with rHBsAg (5 μg/

ml), or treated with rHBsAg after depletion of mMDSCs, or treated with rHBsAg after
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addition of mMDSCs (1:0.5 ratio), for 12h, followed by intracellular IFN-γ staining. Panel C

shows the representative flow cytometry plots of IFN-γ-positive CD8+ and CD4+ cell staining

under the indicated conditions. The percentage of HBsAg-induced IFN-γ-positive CD8+ and

CD4+ cells in HBeAg (+) patient-derived PBMCs with and without mMDSCs depletion is

plotted in panel D, respectively (Mean ± SEM, n = 5).

(TIF)

S11 Fig. Comparison of expression levels of p47phox, gp91 and PD-L1 in mMDSCs from

HBeAg (+) CHB patients and healthy controls. (A) mRNA levels of p47phox and gp91 in

mMDSCs of healthy controls (HC) and HBeAg (+) CHB patients (n = 8) were detected by

qPCR and plotted as fold change (CHB/HC) (mean ± SEM). (B) PD-L1 protein expression in

mMDSCs of HC and HBeAg (+) CHB patients (n = 8) was measured by flow cytometry and

the median values of fluorescent intensity (MFI) were plotted (Y-axis).

(TIF)

S1 Table. Clinical characteristics of enrolled subjects for analyzing frequency of mMDSCs

in whole blood.

(PDF)

S2 Table. Clinical parameters of serum samples from enrolled healthy controls and Nuc-

treated CHB patients.

(PDF)

S3 Table. Gene-specific primers for RT-qPCR.

(PDF)
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