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Summary

Human health is dependent upon environmental exposures, yet the diversity and variation in 

exposures is poorly understood. We developed a sensitive method to monitor personal airborne 

biological and chemical exposures and followed the personal exposomes of 15 individuals for up 

to 890 days and over 66 distinct geographical locations. We found that individuals are potentially 

exposed to thousands of pan-domain species and chemical compounds, including insecticides and 

carcinogens. Personal biological and chemical exposomes are highly dynamic and vary spatial-

temporally, even for individuals located in the same general geographical region. Integrated 

analysis of biological and chemical exposomes revealed strong location-dependent relationships. 

Finally, construction of an exposome interaction network demonstrated the presence of distinct yet 

interconnected human- and environment-centric clouds, comprised of interacting ecosystems such 

as human, flora, pets and arthropods. Overall, we demonstrate that human exposomes are diverse, 

dynamic, spatiotemporally-driven interaction networks with the potential to impact human health.
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ETOC

Tracking personal exposure to airborne biological and chemical agents enables construction of an 

interaction network linking individuals, their geographic locations, and environmental factors, 

which could have broad implications for human health.

Introduction

Human health is greatly impacted by genetics, environmental exposure, and lifestyle. 

Recently, studies have been performed to understand how genetics and genomic variation 

can influence our health as well as efforts to understand the molecular mechanisms 

underlying the effects of lifestyle such as exercise and food ((Laker et al., 2017). These have 

ushered in an era of personalized medicine (Chen et al., 2012). However, our understanding 

of human environmental exposures, especially at the personal level, is quite limited. 

Information about environmental exposures, both biotics (e.g. fungi, pollen, and microbes) 

and abiotics (e.g. chemicals) can be important for understanding and monitoring numerous 

diseases such as respiratory diseases, allergy and asthma, chronic inflammatory diseases 

(Fujimura et al., 2014), and even cancer (Pfeifer, 2010; Tomasetti et al., 2017). Thus, 

studying environmental exposures will be valuable for understanding human health as well 

as how humans interact with their environment.

Historically, airborne environmental exposures have been studied by collecting chemical/

biological particulates and toxins using immobile sampling stations across distinct 

geographical locations. These studies have primarily focused on broad detection of air 

pollutants or simple chemicals, and have revealed useful insights into a variety of human 

environmental exposures and health (Cao et al., 2014; McCreanor et al., 2007). Studies of 

personal exposures are much more rare; contact-based chemical exposures using a silicone 

wristbands have been used to detect personal chemical exposures (O’Connell et al., 2014). 

Despite these efforts, our understanding of the biotic and abiotic environmental exposures in 
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humans is limited, especially at the personal level. We do not know how vast and dynamic 

the human biotic and abiotic exposures are and the relative contributions from various 

spatial-temporal or lifestyle components on the exposure dynamics, nor do we know the 

relationship among exposure organisms and between the biological and chemical exposures.

In this study, we aimed to establish a comprehensive understanding of human airborne 

environmental biotic and abiotic exposures, which we collectively refer to as the 

environmental exposome, or “exposome”. Using a novel approach to systematically 

interrogate the human airborne exposome for biotics and abiotics we tracked 15 different 

individuals spatial-temporally, with up to 890 days to provide an extensive personal profiling 

of the environmental exposome. We find that humans are exposed to thousands of species 

with great intraspecies diversity and demonstrate that the human exposome is highly 

dynamic and influenced by spatial/lifestyle and seasonal variables. We describe associations 

between organisms and chemicals and propose the concept of exposome network based on 

the extensive interactions among the organisms, which can be partitioned into a stable 

human-centric cloud and a more dynamic environment-centric cloud. Both the data and 

approach are expected to be valuable for many scientific fields, including public health, 

microbiome, environmental science, evolution, and ecology.

Results

A method to capture and decode the personal environmental exposome

We developed a highly sensitive method to monitor the personal exposome using a 

miniaturized device. A wearable device was modified to actively sample air to capture 

particulates on a 25 mm sterile filter using optimized filters and sampling methods for the 

non-biased collection of particulates (Fig. S1A-E and STAR methods). The device also 

contains a custom 3-D printed zeolite adsorbent cartridge at the end of the airflow that 

captures large numbers of both hydrophobic and hydrophilic chemical compounds (Fig. 

S1A). The device is worn on the upper arm or located within a few feet of the subject, and 

samples air at a steady rate of 0.5L/min (Fig. 1A). Biological agents were detected through 

optimized isolation and linear amplification protocols followed by deep sequencing (STAR 

methods). Chemical compounds were extracted by methanol and identified by liquid 

chromatography coupled mass spectrometry (LC-MS); this method identifies a large variety 

of hydrophobic and hydrophilic compounds with some limitations (Fig. S1A; STAR 

methods). Our method is highly sensitive as we are able to detect less than 10 bacterial cells 

and 200 viral particles, depending on the species (Fig. S1B and C). The device also 

continuously measures temperature, humidity and particle concentration (Fig. 1B).

We deployed the device on 15 individuals over 66 distinct locations (Fig 1C and D; STAR 

methods). Three individuals (P1, P2, and P3) were tracked extensively (Fig. 1C): P1 for 

more than two years (890 days) and 52 locations (201 data points, Fig. 1D and Fig. S1F), P2 

for one year and P3 for three months intermittently (Fig. 1C). For P1, sampling was 

performed such that two filters were typically collected each week (one for weekdays and 

one for weekends). P1 traveled frequently and each location had a dedicated sampling. 

Samples from P2 and P3 were collected over longer intervals (1~2 weeks), and sometimes 

multiple locations. Concurrent chemical exposure sampling was performed on P1 for a 
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period of two months. To visually verify particulates captured by our device, we performed 

Scanning Electron Microscopy (SEM) on representative filters which revealed diverse 

biological and inorganic materials; some of these were tentatively assigned based on 

morphology (Fig. 1E and Fig. S1D) and were consistent with the sequencing results 

described below.

For each sample, we obtained a median of 62.2M (DNA) and 45.8M (RNA) unique 2×151 

bp paired-end reads, resulting in a dataset of 42.9B and 30.4B total reads for DNA and 

RNA, respectively (Fig. S1G-J), representing the largest personal environmental biological 

exposure sampling to date. 6.55M (7.4B unique bases) and 1.02M (492M unique bases) 

contigs were co-assembled from all DNA and RNA reads, respectively. Incorporation of 

blank filters in each processing batch revealed that contamination effects were very small 

(Fig. S2A-I; STAR methods).

To gain insights into the biological environmental exposures, we built an extensive reference 

genome database comprised of more than 40,000 species covering all domains of life (STAR 

methods). The contigs were queried against the database using discontinuous BLAST and 

classified using a custom computational analysis pipeline (Fig. S2J and STAR methods). 

56.2% of the DNA bases and 64.6% of the RNA bases were classified at the kingdom/

subkingdom level using the lowest common ancestor (LCA) algorithm to achieve high 

specificity. We quantified the relative abundance of individual taxa in Counts Per Million 

(CPM), by aggregating the number of bases mapped to each contig. We used hyperbolic 

arcsine (arcsinh) - transformed CPM (aCPM) values for all computational and statistical 

analyses unless otherwise noted. The fraction and diversity of classified contigs is 

substantially higher than existing pipelines, which are not adapted to pan-domain detection 

(Fig. S2K). We confirmed that our methods are reproducible and sensitive (Fig. S2L and Fig. 

S3A-E). In aggregate, we identified at least 2560 species (including 232 viral species with 

pan-domain hosts), 1265 genera, and 44 phyla (Fig. 1E-G, Fig. S3F). Individually, P1, P2, 

and P3 were exposed to 2378, 1357 and 1009 species, for 24, 12, and 3 months of 

monitoring, respectively, indicating that humans are exposed to more than a thousand 

biological species within a short period of time.

The human environmental exposome is highly dynamic and diverse.

The analysis of DNA samples revealed highly dynamic exposome profiles in all three 

individuals (Fig. 2A). Unsupervised clustering of exposome profiles revealed that samples 

can be grouped into fungi-, plants-, bacteria-, metazoa- dominant groups, with some samples 

abounding in two or even three kingdoms (Fig. 2B). In contrast, the RNA exposome profiles 

revealed that bacterial RNA predominates in the majority of the samples (Fig. 2C and D). 

This is likely due to several reasons: 1. Genomic sizes of eukaryotes can be 1000-fold larger 

than prokaryotes whereas the sizes of their transcriptomes differ ~10-fold, thus eukaryotic 

DNA is relatively more abundant in the DNA samples. 2. Some plant and fungi species are 

probably captured in the form of spore or pollen, rather than active cells (as evidenced by the 

SEM Fig. 1E and Fig. S1D). Metazoa (animals) are also less prevalent in the RNA 

exposome, indicating that the metazoan DNA signatures may also come from inactive parts 

of animals (hair, skin flakes, and brochosomes in Fig. 1E). Despite the differences, the DNA 
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and RNA exposome profiles correlate well at the kingdom and phylum levels; 15 of the top 

20 DNA-detected phyla are also found in the top 20 phyla for RNA (Fig. 2E-H). Similar 

correlating patterns have been reported by studies of human gut microbiome DNA and RNA 

profiles (Franzosa et al., 2014).

At the phylum level, the top nine phyla in the DNA exposome, including two fungi, four 

bacterial, and three plant/animal phyla, contribute to the majority of total relative abundance 

(78.4%) across all samples (Fig. 2E and F). Within the Chordata phylum, we detected 

contigs for household pets including dogs (0.48% of total aCPM), cats (0.25%) and guinea 

pigs (0.01%), which were known to co-inhabit with several of the participants (Fig. 2E and 

F). Interestingly, several other phyla from the metazoan domain were also captured, 

especially the phylum Rotifera, a group of planktonic and microscopic freshwater/soil 

organisms able to sustain an asexual life style over millions of years (Flot et al., 2013). P1 

was exposed to a very high level of putative rotifers in one sample captured during a holiday 

period when the subject participated in outdoor sports activities and tree decorations (Fig. 

S3G and H, last panel). In addition, different human/household-associated arthropods were 

detected, including several dust, skin and spider mites, as well as mosquitoes, flies, honey 

bees, and even cockroaches (Fig. S3G and H). Interestingly, we also detected viruses 

associated with these arthropods, such as those related to the recent honey-bee crisis (Fig. 

S3G and H), indicating that our method can capture interacting species in the natural 

environment. Furthermore, our untargeted approach also captured another ubiquitous group 

of fungi-related eukaryotic organisms, Oomycetes, which are notorious plant pathogens 

(Fig. S3G and H).

In the RNA exposome, the top ten phyla represent 50.4% of the RNA exposome across all 

samples (Fig. 2F). It is notable that some species in the top four bacterial phyla, Firmicutes, 

Proteobacteria, Actinobacteria, and Bacteroidetes are known to associate with humans. 

Species richness analysis indicated that up to 800 species can be detected during each 

sampling period and more species were identified in RNA samples compared to their DNA 

counterparts (Fig. 2I). This is presumably because the RNA exposome detects more bacteria, 

which have the most species entries in the database. We observed extensive correlation 

patterns at the phylum and the genus level, indicating potential taxa interactions (Fig. S4A 

and B).

We also found sequences related to opportunistic and putative pathogens in our DNA and 

RNA datasets; some share >98% identity to the reference with >90% coverage of the contig 

(>= 200 bp; Fig. S4C and D). For bacteria and fungi, 15% of samples contained sequences 

highly homologous to opportunistic pathogens such as Acinetobacter baumannii (Fig. S4C 

and D), and many mold species such as Penicillum capsulatum (Fig. S4E and F). It is likely 

that these species are common in the environmental exposome, but only pose threats to 

immunocompromised individuals. On rare occasions, we detected a few putative pathogenic 

strains, although no clinical diseases were reported after such exposures (Fig. S4C, red 

boxes). For viruses, even though our non-targeted approach can detect a variety of 

respiratory and blood-borne RNA viruses (as few as 200 copies; Fig. S1C and S4G), we did 

not detect notable respiratory viruses in our samples. It is likely that human RNA viral 
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pathogens are rare in the air environment relative to the other species. In fact, >150 RNA 

viral species that we found were predominantly associated with plants (Fig. 1G).

We further performed functional analysis of the RNA exposome by querying 1.02M RNA 

contigs against the NCBI non-redundant protein database, and 66% were identified at the 

kingdom/subkingdom level (Fig. S5A). Based on the respective top 30 enriched GO 

annotations (Fig. 2J, and Fig. S5B-D, STAR methods), we found that each taxonomic group 

displayed both specific and general transcriptional activities. For instance, viral contig 

sequences were related to capsid, genome integration, and integral to membrane of host cell 

(Fig. 2J and Fig. S5B-D). To gain more insight into the RNA sequences, we scanned for 

allergy-related proteins in our transcriptomic data (STAR methods) and identified 31 

potential non-food allergen proteins that mostly originated from fungi and plants (Fig. S5E-

G). Subsequently, we tracked the relative levels of allergens across different seasons, 

revealing seasonal patterns of several fungal and plant families (Fig. S5H-K).

In summary, our environmental exposome is highly dynamic and diverse, comprised of 

thousands of species spanning all domains of life, pre-dominated by a few phyla.

The sources of variation in the human environmental exposome

We investigated the source of variation in the human environmental exposome and focused 

on the DNA exposome profiles since DNA is more stable than RNA. Conceptually, the 

exposome can be influenced by at least three major classes of variables: 1. Environmental 

(Env) such as season, temperature, humidity, wind speed, and particle density. These 

variables are subject to change over time. 2. Spatial/lifestyle-related (Spa) such as locations, 

location associated time-insensitive variables such as population density and elevation, and 

behavior variables. 3. Technical artifacts (Tec) such as batch effects.

To accurately represent the spatial information, we constructed Moran’s Eigenvector Map 

(MEM) variables to extract broad- and fine-scale spatial structures from the geographic 

coordinates of each sampling location (Fig. S6A; STAR methods). We divided the 64 

collected meta-variables (including the selected MEM variables, complete list in Fig. S6B) 

into the Env, Spa and Tec groups and carried out forward-selection within each group to 

select best representative variables. We used partial distance-based redundancy analysis 

(dbRDA) to decompose the variation in the entire dataset at the genus level (Fig. S6C). 

Notably, 5 out of 6 MEM variables were selected, indicating that the spatial information is 

highly relevant (p < 0.05, Fig. S6D). We found that 12.26% of the variation (squared Bray-

Curtis distance) in the total DNA exposome can be explained by location/lifestyle-related 

variables, 9.72% by environmental variables, and only 2.6% of the variation by technical 

variables that we recorded (Fig. 3A and Fig. S6D and E). In total, 21% of variation can be 

explained by forward-selected variables (31% can be explained by all variables, Fig. S6E 

bottom). These numbers are comparable to other ecological studies (Møller and Jennions, 

2002).

We next dissected the influence of the environmental, spatial/lifestyle, and technical 

variables on the individual genus. We performed multivariate regression-based variation 

partitioning analysis on the 241 genera detected in at least 100 samples. After filtering 
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genera whose regression models were not statistically significant after adjustments (Adj. p 

>= 0.05), we performed hierarchical partition analysis on the remaining 199 genera to 

evaluate the relative importance of each group of variables (STAR methods). We estimated 

90% bootstrap confidence intervals and the permutation-based p values for the contribution 

of each group of variables (N = 9999 for both methods; see Table S1 and STAR methods). 

Notably, 99% of the regression models explained less than 40% of the variation (median is 

17.4%), consistent with our dbRDA analysis. The majority of these genera are fungi 

(143/199), followed by bacteria (41/199), plant (12/199), and animals (3/199).

Overall, genera across different domains of life are mainly influenced by various 

combinations of spatial/lifestyle and environmental variables (Fig. 3B). Whereas the spatial/

lifestyle variables can account for up to 80% of total explained variation in some genera, 

environmental variables are the dominating force in the others (Fig. 3B). We define that a 

genus is subjected to dominating influences from a specific source, if the source is 

consistently (>= 90%) estimated to have more influence than the other in the bootstrap 

analysis (Table S1 and STAR methods). Interestingly, all 20 fungi genera (p < 0.01) that are 

subjected to dominating environmental influences (blue) are from the phylum 

Basidiomycota (mushrooms; Diamonds in Fig. 3B, first panel), whereas 19 out of 21 genera 

(p < 0.01) that are subjected to dominating spatial/lifestyle influences (dark yellow) belong 

to the phylum Ascomycota (molds, plant pathogens, and yeasts; Circles in Fig. 3B first 

panel). This suggests that exposures to the two major fungi phyla are influenced by distinct 

groups of variables (Fig. 3B). We observed similar diverging patterns for bacterial, plants 

(trees are subjected to environmental influence, whereas grasses are subjected to spatial/

lifestyle influence), and animal genera (pets) are mostly subjected to spatial/lifestyle 

influence (Fig. 3B; SI).

In summary, the variation analyses at the sample and the genus level revealed that our 

exposome is influenced heavily by environmental and spatial/lifestyle variables. Individual 

genera across domains are subjected to a combination of quantifiable environmental and 

spatial/lifestyle influences, which are potentially relevant to the ecological niches of 

respective organisms and their interactions with humans.

Spatial/lifestyle influence on the human environmental exposome

We further investigated the spatial/lifestyle influences on the DNA exposome. Using the 

high resolution P1 DNA data at the genus level, we first calculated the Bray-Curtis distance 

between consecutive sampling points which should largely remove the influence of time. As 

expected, smaller differences (shorter Bray-Curtis distances) were observed in consecutive 

samples collected from the same location when compared to the consecutive samples 

collected from different locations (p < 1e-5) (Fig. 3C). Expanding this analysis to all pair-

wise comparisons over time revealed similar patterns: samples obtained from the same 

geographical location (N = 98) have higher similarity compared to pairs collected at 

different sites (N = 103; p < 1e-10; Fig. S7A). To control for seasons, we compared P1 

“Campus” samples vs those with from other geographical locations) over a two-month time 

frame; similar results were observed (Fig. S7B and SI). Finally, PCA analysis on the DNA 
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exposome at the genus level revealed that samples from different individuals collected from 

Asia tend to cluster together (Dark blue ellipses; Fig. S7C-F).

We next examined the genera that have differential abundance patterns between different 

locations. We used the P1 “Campus” (N = 98) and non-”Campus” (N = 103) sample groups 

which are large (to increase the statistical power) and evenly distributed across seasons (Fig. 

S7G inset). After multi-comparisons adjustments (Benjamini & Hochberg, Adj. p < 0.05), 

100 of 431 tested genera detected in more than 50 samples showed statistically significant 

differential abundances in two groups (Adj. p< 0.05; Fig. S7G); 73 are fungi, and the rest are 

from animal (2/100), plants (7/100), and bacteria (18/100). Interestingly, among the 73 fungi 

genera, only 16 of them are from the phylum Basidiomycota (mushrooms, p < 1e-3); the rest 

(57/73) belong to the phylum Ascomycota (molds, plant pathogens, and yeasts). This is 

consistent with our genus-based variation partitioning analysis using all samples, where we 

found that the Ascomycota is subjected to dominating spatial/lifestyle influences. 

Interestingly, whereas almost all (79/82) fungi, plant, and animals genera showed higher 

abundance in the “Campus” location (Fig. 3D and S7G), five bacteria genera showed exactly 

the opposite trend: Streptococcus, Staphylococcus, Corynebacterium, Rothia, and 

Enhydrobacter (Fig. 3D and S7G) are all human-related and preferentially in the 

non-”Campus” samples.

To further examine the effect of location/lifestyle, we simultaneously tracked four 

participants within the broad San Francisco Bay Area over three weeks, using multiple 

samplings per individual. The short timeframe limits potential temporal influences. Each 

individual has his/her own work-life routines. P6 lives in the San Francisco metropolitan 

region while P1, P3, P5 live in sub-urban areas. Specifically, P1 had a diverse routine during 

this period, including a trip to Washington DC; P3 mostly commuted back and forth between 

two communities (~40 km apart) on opposite sides of the bay for a home-office routine; P5 

has a close commute (<3 km) between home and office; P6 only used the device indoor (Fig. 

1D and3E). Strikingly, the location and travel pattern had a strong impact on their exposome 

profiles even in close geographical areas. Samples from P5 and P6, who had geographical 

constrained home-office routines, were each very tightly clustered. Samples from P3, who 

had a long commute, were more scattered (Fig. 3F and S7H). P1 had diverse activities and 

locations during this period and had the most diverging exposome in the group (Fig. 3F and 

S7H). Overall, with the exception of P1, the clustering pattern of personal exposome profiles 

was unique and well separated from that of other individuals (samples were extracted in the 

same batch; Fig S7H). Comparing the pairwise Bray-Curtis distance profiles revealed that 

samples from the same individual are significantly more similar than the samples from 

different individuals (p = 0.01, Fig. 3G); we validated the result via a graph-based 

permutation test (McMurdie and Holmes, 2013) (p = 0.0243; Fig. S7I). The difference is 

even more pronounced if we remove P1, who has the most variability (p < 1e-4; Fig. S7I). 

Thus, based on the case study, each individual has a distinct environmental exposome with 

quantifiable differences, even when located in relatively close geographical locations.

We next investigated which genera influenced the clustering patterns (Fig. 3H). P6’s device 

captured signatures of several urban-associated genera such as bacteria associated with 

sludge, whereas P1’s device captured significant amounts of plant and fungi exposures (Fig. 
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3H navy and green boxes, respectively; SI). Overall, these results demonstrate an important 

and quantifiable role of spatial/lifestyle-related variables in our exposome dynamics.

Seasonal influence on the human environmental exposome

Season plays a prominent role in environmental exposures and leads to changes in 

temperature, flora density, and even the presence/absence of different organisms (Luria et 

al., 2016; Strand et al., 2011). Similarly, our dbRDA and genus-based variation partitioning 

analyses showed that the environmental variables, including seasons, exhibited significant 

influences on the exposome profiles (Fig. 3A and B; Fig. S6D). We further examined the 

seasonal differences by directly determining if samples from the same seasons are more 

similar (locations are random throughout seasons, Fig. S7E-G). To this end, we calculated 

the pair-wise Bray-Curtis distance matrix among all samples and constructed a nearest 

neighbor (NN) tree (Fig. 4A). We assign the edge connecting two nodes (samples) as pure if 

they are from the same season (otherwise the edge is “mixed”). Through graph-based 

permutation test (N = 9999), we found that pure edges in intra-seasonal samples are enriched 

(p = 0.0001, Fig. 4B), indicating that intra-seasonal samples are more similar. Moreover, 

when restricted to specific geographic locations to limit potential spatial influences, we can 

observe seasonal influences on P1’s “Campus” samples (Fig. S8A).

We next identified organisms with seasonal patterns using fuzzy c-means clustering on 

seasonally binned relative abundance data (aCPM) at the genus level. Four clusters, 

including 355 genera, were derived from the analysis (STAR methods). Interestingly, each 

cluster displays peak abundance in a specific season (Fig 4C). The “Winter” cluster is the 

largest with 121 genera, whereas the other three clusters have ~80 genera each. When 

visualized in PCA analysis, the 355 genera display clear season-based clustering that also 

follows a clock-wise seasonal progression pattern (Fig. 4D).

We further explored the seasonal influence on organisms at different taxonomy levels. Even 

at the phylum level, many taxa displayed seasonal patterns (Fig. S8B). For example, the 

Streptophyta phylum (green leaf plants) was most abundant during spring and summer, as 

expected. The fungal phyla Ascomycota (such as yeast and most molds) increased in 

summer and fall whereas Basidiomycota (including all mushrooms) peaked in winter and 

spring. Four diverse bacterial phyla, Firmicutes, Proteobacteria, Actinobacteria and 

Bacteroidetes showed no significant seasonal patterns, which is consistent with the RNA 

analyses (Fig. 2F). For animals, the relative abundance of the phylum Chordata (animals 

with spine) is elevated during winter.

At the genus level, 124 genera showed significant seasonal patterns (Fig. S8B, bottom; Adj. 

p < 0.05). Fungi dominates (81/124) with the majority (61/81) Basidiomycota (mushrooms), 

and only 18/81 are Ascomycota (molds and plant pathogens; p < 1e-3). This is in stark 

contrast to the spatial differentially abundant genera analysis where the Ascomycota 

dominated (57/73, p < 1e-3), but consistent with the conclusion that Basidiomycota genera 

are more influenced by environmental variables (Fig. 3B). Seasonal influence was also 

evident at the species level: examples include plants (Pinus taeda, or pine tree) and fungi 

(such as mushroom Stereum hirsutum and fruit green mold Penicillium citrinum) (Fig. 4E 

and S8C) which were most abundant in summer, fall, and summer, respectively. In contrast, 
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skin-related species did not display any seasonal pattern (Fig. 4E;Fig. S8C, third row), 

including Propionibacterium acnes, which is linked to the onset and progress of acnes, 

Staphylococcus epidermidis, and a fungal species Malassezia restricta. This finding indicates 

that species closely associated with humans are potentially less susceptible to macro-

environmental changes.

We built a season predictive model using the exposome profiles using the North American 

region data from P1. A generalized logistic regression model using the LASSO method was 

used for feature selection (Fig. 4F and Fig. S8D), along with nested-cross validations (10 × 

10 fold) to select the best parameters. Resampling the P1 data 10 times demonstrated that 

our model is highly stable with a median multi-class area under curve (mAUC) of 0.75 (Fig. 

4G-I). We validated the model with external data from P2 and found a similar performance 

(mAUC = 0.74; Fig. S8E and F). We identified genera (e.g. mushrooms, mold, trees, etc) 

that contribute to defining each season, with corresponding seasonal patterns (Fig. 4J and 

S8G; SI). Overall, these results demonstrate that season has a significant influence on human 

exposome through many diverse species, which enables us to construct a season predictive 

model from P1’s data and validated it on P2’s data. Many of the species were known 

previously to be seasonal, whereas a number of others appear to be new.

The diverse and dynamic abiotic exposome

To further study the diversity of the personal exposome as well as explore relationships 

between biotic and abiotic exposures, we also tracked the abiotic chemical exposure of 

individual P1 for two months (during the winter to spring transition), collecting 15 samples 

spanning 8 locations. Because the chemical collection cartridge was placed downstream of 

the particulate-collecting membrane filter, the collected chemical compounds largely 

represent solute compounds in air. The chemical compounds were profiled through both 

positive and negative electrospray ionization (ESI) modes with high reproducibility (Fig. 

S9A-E). We identified 3299 chemical features (Fig. S9A) that were enriched >= 10 fold 

when compared with negative control samples (STAR methods; Fig. S9B). Using an in silico 
approach to exclude mass features that may be isoforms, isotopic mass species or major 

adducts (−H2O, +Na, +NH4, +Cl), we found 2,796 unique formulae of the chemical 

exposome (STAR methods). Using the accurate mass/charge (m/z) ratio, we tentatively 

annotated 972 compounds by searching against the Metlin database (Smith et al., 2005) (Fig. 

S9A). Interestingly, the vast majority (> 95%) of these 972 annotations were only found in a 

toxicant database, but not in a database of natural metabolites.

We investigated the dynamics of these compounds by fuzzy c-means clustering of the 

compound abundances profiles across the 15 samples (Fig. S9F). Overall, three clusters with 

unique patterns were observed (of 5 clusters, using quality filter on membership >= 0.65; 

Fig. 5A and B; Fig. S9F). Cluster Cyan (N=84) and cluster Red (N=228) appear location-

dependent, whereas the cluster Green (N=456) has a sharp transition from the first 10 to the 

last 5 samples, which coincides with a seasonal transition in March (Fig. 5B), raising the 

possibility that these chemicals may be partially season-driven. Due to the large size of 

cluster Green (N=456), this transition is directly reflected in the PCA analysis (Fig. 5C and 

Fig. S10A). We searched for chemicals that anti-correlated with the cluster Green, which led 
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to the discovery of a small group of compounds in the cluster Navy (N=26, Fig. 5B; R < 

−0.85, Adj. p <0.05). For example, PM3177 and PM3175, both of which are tentatively 

plant-related, belong to cluster Green and cluster Navy, respectively (Fig. 5D). Therefore, 

the chemical exposome is also potentially influenced by spatial-temporal variables.

We confirmed eight compounds using reference standards (Fig. S9G). These included the 

insect repellent diethyltoluamide (DEET), the pesticide omethoate, and the carcinogen 

diethylene glycol (DEG) which were present in every sample. DEET is widely used 

outdoors and not recommended for under-cloth or near-mouth application by the EPA. We 

also detected and verified several body scent related features (some of which have other 

industrial applications, see below), such as caproic/caprylic/capric acids (Fig. S9G and S10).

We explored the dynamics of some of the annotated chemical compounds. We found that (a) 

geosmin--the “earthy” smell compound present when it rains, (b) caprylic acid—commonly 

found in different types of disinfectant, and (c) omethoate--a pesticide--were highly 

positively correlated with each other (all belong to the cluster Red, R > 0.9, Adj. p < 1e-4); 

these samples were collected during raining periods, which is suggesting that geosmin, 

caprylic acid, and omethoate can accumulate on the ground surfaces and are released during 

periods of rain (Fig. 5E). Interestingly, these compounds were negatively correlated with 

phthalate (Cluster Cyan), a synthetic plastic component, which is deposited by adsorbing on 

suspended particulate matter (SPM) in air and would be expected to decrease during rainy 

periods (Fig. 5E). DEET was enriched in the Davis-CA sample whereas DEG was enriched 

in Bethesda-MD and some of the “Campus” locations (Fig. 5F). Overall, our results suggest 

that we are exposed to thousands of expected and unexpected chemicals on a frequent basis, 

often at specific locations.

Integration of biotic and abiotic exposomes

We examined the relationship of the biotic and abiotic exposures using the DNA exposome 

data (Fig. S10A-C). Interestingly, in PCA analyses, geographically close Davis-CA and SF-

CA samples showed a much higher similarity to “Campus” samples in the biotic exposome 

(Fig. S10B, navy box), but they were well separated in the chemical exposome (Fig. S10A, 

navy boxes). This suggests that the biotic and abiotic exposomes differ spatial-temporally.

Several significant and interesting correlation patterns were found between the biotic and 

abiotic profiles (Fig. 5G and H; Fig. S10D). For example, caproic acid (body scent and 

elsewhere) is correlated with a few fungal genera (R > 0.7, Adj. p < 0.05, Fig. 5G); Pyridine, 

a ubiquitous organic solvent used in many industry products such as paint and dye, is highly 

anti-correlated with a number of fungal species (R < −0.7, Adj. p < 0.05). Notably, we 

detected significantly less pyridine in “Campus” samples than travel locations such as 

Boston, Michigan, and Montana (Fig. 5H). Together, the combination of biotic and abiotic 

measurements potentially constitute spatial signatures that distinguish samples collected 

from the “Campus” location from the other non-”Campus” locations, consistent with our 

earlier analyses (Fig. 3D).

Intrigued by the pyridine-fungal species correlations, we systematically examined the 

correlations between the biotic and abiotic exposome. First we showed that significant 
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correlations exist between biotic and abiotic datasets (p = 0.02, 499 replicates; STAR 

methods). We then used sparse canonical correlation analysis (sCCA) to extract features that 

best explain such correlations (STAR methods). Of 146 biological and 1565 chemical 

features, 13 and 47 correlated features were extracted, respectively. PCA analysis using 

these 60 features revealed strong location-based patterns compared to analyzing biological 

or chemical datasets alone (Fig. 5I and Fig. S10A-C). Specifically, all “Campus” samples, 

including a geographically close sample “SF-CA” (San Francisco), form a tight cluster. 

Interestingly, the biological and chemical features were anti-correlated, at least partially due 

to a large group of fungal genera anti-correlating with pyridine in a location-dependent 

manner (Fig. 5H). Indeed, three of the four genera that anti-correlated with pyridine were 

also extracted in the sCCA analysis (Fig. 5I and Fig. S10E). We repeated the sCCA and 

PCA analyses at the species level and observed highly similar patterns (Fig. S10C and F). In 

summary, despite that both chemical and biological exposomes are influenced by spatial-

temporal variables, integrated analysis indicates that the correlations between the biological 

and chemical exposomes are mostly location-dependent.

Extensive intraspecies variations in the biotic exposome

The deep sequencing data enabled us to examine intraspecies variation at single-nucleotide 

resolution. Using the uniquely mapped sequencing reads, we investigated the genomic 

evolutionary landscapes of the top ranked abundant species for several kingdom/

subkingdoms in the exposome profiles. We calculated the single nucleotide polymorphism 

(SNP) density and nucleotide diversity (π) across all filtered genomic positions across 

species from different domains of life, including bacteria, fungi, viruses, archaea, and 

Oomycetes (Fig. 6; STAR methods) and identified 5.11 million SNPs in the selected 108 

pan-domain species across all samples.

As expected, we found that SNP density is highly concordant with nucleotide diversity (R = 

0.98, p < 1e-3) (Fig. 6 and Fig. S11A), and that, except for viruses, a greater genomic 

diversity across all domains with higher coverage (p < 1e-5, Fig. 6; Fig. S11B). Genomic 

diversity began to saturate at 500-fold coverage, consistent with previous findings 

(Schloissnig et al., 2013). Nucleotide diversity and SNP density are inversely correlated with 

the genome size across different domains of life after taking coverage variation into 

consideration (p < 1e-4; Fig. S11C-E). Specifically, with sufficient coverage (e.g >100x, 

second dashed line in Fig. 6 bottom), fungal species, which usually have larger genomes 

than bacteria and viruses, also have lower SNP density and lower nucleotide diversity 

(except for a plant pathogen). On the other hand, viruses, which have smaller genomes by 

three orders of magnitude, have the highest SNP density and nucleotide diversity (Fig. S11F 

and G). In particular, two viruses, white clover mosaic viruses and clover yellow mosaic 

viruses, have more than 150 SNPs/kbp (Fig. S10G). Interestingly, several bacterial plasmids 

which have virus-like genomic sizes also display comparable high genomic variation (Fig. 6, 

top 5 bacterial data points, Fig. S11H). Most plasmids showed elevated SNP density, 

nucleotide diversity, and coverage compared to their host species, except for the 

cyanobacterial species Nostoc punctiforme (Fig. S11H). The observed extensive intraspecies 

variations across domains of microorganisms indicate that the traditional definition of 

species may not be very relevant in the exposome setting, since even a few genomic 
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mutations could lead to a multitude of phenotypic changes in diverse organisms (Carroll, 

2008; Jiang et al., 2014).

The environmental and human exposome clouds

To explore the inter-species relationships of the organisms in the human biotic exposome, 

we queried all identified species against the integrated species-interaction databases from 

published sources (Poelen et al., 2014; Wardeh et al., 2015) and generated a comprehensive 

species-interaction network (600 nodes and 1418 interactions; STAR methods). From this 

interaction network, we identified two major overlapping clouds: a plant-centric 

environmental cloud comprised of plants, fungi, arthropods and bacteria and a human-

centric cloud comprised of pets, human-related bacteria, fungi, parasites, and a few 

protozoan species (Fig. 7A). These two clouds reflect two connected, but relatively 

independent ecological systems. Intriguingly, many bacterial and fungal species interact with 

both human and plants/animals, creating numerous links between these two clouds (Fig. 7A, 

dark yellow shade area). The observation of human-centric cloud is consistent with recent 

discoveries of a human centric microbial cloud (Lax et al., 2014; Meadow et al., 2015).

We hypothesized that human-related species would be less variable than environment-related 

species in our dataset because they are less susceptible to the macro temporal changes (Fig. 

2E and F, Fig. 4E; Fig. S8B and C). To test this, we divided the implicated species (found in 

>= 50 samples) in the exposome network into three groups, namely Plant/Arthropods 

(representing the environmental cloud), Human/Animals (representing the human cloud), 

and the “Intersection” group with species that connect the two groups. We found that the 

Human/Animals group have significantly less variance than that of both Plant/Arthropods 

and the Intersection group (Fig. 7A inset). In contrast, we did not observe significant 

differences between the Plant/Arthropods and the Intersection” group. We also observed 

similar results when arthropods and animals were excluded from our analyses (Fig. S11I). 

We further demonstrated the reproducibility of the exposome network configuration using 

the data of P1, P2, P3 and found that each individual has a human-centric and an 

environmental-centric cloud; Fig. S11J-K).

To explore the utility of exposome networks at the individual level, we applied this 

technique to three different individuals in the case study (P1, P3, and P5, Fig. 3E-H) which 

had the same number of samplings. Based on these individuals, we observe that the 

complexity of personal exposome clouds are directly correlated with personal lifestyles and 

work-home routines. Specifically, the more active individual who travels to multiple 

locations, P1, has the highest number of nodes/edges/average interactions (AI) among the 

three, whereas P3 and P5 have decreasing complexity corresponding to their lifestyles (Fig. 

7B), consistent with our earlier PCA analyses (Fig. 3E-H). Taken together, our exposome 

depicts a dynamic network of diverse species derived from at least two distinct ecosystems.

Discussion

Other metagenomics studies have investigated the microbiome in soil, extreme 

environments, and the ocean (Rinke et al., 2013; Sunagawa et al., 2015; Thompson et al., 

2017). Although highly important for human health, airborne metagenomics are 
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disproportionally understudied due to technological difficulties such as a) low density of 

microorganisms in the air, b) lack of an efficient method of retrieving information from such 

microorganisms, and c) bioinformatics challenges (Behzad et al., 2015). We have addressed 

these difficulties and produced a unique dataset that a) extends beyond the microbiome and 

also includes chemical exposures, b) is longitudinal and multi-location, and c) directly maps 

personal exposures. Our findings greatly extend the human microbial cloud to a human 

exposome cloud by including numerous organisms from different domains of life (Fig. 7A). 

Finally, the wearable device can easily be deployed as a portable miniaturized sampling 

station to monitor any geographical location.

In our chemical exposome, many of the potentially hazardous compounds were collected by 

sorbent adsorption from an air flow that already passed through a 0.8 μm pore-sized filter 

(for biological analyses). This indicates the possibility that the compounds could reach into 

the deep lower respiratory tract including respiratory bronchioles and alveoli and directly 

interact with the moist mucosa in lungs. However, neither the Environmental Protection 

Agency (EPA) nor the Center for Disease Control and prevention (CDC) has evaluated 

possible health risks associated with inhalation of these non-biological compounds, such as 

DEET. Our findings thus revealed a previously unrecognized type of potentially hazardous 

exposure that is commonly detected in the air.

Among the potential applications of our study, the putative location/lifestyle signatures are 

of high interest. Both biotic/abiotic exposures, as well as their correlations, show a strong 

location/lifestyle-driven pattern (Fig. 3 and 5), which can potentially define location-specific 

exposure profiles (“Campus” versus non-”Campus”). An archive with more individuals/

locations could reveal more location-specific health-related substances, such as allergens, 

potential pathogens, and harmful chemicals, in human exposure. The understanding of 

location/lifestyle-specific exposures may benefit the population health at large, especially 

the immuno-compromised individuals.

Our study also provides invaluable data for ecological and evolutionary studies with the 

deeply sequenced metagenomics data. Most environment-related sequencing projects have 

targeted marker genes such as 16S/18S rDNA/rRNA (Barberán et al., 2015) and thus provide 

limited intraspecies diversity information, and no functional information. In comparison, our 

method is able to detect species across all domains of life, provide functional insights, and 

reveal intraspecies diversity at single-nucleotide resolution. The variation partitioning 

analyses revealed that different genera are subjected to drastically different influences from 

environmental and/or spatial/lifestyle sources (Fig. 3B), potentially relevant to their potential 

ecological niches. In addition, the capture and detection of rare taxa such as rotifer, various 

mites, and insects are impractical with targeted approaches (Fig. S4).

There are several notable limitations of our study: 1) We only followed 3 individuals 

extensively, hence some findings, such as the location-specific signatures, would benefit 

from the analysis of data from more individuals. Such information would help identify 

generalizable and individual-specific exposure dynamics. 2) Organismal sequence databases 

are still incomplete; hence misclassifications and false-negatives will occur. 3) For 

chemicals, the exact number and the nature of molecules is not known. Of the total of 2796 
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putative chemical features, only 972 can be tentatively annotated, most of which are 

potential toxins (Fig. S9). Future research using purified standards is necessary to confirm 

the numerous anonymous peaks.

Despite the limitations, the extent of diversity we observed in this study is enormous; In 

addition to over 2500 species identified, 5.11 million SNPs in 108 pan-domain species 

across all samples were identified. This number is comparable to the number of SNPs 

evaluated in the human gut microbiome (101 bacterial species; 3.98M SNPs at the individual 

level, 10.3 million for all samples) (Schloissnig et al., 2013). However, in spite of the great 

sequencing depth, the number of SNPs we found still severely underrepresents the true 

diversity in the human exposome (Fig. 6). In the biotic exposome, most contigs shared 70–

90% identity to reference genomes, again suggesting our knowledge on intra- and inter-

species diversity is limited (Fig. S3 and 4). 43.74% of DNA information cannot be classified 

even with our pan-domain and computationally intensive classification strategy (Fig. 1F). 

These results indicate that a huge gap exists between the complexity of our environmental 

exposures and what is presently in our knowledge database.

In the future, it will be important to systematically expand the depth and breadth of our 

exposure knowledge. These efforts will enable a comprehensive understanding of the 

diversity in our environmental exposures that eventually leads to an actionable exposure risk 

guidelines for general and personal human health.

STAR Methods

Contact for Reagent and Resource Sharing

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Dr. Michael Snyder (mpsnyder@stanford.edu).

Experimental Model and Subject Details

Personal environmental exposure sample collection—To measure personal 

environmental airborne exposures, 15 adult participants were recruited; all lived in the 

Northern California Greater Bay Area and some traveled to other locations, depending on 

the individuals. The participants enrolled in this study under the IRB protocols IRB-23602 

and IRB-34907 at Stanford University. All participants are age 18 or older, self-reported 

healthy and consented in writing (See table below). All clinic measurements were covered 

by IRB-23602, with the enrollment criteria as age 18 or older. An RTI MicroPEM V3.2 

personal exposure monitor (RTI international, Research Triangle Park, NC, USA) was 

modified and used to simultaneously collect biotic and abiotic samples of personal aerosol 

exposure for the period of August 2014 to January 2017. The MicroPEM allows for 

integrated sampling while simultaneously collecting real time particulate measurements 

(PM) using a 780 nm IR laser nephelometer operating on a 30-s cycling time. The original 

sequential oiled frit impactors were remove to maximize the biotic aerosol particulates 

collection. Before sampling and data collection, a 3.0 µm pore-size polytetrafluoroethylene 

(PTFE) 25 mm Teflon filter (PALL Corporation, Port Washington, NY, USA) or a 0.8 µm 

pore-size polyethersulfone (PES) 25 mm filter (Sterlitech, Kent, WA, USA) was placed in 
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MicroPEM filter cassettes to collect aerosol particulates for biotics extraction. A homemade 

cartridge filled with 200 mg zeolite adsorbent beads (Sigma 2–0304) was also placed at the 

end of airflow to collect hydrophobic and hydrophilic chemical compounds. Before 

participants were given the MicroPEM monitor, the MicroPEM nephelometer was calibrated 

with an in-line HEPA filter, and pump flow rate was pre-calculated at 0.5 L per minute with 

a TSI model 4140 mass flowmeter (TSI, Shoreview, MN, USA) using Docking Station 

software (RTI international).

Participants were instructed to either carry the monitor on their arm or place the monitor 

near them within a 2-meter radius at all times during the sampling period. Once the 

participants turned the monitor on, sampling and monitoring would last for 1 to 14 days 

according to the participant’s activity. Three participants (P1, P2, P3) were sampled 

extensively; P1 for more than 2 years, P2 for approximately 1 year and P3 for three months 

intermittently. For P1, sampling was performed such that two filters were typically collected 

each week (one during the weekdays and one during the weekends). P1 traveled frequently 

and during each trip/location a dedicated MicroPEM monitor was used to collect the sample. 

If several locations were visited during one trip, a dedicated monitor and filter/cartridge 

would be used for each location separately and the filters were collect at the end of the trip. 

Samples from P2 and P3 were collected over longer intervals and samples often covered 

more than one location (1~2 weeks each time). At the end of the sampling and monitoring 

period, filters and cartridges were removed from monitor and stored at −80 oC until analysis. 

To minimize environmental contaminations, filters and cartridges were deployed and 

recovered from MicroPEM in a sterilized biosafety cabinet. The aerosol and quality control 

data were also downloaded from the MicroPEM monitor after each sampling through the 

Docking Station program. MicroPEM flow rate was post-calibrated after each sampling 

period using TSI 4140 mass flowmeter. All post-calibration flow rates were within ± 5% of 

pre-calibration values. Three participants (P1, P2, P3) also using MOVES App to track their 

geographic locations with GPS coordinates and daily activity.

Individual Age Gender/Sex

P1 61 Male

P2 45 Male

P3 61 Female

P4 40 Female

P5 36 Male

P6 60 Male

P7 31 Female

P8 43 Male

P9 36 Male

P10 31 Male

P11 28 Female

P12 29 Female
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Individual Age Gender/Sex

P13 43 Female

P14 56 Male

P15 42 Male

Method Details

DNA and RNA sample extraction and library preparation—After testing many 

extraction and amplification protocols we found the following protocol optimal for our 

studies. DNA and RNA were extracted from the filter using a modified protocol combining 

the PowerWater® DNA and RNA Extraction kits (Mo Bio, CA, USA) according to the 

manufacturer’s instructions. The amount of nucleic acid materials extracted from a typical 

sample filter is similar to that of 1–10 mammalian cell(s) (Fig. S1). The DNA and RNA 

extracts were then subjected to linear amplifications prior to library preparation for next-

generation sequencing. Specifically, the DNA amplification was achieved through Multiple 

Displacement Amplification (MDA) with REPLI-g Single Cell Kit (Qiagen, Hilden, 

Germany). The RNA samples were linearly amplified by Ovation RNA-seq system V2 

(NuGEN Technologies, Inc., San Carlos, CA, USA) following the manufacturer’s 

instructions. All pre-amplification steps were performed in a biosafety cabinet to minimize 

biotic aerosol particulate contamination from lab environment. Pre-amplification and post-

amplification steps were carried out in physically separated locations. DNA and cDNA 

libraries were then prepared using the KAPA HyperPlus library kit (Kapa Biosystems, 

Wilmington, MA, USA) with Illumina® adaptors as described by the manufacturer. The size 

and quality of libraries were assessed on a Bioanalyzer instrument from Agilent (Agilent 

Technologies, Santa Clara, CA), and sequenced using Illumina HiSeq 4000 platform (2 × 

151 bp) (Illumina Inc., San Diego, CA), with four samples pooled for each lane.

Through control experiments, we found that our approach produces reproducible results and 

is capable of detecting many species across domains of life (Fig. S2). Specifically, we 

carried out a control experiment where we employed two devices side by side at the same 

location to collect samples for 3 days and analyzed their filters through the pipeline in 

parallel. The taxonomy classification results for the two filters are highly concordant even at 

the species level (Fig. S2). Through comparisons with the other mainstream taxonomy 

classification pipelines, we found that our pipeline can classify significantly more contigs/

reads across multiple domains, among which fungi, plants, and animals are not well covered 

by the default databases of other classification pipelines. Interestingly, due our unique pan-

domain approach in species detection, we noticed that 18.3% and 20.7% of bases from DNA 

and RNA are classified as ambiguous even at the kingdom/subkingdom level, meaning they 

are similar to species belonging to different kingdoms. For example, a contig can be 

classified as an insect species as well as a bacterial or viral species. This either indicates 

contamination of reference sequences in existing databases or genuine host-cargo (pathogen) 

relationships.
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Scanning Electron Microscopy (SEM)—The representative sample filters collected for 

SEM were dried using a vacuum desiccator (Bel-Art-SP Scienceware, Wayne, NJ, USA) 

overnight at room temperature. The dehydrated filters were then mounted onto a 12mm 

SEM stainless steel stub using double stick copper tape for maximum conductivity, followed 

by 50–100 Angstrom coating in an Au/Pd sputter coater for 2 minutes. The images were 

then visualized and taken by Hitachi S-3400N VP SEM (Hitachi High Technologies, Japan) 

and affiliated software.

Contamination considerations—Since our experimental protocol was adapted to low 

input nucleotide materials from environmental sources via unbiased linear amplification 

steps, we carefully evaluated the potential impact of contamination by including a blank 

filter for every batch of extraction-amplification-library preparations (28 batches). For each 

batch, we selected samples using the stratified random sampling method. Briefly, we divided 

our total samples into 15 groups each containing similar number of samples, which were 

collected during similar periods of time (e.g. #1–20, #20–40 etc.). We considered that the 

time of collection should play an important role in data variation and would likely represent 

the temporal variation in each batch. Unfortunately, we could not directly quantitate the 

absolute abundance of organisms following MDA amplifications. We evaluated the potential 

impact of contamination via the following approaches: 1. The quantitation of pre-amplified 

DNA and post-amplified cDNA (RNA could not be quantified without amplification) 

showed that there is at least a 8-fold difference in median concentration between blank/

control filters and sample filters (Fig. S2A and B); this number is likely an overestimate of 

background since the single-cell amplification protocols were usually designed for samples 

with the very low amounts of material, giving the blank samples an opportunity to catch up; 

2. The fact that the sequencing reads generated from the DNA blank/control filter is far less 

complex that those from the sample filters (Fig. S2C), based on the assembly results; 3. 

Through the UFC classification pipeline, the blank/control filters (Bacteria-heavy) show 

significantly different taxonomy profiles when compared to the sample filters (Fungi-heavy); 

4. The fact that the batch effects play a very small role in our variation partition analysis 

(Fig. 3A and B) supports the notion that contamination is not a significant issue in our 

datasets; 5. Finally, population genetics analysis on blank/control filters and sample filters in 

parallel demonstrates orders of magnitude larger species intra-diversity on the samples filters 

relative to control filters (Fig. S2E-I; mapped reads were sub-sampled to the same coverage 

for sample and control filters). Further analysis indicates that while species identified in both 

blank/control and sample filters may share a portion of SNP sites (~60% of control SNPs), 

their actual allele profiles at such sites are drastically different (only share 3.7%). This result 

implies that for those species that can be detected in blank/control and sample filters, they 

are basically two distinct populations of the same species. Taken together, we believe the 

contamination plays an insignificant role in our dataset.

Chemical Compound Collection and Preparation—A homemade 3D-printed 

cartridge filled with 200 mg 13 angstrom (A) pore-size Molecular Sieve Adsorbent Sigma 

20304 (Sigma-Aldrich Corp., St. Louis, MO USA) was attached to the end of the particle-

free air flow in the portable device to collect abiotic chemical air solvent concomitantly with 

the collection of biotic biological particulates in personal environment exposure.
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The adsorbent zeolite beads were later recovered in a clean Eppendorf LoBind tube, where 1 

ml methanol (Mass Spec grade) was added. The mixture was incubated for 20 min at room 

temperature (RT). Then separated at 22,000 x g for 20 min at RT. The supernatant was 

transferred to 150-µl deactivated glass insert housed in Waters 2-ml brown MS vials for 

LC/MS analysis, or stored at 20 °C for later use.

For chemical compounds, we used zeolite adsorbent to collect air-dissolved compounds 

from particle-free air flow that was concomitantly generated with the collection of biotic 

samples. Zeolite is widely used as molecular sieve to remove molecular impurity in industry. 

Among our different sample testing, zeolite was able to readily capture two flavor 

compounds emanated by an orange peel placed in close vicinity (Fig. S3D and E).

Liquid Chromatography Coupled Mass Spectrometry (LC/MS)—LC/MS analysis 

was performed in a platform that consists of Waters UPLC-coupled Exactive Orbitrap Mass 

Spectrometer (Thermo, Waltham, MA, USA), using a mix-mode OPD2 HP-4B column 

(4.6×50 mm) with a 4.6×10 mm guard column (Shodex, Showa Denko, Tokyo, Japan). The 

column temperature was maintained at 45 °C. The sample chamber was maintained at 4  °C.

The binary mobile phase solvents were: A, 10 mM Ammonium acetate (NH4OAc) in 50:50 

Acetonitrile:water; B, 10 mM NH4OAc in 90:10 Acetonitrile:water. Both solvents were 

modified with 10 mM Acetic acid (HOAc) (pH 4.75) for positive mode acquisition, or 10 

mM NH4OH (pH 7.25) for negative mode.

The flow was set as follows: flow rate, 0.1 ml/min; gradient, 0–15 min, 99% A, 15–18 min, 

99% to 1% A; 18–24 min, 1% A; 24–25 min, 1% to 99% A; 25–30 min, 99% A.

The MS acquisition was in profile mode and performed with an ESI probe, operating with 

capillary temperature at 275 °C, sheath gas at 40 units, spray voltage at 3.5  kV for positive 

mode and 3.1 kV for negative mode, Capillary voltage at 30 V, tube lens voltage at 120 V 

and Skimmer voltage at 20 V. The mass scanning used 100,000 mass resolution, high 

dynamic range for AGC Target, 500 ms as Maximum Inject Time and 70–1,000 m/z as the 

scan range.

Quantification and Statistical Analysis

General statistical analysis and data visualization—The majority of statistical 

analyses and visualizations were done in Rstudio and R (at the time of writing, 1.0143 for 

Rstudio and 3.4.0 for R), with necessary aid from customized python scripts (2.7.4) and 

shell scripts (Linux). The primary R packages are mostly maintained by the Bioconductor 

project (https://www.bioconductor.org/, along with all their dependencies). The essential 

ones used are ggplot2 (2.2.1), reshape2 (1.4.3), edgeR (3.18.1), NMF (0.23.6), phyloseq 

(McMurdie and Holmes, 2013) (1.20.0), RColorBrewer (1.1–2), scales (0.5.0), corrplot 

(0.84), Hmisc (4.1–1), ggrepel (0.7.0), vegan (2.4–5), cluster (2.0.6), factoextra (1.0.5), plyr 

(1.8.4), dplyr (0.7.4), psych (1.7.8), glmnet (Friedman et al., 2010) (2.0–13), devtools 

(1.13.4), ggpubr (0.1.6), tidyverse (1.2.1), ade4 (1.7–10), caret (6.0–78), e1071 (1.6–8), 

pROC (1.10.0), gridExtra (2.3), ggnetwork (0.5.1), ggsci (2.8), ggbeeswarm (0.6.0), ggpmisc 
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(0.2.16), ggmap (2.7), colorspace (1.3–2), adespatial (0.1–1), limma (3.32.10), and relaimpo 

(2.2–2), PMA (1.0.9). The main analysis script is attached as Data File 1.

In general, non-parametric statistical tests (Wilcoxon test, Kruskal-Wallis, and Spearman 

correlation) were used over the parametric counterparts due to the non-normality of our 

datasets. We adjust the p values using the Benjamini & Hochberg (BH) method to control 

for False Discovery Rate (FDR), when multiple comparisons are concerned, including p 

value matrix constructed when calculating correlations matrix among different features or 

samples. We chose not to rarify our data because we do not want to lose any data 

(McMurdie and Holmes, 2014). For inter-sample normalization, we chose to not use the 

standard negative binomial or rlog modeling approaches (implemented in edgeR and 

DEseq2 (Love et al., 2014)) because our exposome data violates the fundamental 

assumption that most features should not change drastically in-between samples. Instead, we 

used Counts Per Million (CPM) method (Love et al., 2014) for inter-sample normalization 

followed by hyperbolic arcsine (arcsinh) transformation (asinh() in R) for within sample 

normalization (Callahan et al., 2016). We used log10(n + 1) transformation for chemical 

abundances. The arcsinh transformed CPM values (aCPM) were used in all statistical/

computational analyses and visualizations unless otherwise noted (e.g. area plots of relative 

abundances of kingdom/subkingdom in Fig. 2A-D and pathogen analysis). We did not adjust 

relative abundance value based on genome sizes of different organisms because a lot of 

species in our database are represented by incomplete genomes (a collection of contigs), 

therefore precise estimates of their genome sizes cannot be achieved. We used the F1000 

microbiome workflow paper as a reference in designing many of the downstream analyses 

(Callahan et al., 2016). Annotated phylogenetic trees were generated using phyloT and iTOL 

(Letunic and Bork, 2011).

Moran’s Eigenvector Map (MEM) is a statistical method to extract spatial structure 

information from geographic coordinates of samples collected from different locations, 

typically used in the ecological studies. Statistically, Moran’s Eigenvector Map (MEM) 

variables are orthogonal vectors maximizing the spatial autocorrelation (Dray et al., 2012) 

(measured by Moran’s I of autocorrelation). MEM variables are calculated from the spatial 

neighborhood matrix and spatial weighting matrix, both of which are derived from the raw 

spatial data of the sampling sites. Each MEM variable independently represents broad- or 

fine-scale spatial structure in the geographic data, and can be directly super-imposed on the 

geographic coordinates for visual interpretation of spatial patterns (Fig. S6A). In this study, 

we used adespatial, ade4, and spdep packages to construct the MEM variables using the 

geographic coordinates of collected exposome samples. The MEM variables were forward-

selected on the taxonomy abundance data using redundancy analysis (RDA) to filter 

insignificant MEM variables. We then used the selected MEMs to provide explicit spatial 

information in the downstream variation partitioning analysis.

For differential abundant genera/phyla/species analyses between the “Campus” and 

non-”Campus” locations and across four seasons, we only considered organisms (at different 

taxonomy level) that were detected in more than 50 of 283 samples. We used the Wilcox test 

for two group comparisons and the Kruskal-Wallis test for multi-group comparisons. For ad-

hoc comparisons we used the Wilcox test. P values for multiple comparisons (including ad-
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hoc comparisons) were adjusted using the BH method. Comparisons with Adj. p < 0.05 were 

reported accordingly.

For ordination methods, we chose principal component analysis (PCA) instead of the 

correspondence analysis (CA) because we were able to observe a environmental gradient 

axis shorter than 2 in the detrended correspondence analysis (DCA) (Fig. S6C). This 

indicates that the environmental gradients in our dataset are rather short and linear instead of 

unimodal for which CA is designed (Smilauer and Lepš, 2014). All ellipses are drawn with 

axes equal to the standard deviation of the data unless noted otherwise. For variable plots, 

contributions of individual variables are calculated from the weighted average of the square 

of their coefficients (loading score) for top three principal components (weighted by 

principal components’ eigenvalues). As a validation of our PCA analysis results, we also 

calculated pairwise in-group and out-of-group Bray-Curtis distances of respective groups 

and show that the differences are statistically significant.

For overall variation partitioning, we used dbRDA (distance based redundancy analysis) to 

decompose the variation in our datasets influenced by various variables, we gathered and 

prepared 64 metadata variables for each sample; we divided them into “environmental”, 

“spatial/lifestyle”, and “technical” groups and carried out forward-selection of variables 

within each group (this is to retain the overlapping between different groups). We then 

partitioned the variation (squared Bray-Curtis distances) of our dataset based on the 

definitions of these groups of variables using the varpart() function from the vegan package. 

Adonis (improved PERMANOVA) analysis was used to evaluate how variation can be 

explained by individual variable.

For genus-based variation partitioning, we selected genera that were detected in more than 

100 samples, 241 genera satisfied this criterion. We then performed forward-selection on all 

64 variables over the entire exposome DNA dataset to select the best representative 

variables. Multivariate linear regression models were then constructed for each of the 241 

genera and based on the adjusted p value (p < 0.05, BH) of these models, we selected 199 

genera for the downstream variation decomposition analyses. To evaluate the contributions 

of each variable, we used a hierarchical partitioning method implemented in the relaimpo 

package, which loops through all potential ways of adding the terms in regression models 

(instead of evaluating the R2 based on one particular regression model). After the 

contribution of each variable was evaluated in conjunction with all other variables, we 

calculated the contributions of each group (environmental, spatial/lifestyle, and technical) by 

summing up the contributions of the variables of each group. Note that the total percentage 

of contributions of each group is based on the total explained variation of each individual 

model, not the total variation.

The formula used for the multivariate regression model constructed for individual genus (see 

Fig. S6 for an explanation on these variables):

asinh CPM ∼ batch + longitude + Mean_TemperatureC + mFPAR + MEM1 + spring
+ Overall . AQI . Value + MEM91 + winter + P1 + date . month + popdensity
+ MEM69 + dN02 + P2 + MEM83 + is_there_rain
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For sparse canonical correlation analysis (sCCA), we first evaluated the correlations between 

the biological (biotics) and chemical (abiotics) dataset and show that these two datasets have 

extensive correlations among their features (p < 0.05, 499 permutations, implemented as the 

RV.rtest() function from the ade4 package, Monte-Carlo Test on the sum of eigenvalues of a 

co-inertia analysis). We then performed sparse canonical correlation analysis using the 

penalized matrix decomposition (implemented as the CCA() function from the PMA 

package) on the two datasets with penaltyx = 0.20, penaltyz = 0.20. We combined 

biological/chemical features with non-zero coefficients and performed PCA analysis on the 

combined data frame to visualize the driving force behind the correlations (Callahan et al., 

2016).

UFC classification pipeline—Raw reads in fastq format were first removed of duplicates 

using an in-house developed python script. We removed only exact paired-end duplicates 

(meaning both forward and reverse reads need to be identical, although the ordering of 

which can be swapped). We expected most of pair-ended duplicates represent technical 

artifacts as we applied linear amplification step to both DNA and RNA during sequencing 

library preparations. The de-duplicated reads were then trimmed using Trim_galore (0.4.4) 

wrapper with default parameters (https://github.com/FelixKrueger/TrimGalore), which 

essentially combines the adapter removal tool Cutadapt (1.14) and NGS quality control tool 

Fastqc (0.11.5). These reads were then mapped to hg19 human genome using BWA-mem 

algorithm with default parameters. After removing human-mapped reads, a de novo 

assembly step was executed by Megahit (Li et al., 2015) (1.1.1), a popular de bruijn graph 

assembler for short NGS sequencing reads. This step assembled millions or more reads into 

a much smaller collection of information-dense contigs (>200 bp).

These contigs were queried against the UFC database using a BLASTN (2.3.0+) wrapper, 

which takes NCBI BLAST algorithm as its core and added a few modified functionalities 

that are essential to the pipeline. The choice of database(s) is the most crucial component 

when it comes to nucleic acids detection and classification. A poorly chosen database always 

leads to under-classification and sometimes even miss-classification. For the accurate 

identification of organisms, a broad database encompassing all domains of life is essential. 

In short, our in-house UFC database is constructed by a union of NCBI Refseq project and 

the Genbank representative genomes, containing nucleic acid information that represents all 

domains of life. This curated database includes all domains of life known to humans, which 

are broadly divided into the following categories: plants, protozoa, invertebrates, bacteria, 

archaea, fungi, virus, non-mammal vertebrates and some selected animals (82 million 

entries, 40,000 species).

The BLAST results were further analyzed by a customized implementation of Lowest 

Common Ancestor (LCA) algorithm, along with special considerations to certain domains of 

life that do not conform to the usual taxonomy database structures. The UFC taxonomy 

database was constructed by leveraging the NCBI taxonomy database to provide a unique 

taxonomy label for each entry in the UFC database, which enables fast and accurate 

evaluation of taxonomy in the LCA step. The inferred taxonomy results from the LCA step 

was compiled and displayed in a text format. Specifically, the report followed the 

hierarchical taxonomy rank conventions of NCBI and displayed the sequencing abundance 
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of each taxonomy rank in aggregate. We would like to emphasize that although classification 

down to the species level is possible, the conservative LCA algorithm will rigorously 

classify contigs at higher taxonomy level due to ambiguity in the sequence alignments. 

Abundance estimation was handled as aggregated sequencing amount (applicable to all 

taxonomic levels). The sequencing amount (in base pairs) was estimated by mapping 

sequencing reads that were used for assembly onto the assembled contigs, each with 

assigned taxonomy label. The final report also included a special section where species 

belonging to different groups of interests were listed separately.

Although our pipeline classifies contigs at the species level, we noticed that frequently those 

contigs would share 70%−90% identity with target reference genome (Fig S4). This 

indicates that while a taxonomic label is assigned, the contig is actually only classified by its 

most closely related species in the database. Although our UFC database is substantially 

larger than most, if not all, known fragment classification pipelines, the actual diversity in 

nature still dwarfs our current knowledge database of species. This observation is also 

reflected in the results of population genetics analysis where substantial intraspecies 

diversity was observed for almost all involved species across different domains (Fig. 6). 

Effectively, environmental species should be viewed as a dynamic species complex defined 

by the aggregate functional capacity and intraspecies diversity of each member of the 

complex. As examples, the information on contigs classified as Rotifera and Apicomplexa 

organisms is attached in Data File 2.

Coassembly of DNA and RNA data—To gain an overview understanding of our data, 

we co-assembled 42.9 and 30.4 billion reads for DNA and RNA exposomes, respectively 

(totaling 6.43 and 4.56 Tbp). Due to the sheer amount of data, even megahit that was 

optimized for assembling large amount of metagenome data could not handle the job given 

the limitations on computing resources. To overcome this, we used a digital normalization 

module implemented in bbnorm (37.02), a part of the bbtool package (https://jgi.doe.gov/

data-and-tools/bbtools/), to significantly reduce the amount of input reads. We then used 

megahit (Li et al., 2015) (1.1.1) with the preset --sensitive option for the co-assembly. For 

DNA, the co-assembly comprised of 6,545,607 contigs, totaling 7,409,478,621 bp, with 

cutoff set at 200 bp, a max contig size of 111,652 bp, an average contig size of 1132 bp, and 

a N50 of 1896 bp. For RNA, the co-assembly comprised of 1,023,712 contigs, totaling 

492,353,963 bp, with cutoff set at 200 bp, a max contig size of 169,362 bp, an average 

contig size of 481 bp, and a N50 of 486 bp. We ran the co-assembled contigs through our 

UFC pipeline and the classification results are consistent with the aggregate results from 

analyzing individual samples incrementally (The N+1 problem).

Bootstrap confidence interval estimation, bootstrap-based dominating force 
definition, and the permutation-based p-value estimations—We used the 

bootstrap method to evaluate the 90% confidence interval of selected calculated or measured 

statistics based on the genus abundance data (denoted as S), such as relative importance of 

each group of variables (Environmental, Spatial/lifestyle, and Technical artefacts), denoted 

ask1, k2, …kn, collectively defined as the statistics vector K. We resampled the genus 

abundance data with replacement 9999 times (also known as bootstrapping). For each of the 
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resampled abundance dataS′1, S′2, …S′9999, we retain all corresponding meta-variable 

associations, and calculated the relative importance and other statistics vectors 

K′1, K′2, …K′9999 for the each S’. We then computed the difference between the K and each 

of the K′1, K′2, …K′9999 vectors, resulting in a 9999 ∗ n matrix of differences denoted as D. 

For each column of the matrix D, we sorted the values from lowest to the highest and 

calculated the values for 5th percentile and 95th percentile of each column, denoted as P5 

and P95, respectively. The 90% confidence interval for each of the statistics k1, k2, …Kn can 

then be estimated as kn − P95, kn − P5 , where kn is the value of the statistic evaluated using 

the original dataset.

For each genus, we consider it is subjected to the dominating influence from either the 

environmental variables (Env) or spatial/lifestyle (Spa) variables, if the calculated relative 

importance of one group is consistently greater than the other in at least 90% of all 9999 

bootstrap samples, namely S′1, S′2, …S′9999 For example, for genus A, if the calculated 

relative importance of the environmental variables env is greater than the calculated relative 

importance of the spatial/lifestyle variables spa in 93% of the bootstrap samples, we define 

that the genus A is subjected to the dominating force from the environmental variables env 
in our dataset.

For permutation test, we permutated the meta-data associations with the taxonomy 

abundance profiles randomly 9999 times and recalculated the relative importance of each 

group of variables (as well as other statistics) for each genus in the 9999 permutated 

datasets. We then derived the p-values by calculating 1 – q, where q is the quantile value of 

the observed value of the statistics in the background distribution of the permutated 

statistics, as evaluated by the 9999 permutated datasets.

Analysis of the source of dominating influence in bacteria, plants, and 
animals.—Using the same criteria in the fungi variation partitioning analysis, 5 bacterial 

genera, 4 of them being Firmicutes, are subjected to dominating environmental forces (blue), 

including Bacillus, Flavobacterium, Enterococcus, and Dolosigranulum (Fig. 3B, second 

panel). 6 bacterial genera are subjected to dominating spatial/lifestyle influence (dark 

yellow, some are overlapping), including Corynebacterium (skin bacteria), Acinetobacter 
(soil bacteria, but also found in hospital infections), Dyadobacter, and Geobacillus (Fig. 3B, 

second panel). The plant genera with dominating environmental influences (blue) are 

Quercus (oak tree), Fraxinus (ash tree), and Musa (banana tree). In contrast, Betula (small 

tree/shrubs), Triticum (wheat/grass), and Aegilops (grass) have dominating influences from 

Spatial/lifestyle variables (dark yellow). Thus, it appears that, based on our data, larger 

plants such as trees (Diamonds in Fig. 3B, third panel) are more likely to be influenced by 

environmental variables (such as seasons, see below) whereas the exposures to smaller 

plants such as grass (Circles in Fig. 3B, third panel) may be more Spatial/lifestyle-

dependent. Finally, animal genera Canis (dogs) and Felis (cats) are both strongly spatial/

lifestyle-dependent (>60%), reflecting their presence at distinct geographical locations (Fig. 

3B, last panel). We also noted that the abundance of a fly genus, Rhagoletis, is subjected to 

substantial technical influence.
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Graph-based permutation test—To demonstrate the seasonal influence on the 

exposome, we first calculated the Bray-Curtis distances between all DNA exposome samples 

at the genus level. We then constructed nearest neighbor (NN) tree with the number of 

neighbor set as 1 (knn = 1). We colored each node in the resulting tree based on the 

sampling seasons. If two nodes (samples) are of the same season, the edge connecting them 

is “pure”. Otherwise, the edge connecting them is “mixed”. We then counted how many pure 

edges there are in the initial tree. To test whether this number is statistically significant 

above background distribution, we permutated the season labels of all nodes while 

maintaining the initial tree structure (Callahan et al., 2016). For each permutation, we count 

the number of pure edges and mixed edges. As a result, we generated a background 

distribution of the number of pure edges (and mixed edges) for the original tree (N = 9999 in 

this study). We then calculated the chance of observing the number of observed pure edges 

(or greater) in the original tree based on this background distribution. Due to the limitation 

of permutation-based p value estimation method, we cannot derive a p-value less than 1/N 

(or p = 0.0001) in this study, hence the actual probability may be lower.

Fuzzy c-means clustering—We used the fuzzy c-means clustering algorithm (package 

e1071) to explore the seasonal and location-related patterns in our biotic and abiotic data, 

respectively. For seasonal clustering, we binned the DNA relative abundance (aCPM) data 

by seasons for all samples (arcsinh transformed CPM at the genus level). This produced a N 

∗ 4 data matrix where N is the number of genera in the dataset. For chemical data, we 

directly used the log transformed, log(n + 1), chemical abundance data over 15 locations (N 

∗ 15). We used default parameters (except for iter.max = 2000). The optimal cluster number 

was determined based on a combination of three methods (Elbow, Silhouette, and Gap 

statistic). The clustering results were then optimized by visualizations of the results (PCA 

and line plots). For line plots, only features (both biotics and abiotics) with a membership 

score > 0.65 were considered, we chose this high stringency so that we can explore the 

dynamics of the core members of each cluster. In fuzzy c-means clustering, the membership 

score is the probability of a feature belonging to any cluster, each feature is assigned a 

cluster based on its top membership score (as opposed to k-means clustering, where the 

membership score is binary). The alpha (transparency) of each feature is directly based on 

the membership score. The output results were not smoothed.

Season predictive modeling—To predict seasons based on the DNA taxonomic profile 

across different domains of life, we developed a customized R script pipeline using the 

glmnet package. Specifically, we used the LASSO logistic regression classifier implemented 

in the glmnet package, because it generates a classifier with a small number of selected 

features from the thousands of genera in our data. These features are biologically 

interpretable as the linear combinations of variables in the logistic regression. Since the 

feature selection process is built into the LASSO classifier, it is straightforward to obtain not 

only the prediction model, but also a realistic estimate of the generalized error during cross-

validations. This is superior to a two-step approach, where a supervised feature selection 

step is performed prior to cross-validation, which can lead to over-optimistic accuracy 

estimates. In addition, this approach prevents information leakage from highly correlated 
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features between training and testing dataset. As only one of the highly correlating features 

will be selected before model training/testing.

Specifically, the steps are:

1. Applying arcsinh transformation to our dataset, which performs nearly linearly 

for small values, but near log transformation for larger values.

2. Selecting the data of P1 in North America (N=179) because the variabilities in 

other continents with limited sample sizes did not allow adequate in depth 

analysis. We use the genus level datasets because they provide the best balance 

between resolution and accuracy.

3. Partitioning data for ten-fold (outer loop) times ten folds (inner loop) nested 

cross-validations. In the outer loop, one fold of data is progressively assigned as 

the testing data, the remaining nine folds of data are then progressively 

partitioned into one plus nine folds in the inner loop. The nine folds of data are 

used for training the model to get a hyperparameter for selected model (in this 

case, the penalizing parameter lambda for feature selection) and the one fold of 

data is used for evaluating the hyperparameter for selected model (in this case, 

the penalizing parameter lambda for feature selection). The resulting model from 

the internal loop is then tested on the one fold in the external loop, this step 

generates a series of model performances parameters including multi-class area 

under curve (mAUC), accuracy, specificity, F1 score etc. We resample the whole 

dataset 10 times to generate 100 internal model performance parameters to assess 

its stability. Weights for samples in each season are adjusted for every training to 

account for sample size variations in four seasons.

4. We obtained season prediction scores for each sample based on the average 

prediction scores of the resampled 10×10 internal testing, from which we 

generated the multi-class ROC curve using one vs all approach for each season, 

using mean predicting scores of each season.

5. For model interpretation and feature extraction, we examined features with non-

zero coefficients for each season and visualized them on a heatmap. For 

importance of features, we use square of coefficient normalized by total sum of 

squared coefficient for each season to denote its contribution to the prediction 

model. Bar length of lollipop plot corresponds to the log-odds ratios of respective 

feature.

6. For external validation, we used the data from P2, who stayed in the North 

America region throughout the entire sampling period, making it a great external 

validation dataset. The result is comparable to the performance metrics through 

cross-validation on P1’s data.

Of note, this algorithm does not retain certain genera due to multicollinearity issues (if 

several genera are highly correlated, only one of them will be selected for model training 

purposes), which are fairly ubiquitous due to seasonal patterns of many genera as previously 
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discussed. However, as we demonstrated in the results, the selected features indeed reflect 

the seasonal patterns consistent with the season predicting model.

Season predictive model identified species with corresponding seasonal 
patterns.—Examples include: a) the winter-contributing genus Tricholoma, a type of 

edible mushroom that grows in winter; b) the spring-contributing genus Azadirachta, a type 

of tree that blooms during the spring; c) the summer-contributing genus Sclerotinia, or white 

mold, which sheds spores during summer (Fig. 4J). Interestingly, the aquatic Flavobacterium 
was identified as a winter-contributing genus (Luria et al., 2016) (Fig. S8G, right), indicating 

that we captured organisms that are not previously considered as airborne.

Population genetics analysis—For population genetics analysis, we adapted the 

method from previous human microbiome studies (Kuleshov et al., 2016; Schloissnig et al., 

2013). Specifically, we first generated a list of reference genomes with > 10x aggregate 

coverage among all samples. We chose the reference genomes based on clinical and 

scientific interests for each domain. For bacteria, the focus was placed on pathogens, 

opportunistic pathogens, and human related species, in that order. For fungi, the focus was 

placed on mold species. For viruses, we chose the top 21 species as all of their coverage are 

quite high among samples. For species with draft genomes comprised of assembled contigs 

instead of complete chromosomes, we only considered contigs longer than 1000 bp in our 

analysis. Reference genomes/contigs with less than 10% coverage were discarded from the 

final analysis. An assembly of reference genomes and contigs was used as the reference to 

map total pooled DNA reads (for RNA viruses, total RNA reads were used). We followed 

the BROAD Institute variant calling best practices until the actual variant calling step, for 

which we developed a custom SNP calling pipeline based on previous studies (Kuleshov et 

al., 2016; Schloissnig et al., 2013) and only considered bases with a quality score >= 15. We 

required SNPs to be supported by >= 4 reads and to occur with a frequency of at least 1%. 

This rules out sequencing errors. We opted to use custom variant caller because the variant 

calling in our dataset require special considerations in the number of haplotypes existed for a 

particular species which is an unknown number, therefore all optimizations in the existing 

variant calling procedures for human genome are not applicable. We also detected indel 

variations but the results was not used in population genetics analysis.

We estimated SNP density (Number of SNPs/kbps) and nucleotide diversity (π) based on the 

SNP profiles. The nucleotide diversity (π) for each SNP site is calculated using the 

following formula:

π =
i j

xix jπi j = 2 ∗
i = 2

n

j = 1

i = 1
xix jπi j

where xi and xj are the respective frequencies of the i th and j th sequences (each “sequence” 

is only one base here) at each site, πij is the number of nucleotide differences between the i 
tℎ and j tℎ sequences (either 0 or 1), and n is the number of coverage at each site. The 

calculated nucleotide diversity of each site is then aggregated over entire reference genome 

or contigs to calculate the nucleotide diversity of the respective species. For species with 
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unfinished genomes (collection of contigs), we calculated weighted versions of the metrics 

using their effective genome sizes (proportion of genome that have >= 4x coverage) as 

weights. To validate, our results are consistent with population-level estimation published 

previously for bacteria (Kuleshov et al., 2016; Schloissnig et al., 2013). In addition, our 

results show that even multiple chromosomes from the same viral species have similar SNP 

density and nucleotide diversity even if the coverages are different (Fig. S11).

Transcriptomics analysis—Contigs from the co-assembled RNA were mapped using 

BlastX to the non-redundant (nr) protein database from NCBI. RPS-BLAST was used to 

annotate protein functions based on Conserved Domain Database. Gene products were 

annotated using gene ontology (GO), cluster of orthologous groups (COG), protein family 

(Pfam) and protein clan databases. Enrichment was calculated relative to the observed GO 

annotations across all taxonomic groups in the transcriptomic dataset. Results were 

visualized using R.

Allergen characterization—Taxonomy categorization of the co-assembled RNA contigs 

was performed using the in-house UFC pipeline. This information, along with Pfam 

annotations, were further used to identify potential allergens using the structural database of 

allergenic proteins (SDAP). We were able to identify 42 potential allergen proteins, 31 of 

which are non-food related. To calculate allergen abundance, we mapped the RNA 

sequencing reads from each filter to the identified allergen contigs. Sequence mapping was 

performed using Burrows-Wheeler Aligner (BWA). Gene expression levels were calculated 

in CPM.

Species interaction network (Exposome clouds)—To generate the species 

interaction network, we first acquired a list of species of interests from either all samples or 

samples of individuals in case studies. We integrated two species interaction databases to 

generate a comprehensive species-interaction database that cover pathogen-host and other 

natural interactions between species of different domains (Poelen et al., 2014; Wardeh et al., 

2015). We then queried our species list against the species-interaction database. Only 

interactions with both species found in our query list are retained. The results were parsed 

using customized scripts to comply to the import format of Gephi (0.9.2). The layout 

algorithm (Yifan Hu) was chosen with customized parameters to optimize the visualization 

of the exposome clouds of interest in Gephi.

Chemicals post-acquisition analysis—The raw LC/MS data files were centroided 

with PAVA (Guan et al., 2011) and converted to mzXML format by a customized R script. 

Mass feature extraction was performed with XCMS v1.30.3. The mass features were then 

manually searched against the Metlin metabolite database using 5 p.p.m. mass accuracy, 

with Toxicant search turned on. A portion of the metabolite hits were validated using 

standards that were analyzed in an identical fashion (e.g Fig. S9). The scored mass features 

were clustered with SIMCA v14.1(Umetric, Malmö, Sweden). For a conservative 

assessment of the number of unique chemical features, we developed a customized Python 

script to remove potential isoforms, isotopes, and adducts from the 3,299 xcms-extracted 

putative chemical features that were enriched at least 10 fold as compared with the blank 
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control. Filter windows of m/z differences (±0.0015, corresponding to 6 p.p.m at 500 m/z or 

10 p.p.m at 300 m/z) and retention time (±0.1 min) were applied. We estimated the total 

number of at least 2,796 unique chemical features that cannot be considered as isoforms 

(e.g. the same mass within the same retention time window), isotopic mass species (13C for 

M+1, 34S or 18O for M+2), or adducts (-H2O, +Na, +NH4, +Cl) of another feature in the 

data. We note however that all adducts and modifications of compounds are not known so 

this estimation is tentative. The predicted accurate masses for isotopic peaks and adducts 

were obtained from XCalibur (V2.2 Thermo), the same software used to acquire all mass 

spectrometry data in this study.

Identification of genera that influence sample clustering patterns in the four-
people tracking study—We investigated which genera influenced the clustering patterns 

(Fig. 3H). P6’s device captured signatures of Alkanindiges, Metaseiulus, Propionibacterium, 

and Mogibacterium genera (Fig. 3H navy boxes). Alkanindiges is a genus of bacteria 

typically found in an urban environment, usually in sludge; Metaseiulus is a type of mite 

frequently found indoors; Propionibacterium, a genus of bacteria, is usually found on human 

skin; Mogibacterium is an obligate anaerobic bacterial genus that is associated with human 

periodontitis. These genera are expected in urban/indoor/human environment, consistent 

with P6’s location. In contrast, P1’s more active schedule led to significant amounts of plant 

and fungi exposures (Fig. 3H green boxes). Overall, these results demonstrate an important 

role of spatial/lifestyle-related variables in our exposome dynamics.

Data and Software Availability

The raw sequencing reads for DNA and RNA, as well as the co-assembled contigs from the 

DNA and RNA reads, are deposited under the NCBI Bioproject PRJNA421162. The main 

analysis script was written in the Rmarkdown format and is attached as Data File 1. The 

detailed information for contigs assigned as Rotifer and Apicomplexa is included in the Data 

File 2. Please see the Key Resources Table for availability of other software.

KEY RESOURCES TABLE

The table highlights the genetically modified organisms and strains, cell lines, reagents, 

software, and source data essential to reproduce results presented in the manuscript. 

Depending on the nature of the study, this may include standard laboratory materials (i.e., 

food chow for metabolism studies), but the Table is not meant to be comprehensive list of all 

materials and resources used (e.g., essential chemicals such as SDS, sucrose, or standard 

culture media don’t need to be listed in the Table). Items in the Table must also be 
reported in the Method Details section within the context of their use. The number of 

primers and RNA sequences that may be listed in the Table is restricted to no more than 

ten each. If there are more than ten primers or RNA sequences to report, please provide this 

information as a supplementary document and reference this file (e.g., See Table S1 for XX) 

in the Key Resources Table.

Please note that ALL references cited in the Key Resources Table must be included in the 

References list. Please report the information as follows:
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• REAGENT or RESOURCE: Provide full descriptive name of the item so that it 

can be identified and linked with its description in the manuscript (e.g., provide 

version number for software, host source for antibody, strain name). In the 

Experimental Models section, please include all models used in the paper and 

describe each line/strain as: model organism: name used for strain/line in paper: 

genotype. (i.e., Mouse: OXTRfl/fl: B6.129(SJL)-Oxtrtm1.1Wsy/J). In the Biological 

Samples section, please list all samples obtained from commercial sources or 

biological repositories. Please note that software mentioned in the Methods 

Details or Data and Software Availability section needs to be also included in the 

table. See the sample Table at the end of this document for examples of how to 

report reagents.

• SOURCE: Report the company, manufacturer, or individual that provided the 

item or where the item can obtained (e.g., stock center or repository). For 

materials distributed by Addgene, please cite the article describing the plasmid 

and include “Addgene” as part of the identifier. If an item is from another lab, 

please include the name of the principal investigator and a citation if it has been 

previously published. If the material is being reported for the first time in the 

current paper, please indicate as “this paper.” For software, please provide the 

company name if it is commercially available or cite the paper in which it has 

been initially described.

• IDENTIFIER: Include catalog numbers (entered in the column as “Cat#” 

followed by the number, e.g., Cat#3879S). Where available, please include 

unique entities such as RRIDs, Model Organism Database numbers, accession 

numbers, and PDB or CAS IDs. For antibodies, if applicable and available, 

please also include the lot number or clone identity. For software or data 

resources, please include the URL where the resource can be downloaded. Please 

ensure accuracy of the identifiers, as they are essential for generation of 

hyperlinks to external sources when available. Please see the Elsevier list of Data 

Repositories with automated bidirectional linking for details. When listing more 

than one identifier for the same item, use semicolons to separate them (e.g. 

Cat#3879S; RRID: AB_2255011). If an identifier is not available, please enter 

“N/A” in the column.

– A NOTE ABOUT RRIDs: We highly recommend using RRIDs as the 

identifier (in particular for antibodies and organisms, but also for 

software tools and databases). For more details on how to obtain or 

generate an RRID for existing or newly generated resources, please 

visit the RII or search for RRIDs.

Please use the empty table that follows to organize the information in the sections defined by 

the subheading, skipping sections not relevant to your study. Please do not add subheadings. 

To add a row, place the cursor at the end of the row above where you would like to add the 

row, just outside the right border of the table. Then press the ENTER key to add the row. 

Please delete empty rows. Each entry must be on a separate row; do not list multiple items in 
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a single table cell. Please see the sample table at the end of this document for examples of 

how reagents should be cited.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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• Human exposome, including biotic/abiotic exposures, is vast, diverse, and 

dynamic.

• Human exposome is influenced by environmental and spatial/lifestyle 

sources.

• People can have distinct personalized exposomes, even when geographically 

close.

• Human- and environment-related exposures constitute the human exposome 

cloud.
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Fig. 1. 
Overview of the environmental exposome study. (A) A wearable device was modified to 

collect biotic (biological) and abiotic (chemical) compounds simultaneously from 

environmental airborne exposures, which were analyzed by NGS and LC-MS technologies, 

respectively. The schematic depicts the size of the employed filter in our study (red dot), 

relative to a conventional filter (grey). (B) The yearly trend of four variables measured by 

the device. Colored arrows denote the 3-month calendar seasons. (C) The sampling scheme 

for this study. P1 (green), P2 (dark blue), and P3 (red) were the most tracked. “Others” 

included samples from several individuals. (D) The sampling locations of P1, P2, and P3. 

(E) Representative SEM images of the sample filters. Top left, control filter; the rest are 
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various particles identified based on morphology. Scale bars are indicated. (F) Total diversity 

of biotics from all samples. The pie chart indicates the total relative abundance of respective 

kingdoms/subkingdoms. The pan-domain phylogenetic tree is constructed from all identified 

species in the dataset. The total CPMs of individual species are plotted in the outer ring. (G) 

DNA and RNA viruses, including dsDNA, ssDNA, ssRNA, dsRNA, and retro-transcribing 

viruses were identified. Colored outer arc and the branches denote their respective natural 

hosts.
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Fig. 2. 
The highly dynamic and diverse human environmental exposome. (A) Timeline and (B) 

hierarchical clustered exposome profiles of samples from P1, P2, and P3 (top row) and all 

samples (bottom row), respectively. Proportions are calculated at the kingdom/subkingdom 

level. Ticks on arrows indicate months. (C-D) Same as A-B except for RNA exposome 

profiles. (E-F) Heatmap of DNA (E) and RNA (F) chronological exposome profiles at the 

phylum level. Colored bar denotes the domain of phylum, respectively. (G-H) Correlation 

plots between DNA and RNA exposome profiles at the kingdom/subkingdom (G) and the 
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phylum (H) level. Correlations with Adj. p < 0.05 are shown. (I) Species richness analyses in 

DNA and RNA exposome profiles. (J) Functional transcriptomics analyses of the RNA 

exposome data. Domain-relevant GO terms are denoted by the colored bars next to the 

heatmap.
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Fig. 3. 
Decomposing the variation in the human environmental exposome. (A) Partial dbRDA 

variation partitioning analysis. (B) Ternary plots of variation partitioning analysis of highly 

prevalent genera (detected in >= 100 samples) in different domains of life. Environmental 

and spatial/lifestyle variables account for more than 80% of the explained variation in at 

least 75% genera. Each dot represents a genus and the size of the dot corresponds to the total 

explained variation. Depending on the genera, either environmental (blue) or spatial/lifestyle 

(dark yellow) variables may play dominant roles, or neither (grey). Contours denote 0.1 to 

0.9 confidence intervals. (C) Samples from consecutive time points of P1 in the same 

location are more similar than those from different locations. (D) Representative 
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differentially abundant genera between the “Campus” (N = 98) and non-”Campus” locations 

(N = 103). Boxes are color-coded as in Fig. 2A to denote the kingdom/subkingdom of the 

respective genus. (E) The location of the four individuals (P1, P3, P5, and P6) in the three-

week parallel study. The size of dot corresponds to the self-reported activity level of each 

individual. Arrows indicate commute. (F) PCA analysis of P1, P3, P5 and P6. The bigger 

colored dots are geometric centers of respective groups. (G) Bray-Curtis distance profiles 

between samples from the same individual are more similar. (H) Top contributing genera 

with respect to the PCA analysis in (F). Color indicates relative contribution of each genus. 

All ellipses are drawn with axes equal to the standard deviation of the data. The Adj. p 

values are either directly displayed or denoted using the following notations * <0.05, ** < 

0.01, *** < 0.001, and **** < 0.0001.

Jiang et al. Page 40

Cell. Author manuscript; available in PMC 2019 September 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Seasonal influence on the human environmental exposome. (A) Nearest Neighbor (NN) tree 

constructed on the Bray-Curtis distance matrix calculated between all samples (nodes). If 

from the same season, nodes are connected by solid edges (pure), otherwise they are 

connected by dashed lines (mixed). Color denotes season. (B) Graph-based permutation test 

(N=9999) on the NN tree generated from (A), p = 0.0001. (C) Fuzzy c-means clustering of 

the genera abundance profiles. The four seasonal clusters are shown. (D) PCA analysis of 

genera abundance profiles, color-coded by clustering information from (C). (E) The 
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temporal trends of four representative species based either on seasons (left) or months 

(right). (F) Heatmap of features selected by the regularized multi-class logistic regression 

model. Colored boxes highlight seasonal abundance profiles. Lollipop charts and the 

percentage information indicate the relative importance of each genus. (G) Stable internal 

performance of the season predictive model (resampling 10 times). (H) Macro-average 

performance metrics from the resampling data (10 times). (I) ROC curves calculated by one-

vs-all approach using predictions from the resampling data (10 times). (J) Abundance 

profiles of representative genera selected for seasonal prediction. The Adj. p values are 

either directly displayed or denoted using the following notations * <0.05, ** < 0.01, *** < 

0.001, and **** < 0.0001.
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Fig. 5. 
The abiotic exposome and its correlation with the biotic exposome. (A) Line plots of the 

abundance profiles of chemicals of the location-related cluster Cyan (left, N=84) and cluster 

Red (Right, N=228) as classified by the fuzzy c-means clustering. Each line represents a 

chemical feature. (B) Line plots of the abundance profiles of chemicals of the putative 

season-related clusters Green (N = 456) and Navy (N = 26). Transparency of each line 

(chemical feature) in (A) and (B) corresponds to the membership (>= 0.65). (C) PCA 

analysis of the abiotic exposome, colored by season. Note that as time progresses a major 

shift occurs for samples collected in the spring season. (D) Two anti-correlating chemicals 

potentially corresponding to different seasons. (E) Phthalate (cluster Cyan) is anti-correlated 

with geosmin, caprylic acid, and omethoate. (F) Several chemicals of interest show unique 

location-dependent patterns. (G) A chemical feature is positively correlated with several 

fungal species. (H) Pyridine, an organic solvent, is anti-correlated with multiple fungal 

species in a location-dependent manner. Colored boxes around chemicals denote their 

respective clusters. (I) PCA bi-plot of the sCCA-selected biotic and abiotic features. 

Samples collected from the “Campus” location are tightly clustered. Colored arrows denote 

the relative importance of contributing features. All correlations have Adj. p < 0.05.
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Fig. 6. 
Extensive pan-domain intra-species variation in the exposome. Population genetics analyses 

on top abundant species (N = 108) from Bacteria, Fungi, and Viruses domains. Archaeon 

Halococcus thailandensis and Oomycetes Phytophthora lateralis are also included. First row, 

SNP density, dashed lines denote 100, 10 SNPs/Kbp, respectively; second row, nucleotide 

diversity (n); third row, reference genome size, dashed line denotes 1e6 bps; and fourth row, 

average coverage of reference genomes. Dashed lines denote 100- and 500-fold coverage, 

respectively. All values are in log scale (base 10).
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Fig. 7. 
The bi-modal exposome interacting cloud. (A) The interaction network includes a plant-

centric environmental cloud and a human-centric cloud. The intersection region between the 

two clouds is labeled by the dark yellow shade. The inset boxplots show that the species 

(detected in >= 50 samples) belonging to the Human/Animal group (human cloud) have 

significant less variance when compared to either Plant/Arthropods group (environmental 

cloud) or the Intersection group. Y-axis, log value of the variances of the aCPM values of 

analyzed individual species across all samples. (B) The individual exposome cloud of P1, 

P3, and P5 show diversity/complexity corresponding to their activity level. The number of 

average interactions (AI) is calculated at per node basis. The average path length (APL) is 

calculated by averaging the length of paths connecting any two nodes in the network. The 
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Adj. p values are indicated as: N.S. Not Significant, * <0.05, ** < 0.01, *** < 0.001, and 

**** < 0.0001.
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TABLE WITH EXAMPLES FOR AUTHOR REFERENCE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit monoclonal anti-Snail Cell Signaling Technology Cat#3879S; RRID: AB_2255011

Mouse monoclonal anti-Tubulin (clone DM1A) Sigma-Aldrich Cat#T9026; RRID: AB_477593

Rabbit polyclonal anti-BMAL1 This paper N/A

Bacterial and Virus Strains

pAAV-hSyn-DIO-hM3D(Gq)-mCherry Krashes et al., 2011 Addgene AAV5; 44361-AAV5

AAV5-EF1a-DIO-hChR2(H134R)-EYFP Hope Center Viral Vectors 
Core

N/A

Cowpox virus Brighton Red BEI Resources NR-88

Zika-SMGC-1, GENBANK: KX266255 Isolated from patient (Wang et 
al., 2016)

N/A

Staphylococcus aureus ATCC ATCC 29213

Streptococcus pyogenes: M1 serotype strain: strain SF370; M1 GAS ATCC ATCC 700294

Biological Samples

Healthy adult BA9 brain tissue University of Maryland Brain 
& Tissue Bank; http://
medschool.umaryland.edu/
btbank/

Cat#UMB1455

Human hippocampal brain blocks New York Brain Bank http://nybb.hs.columbia.edu/

Patient-derived xenografts (PDX) Children’s Oncology Group 
Cell Culture and Xenograft 
Repository

http://cogcell.org/

Chemicals, Peptides, and Recombinant Proteins

MK-2206 AKT inhibitor Selleck Chemicals S1078; CAS: 1032350–13-2

SB-505124 Sigma-Aldrich S4696; CAS: 694433–59-5 (free base)

Picrotoxin Sigma-Aldrich P1675; CAS: 124–87-8

Human TGF-β R&D 240-B; GenPept: P01137

Activated S6K1 Millipore Cat#14–486

GST-BMAL1 Novus Cat#H00000406-P01

Critical Commercial Assays

EasyTag EXPRESS 35S Protein Labeling Kit Perkin-Elmer NEG772014MC

CaspaseGlo 3/7 Promega G8090

TruSeq ChIP Sample Prep Kit Illumina IP-202–1012

Deposited Data

Raw and analyzed data This paper GEO: GSE63473

B-RAF RBD (apo) structure This paper PDB: 5J17

Human reference genome NCBI build 37, GRCh37 Genome Reference Consortium http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/human/

Nanog STILT inference This paper; Mendeley Data http://dx.doi.org/10.17632/wx6s4mj7s8.2

Affinity-based mass spectrometry performed with 57 genes This paper; and Mendeley Data Table S8; http://dx.doi.org/10.17632/5hvpvspw82.1

Experimental Models: Cell Lines

Hamster: CHO cells ATCC CRL-11268
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REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

D. melanogaster: Cell line S2: S2-DRSC Laboratory of Norbert 
Perrimon

FlyBase: FBtc0000181

Human: Passage 40 H9 ES cells MSKCC stem cell core facility N/A

Human: HUES 8 hESC line (NIH approval number NIHhESC-09–0021) HSCI iPS Core hES Cell Line: HUES-8

Experimental Models: Organisms/Strains

C. elegans: Strain BC4011: srl-1(s2500) II; dpy-18(e364) 
III; unc-46(e177)rol-3(s1040) V.

Caenorhabditis Genetics Center WB Strain: BC4011; WormBase: WBVar00241916

D. melanogaster: RNAi of Sxl: y[1] sc[*] v[1]; P{TRiP.HMS00609}attP2 Bloomington Drosophila Stock 
Center

BDSC:34393; FlyBase: FBtp0064874

S. cerevisiae: Strain background: W303 ATCC ATTC: 208353

Mouse: R6/2: B6CBA-Tg(HDexon1)62Gpb/3J The Jackson Laboratory JAX: 006494

Mouse: OXTRfl/fl: B6.129(SJL)-Oxtrtm1.1Wsy/J The Jackson Laboratory RRID: IMSR_JAX:008471

Zebrafish: Tg(Shha:GFP)t10: t10Tg Neumann and Nuesslein-
Volhard, 2000

ZFIN: ZDB-GENO-060207–1

Arabidopsis: 35S::PIF4-YFP, BZR1-CFP Wang et al., 2012 N/A

Arabidopsis: JYB1021.2: pS24(AT5G58010)::cS24:GFP(-G):NOS #1 NASC NASC ID: N70450

Oligonucleotides

siRNA targeting sequence: PIP5K I alpha #1: ACACAGUACUCAGUUGAUA This paper N/A

Primers for XX, see Table SX This paper N/A

Primer: GFP/YFP/CFP Forward: GCACGACTTCTTCAAGTCCGCCATGCC This paper N/A

Morpholino: MO-pax2a GGTCTGCTTTGCAGTGAATATCCAT Gene Tools ZFIN: ZDB-MRPHLNO-061106–5

ACTB (hs01060665_g1) Life Technologies Cat#4331182

RNA sequence: hnRNPA1_ligand: 
UAGGGACUUAGGGUUCUCUCUAGGGACUUAGGGUUCUCUCUAGGGA

This paper N/A

Recombinant DNA

pLVX-Tight-Puro (TetOn) Clonetech Cat#632162

Plasmid: GFP-Nito This paper N/A

cDNA GH111110 Drosophila Genomics Resource 
Center

DGRC:5666; FlyBase:FBcl0130415

AAV2/1-hsyn-GCaMP6-WPRE Chen et al., 2013 N/A

Mouse raptor: pLKO mouse shRNA 1 raptor Thoreen et al., 2009 Addgene Plasmid #21339

Software and Algorithms

Bowtie2 Langmead and Salzberg, 2012 http://bowtie-bio.sourceforge.net/bowtie2/index.shtml

Samtools Li et al., 2009 http://samtools.sourceforge.net/

Weighted Maximal Information Component Analysis v0.9 Rau et al., 2013 https://github.com/ChristophRau/wMICA

ICS algorithm This paper; Mendeley Data http://dx.doi.org/10.17632/5hvpvspw82.1

Other

Sequence data, analyses, and resources related to the ultra-deep sequencing of 
the AML31 tumor, relapse, and matched normal.

This paper http://aml31.genome.wustl.edu

Resource website for the AML31 publication This paper https://github.com/chrisamiller/aml31SuppSite
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