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Abstract
Radiometals have been commonly used in medical applications, and utilization of such metals continues to be an attractive
research area. In particular, a variety of radiometals have been developed and implemented for molecular imaging. For such
applications, 89Zr has been one of the most interesting radiometals currently used for tumor targeting. Several chemical ligands
were developed as 89Zr chelators, and new coordinating methods have also been developed more recently. In addition, immuno-
positron emission tomography (PET) studies using 89Zr-labeled monoclonal antibodies have been performed by several scien-
tists. In this review, recent advances to the coordination of 89Zr and the utilization of 89Zr in PET studies are described.

Keywords 89Zr . Positron emission tomography (PET) . Coordination . Ligand

Introduction

Zirconium-89 (89Zr), with an atomic number of 40, has useful
biomedical applications. This is due to its favorable decay
characteristics, a half-life of 78.41 h, which make it suitable
for labeling biomolecules, such as antibodies, for imaging
(Fig. 1, Table 1). Nowadays, 89Zr is considered an important
positron-emitting radionuclide used for the development of
novel radiopharmaceuticals for positron emission tomography
(PET). In particular, 89Zr has been widely used for immuno-
PET studies due to ideal physical characteristics.

Production of 89Zr

There are several reaction pathways that produce 89Zr, such as
the 89Y(p,n)89Zr reaction, 89Y(d,2n)89Zr reaction,
natZr(p,pxn)89Zr reaction, natSr(α,xn)89Zr reaction, and

90Zr(n,xn)89Zr reactions (Table 2) [5, 6, 12–14]. The first
two of these reactions are common pathways to produce
89Zr due to the availability of 89Y from natural sources. The
Zweit group utilized natural yttrium pellets to produce 89Zr
using the 89Y(d,2n)89Zr reaction: the starting material was
irradiated with a 16–7-MeV optimum energy beam of deu-
terons and then purified in an ion-exchange column to obtain
a 66.6-MBq/μAh yield of 89Zr with a minor fraction of long-
lived 88Zr (0.008%). Using a similar reaction, high-purity 89Zr
production was experimentally reported by Tang and co-
workers and theoretically calculated by the Sadeghi group
[3, 15]. Despite the higher yield of the 89Y(d,2n)89Zr reaction
compared to the 89Y(p,n)89Zr reaction, application of the
89Y(d,2n)89Zr reaction in medical accelerators is still restrict-
ed. This is due to the fact that common small medical cyclo-
trons are not capable of producing the high-energy deuterons
required for the 89Y(d,2n)89Zr reaction. Although several
medical cyclotrons, such as the GE PETtrace 800 or IBA
Cyclone 18/9, have two beam currents, the deuteron energy
still is not sufficient to produce a high yield of 89Zr. Hence, the
89Y(p,n)89Zr reaction is the more practical approach to the
production of 89Zr in these kinds of machines.

The first 89Y(p,n)89Zr reaction was carried out by Link and
co-workers who employed an 89Y source on Y foil which was
irradiated with 13 MeV protons. After irradiation, the Y foil
was dissolved in HCl solution, and 89Zr(IV) was extracted via
multistep extraction using 4,4,4-trifluoro-1-(2-thienyl)-1,3-
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butanedione (TTA) and then HNO3/HF. Purification by anion
exchange with 1 M HCl/0.01 M oxalate resulted in an 80%
yield of 89Zr (99.99% purification). A similar protocol was
reported by the Dejesus group using a thin Y foil [4, 5].
Based on the same starting material of a Y foil target, several
studies modified parameters such as foil thickness, time of
irradiation, energy, and beam current in the attempt to improve
production yields [6–8]. However, the increase of beam ener-
gy over 13 MeV inevitably causes the undesirable production
of long-lived 88Zr via the 89Y(p,2n)88Zr reaction. Recently, the
Queern group worked on the production of 89Zr using
sputtered yttrium on niobium coin. They found that a reduc-
tion of beam energy from 17.8 to 12.8MeVor 12.5MeVusing
a 0.75-mm-thick aluminum degrader yielded good results
with no 88Zr observed [10].

The use of solid targets can be limited by a lack of facilities,
so liquid targets have also been utilized to produce 89Zr. For
instance, Pandey and co-workers irradiated yttrium (III) ni-
trate in nitric acid solution. Although their results showed a
yield of only 4.4 MBq/μAh for 2 h of irradiation at a 40-μA
beam current, which is barely adequate for a solid target, this
yield was still better than what has been achieved with con-
ventional liquid targets [11].

Coordination Chemistry and Ligands of 89Zr

Desferrioxamine and Its Derivatives

In order to effectively utilize 89Zr, coordination chemistry
has been applied to study various chelates. The chelate first
utilized for 89Zr is also currently the widely used:
desferrioxamine (DFO). As showed in Fig. 2, DFO, which
contains three RCO-N(R′)-OH motifs, is a hydroxamate-type

siderophore that chelates with 89Zr to form a 89Zr-DFO com-
plex, which is used in 89Zr-immuno-PET studies. Complexes
with 89Zr based on the iron-chelator Desferal, DFO (L23),
which includes hexadentate coordination of three
hydroxamate units, and its derivatives have also been used
in 89Zr-PET studies. However, 89Zr-DFO has been known to
have some disadvantages, such as poor stability. Since its
hexadentate complex is not saturated by a stably octa-
coordinated Zr4+ sphere, 89Zr-DFO instability has been ob-
served in several animal model experiments [6, 16]. Due to
the importance of developing ligands for zirconium-89-based
radiopharmaceuticals, especially for immuno-PET imaging,
several DFO derivatives have been reported (Fig. 3), such as
N-(S-acetyl) mercaptoacetyldesferal (SATA-DFO) [17] and
2,3,5,6-tetrafluorphenoxy (TFP)-N-succinyldesferal-Fe [18].
These modifications were prepared for bifunctional mAb
coupling; however, both protocols showed several draw-
backs. For example, an unstable thioether linker exists be-
tween maleimide-mAb and SATA-DFO at physiological pH
and a complicated six-step reaction is used to prepare mAb-
N-succinyldesferal-89Zr, consisting of carboxylation of the
amine, protection with Fe(III), activation of the ester, attach-
ment with a mAb, deprotection of Fe(III) from complex, and
labeling with 89Zr radionuclide [19].

A simple two-step synthesis to prepare bifunctional 89Zr-
labeled mAb via p-isothiocyanatobenzyl-desferrioxamine
(DFO-Bz-NCS) was reported by Perk and co-workers more
recently. This complex was described to be stable due to the
strong and steady thiourea bond between the monoclonal
antibodies and the chelator. Although this process proved
to be a fast and effective method to acquire 89Zr-labeled
mAbs, the restricted water solubility of the DFO-Bz-NCS
precursor required experimental skill to prevent aggregation
and precipitation of the antibody. Also, despite the stability
of thiourea linker, it was reported to be easily cleaved by
radiation in some buffers that contain chlorinated com-
pounds [20, 21]. Another rapid and specific conjugation
between modified-[89Zr]Zr-DFO and RGP peptides by the
click reaction was described by Gao and co-workers. The
modification of DFO at the terminal amine with 2-
cyanobenzothiazole (CBT) or 1,2-aminothiol (cys) produced
[89Zr]Zr-DFO-CBT or [89Zr]Zr-DFO-cys, respectively.
Luciferin linkage formation from the click reaction of those
with their complementary functionality on RGP peptides
showed a high stability with an almost intact complex upon
cysteine challenge [22].

Table 1 Properties of 89Zr
t½ (h) Methods of production Decay mode Eβ+ (keV) References

78.41 89Y(p,n)89Zr β+ (22.7%)

EC (77%)

909 [1]

Fig. 1 Zirconium-89 decay
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Octadentate coordination using DFO-1-hydroxy-2-
pyridone (DFO-HOPO) was first described by White and
co-workers [23]. This study employed the DFO-HOPO ligand
as a plutonium(IV) chelator for treatment of plutonium poi-
son. Low toxicity and a stable octadentate coordination com-
plex with Pu(IV) were observed when the 1,2-HOPO com-
pound was introduced to the DFO molecule. Allott adopted
this method and utilized DFO-HOPO to evaluate the stability
of octadentate as an 89Zr chelator. Results showed 89Zr-DFO-
HOPO to be stable compared to 89Zr-DFO with no
demetallation during radio-ITLC analysis, and no bone uptake
of 89Zr was observed within 24 h after 89Zr injection.
Moreover, 89Zr-DFO-HOPO showed inertness to
transchelation by EDTA or serum. DFO*, a modification of
DFO by adding one more hydroxamic acid part, was reported
as the first octadentate chelator for 89Zr labeling molecules
with improved stability [24, 25]. A few years later, the bifunc-
tional chelator DFO*-pPhe-NCS was prepared as an
octadentate chelator with 89Zr. 89Zr-DFO*-mAb demonstrat-
ed greater stability than the previous hexadentate 89Zr-DFO-

mAb with more than twice the intact tracer when stored at
room temperature. Yet, solubility is still a challenge for the
thiourea structure [26].

Other Hydroxamate-Type Chelators

To expand the utilization of hydroxamate-type coordination
with 89Zr, many hydroxamate-containing non-DFO structures
have been developed (Fig. 4). Guérard and co-workers report-
ed the simplest structures, acetohydroxamic acid (AHA) and
its methylated derivative (Me-AHA), as ligands to coordinate
with Zr(IV) and 89Zr(IV). Based on X-ray crystallography and
potential titration, these studies found a metal to ligand ratio of
1:4 and octadentate coordination with Zr(IV) that was suppos-
edly better than results with DFO. Through an 89Zr labeling
complexation study, Me-AHA showed a better activity com-
plex than did AHA. This can be explained by a higher electron
density of the oxygen atom (N–O) of Me-AHAwhich forms a
strong bond toward the 89Zr radionuclide [27]. Recently, two
bifunctional tetrahydroxamate ligands were synthesized by

Table 2 Several reactions for 89Zr production

No. Nuclear
reaction

Target Product
chemical form

Yield
(MBq/μAh)

Time of
irradiation

Energy (MeV) Beam current
(μA)

Thickness
of target

Refs.

1 89Y(d,2n)89Zr Pellet Chloride 66.6 ± 5.6 12–20 min 16–7 3–5 240–340 mg cm−2 [2]

2 89Y(d,2n)89Zr Magnetron
sputtering

Chloride 58 ± 5 1 h 13 10–15 25 μm [3]

3 89Y(p,n)89Zr Magnetron
sputtering

Chloride 44 ± 4 1 h 14 10–30 25 μm [3]

4 89Y(p,n)89Zr Foil Oxalate 38.9 40 min 13 10 286 mg cm−2 [4]

5 89Y(p,n)89Zr Thin foil Oxalate 13 2 h 11.4–10 10 57 mg cm−2 [5]

6 89Y(p,n)89Zr Foil Oxalate 56.2 ± 4.1 2–5 h 15 15 100 μm [6]

7 89Y(p,n)89Zr Foil Oxalate 12.5 ± 0.5 2 h 18–10 12 150 μm [7]

8 89Y(p,n)89Zr Foil Oxalate 48.9 ± 4.4 1 h 12.8 45 640 μm [8]

9 89Y(p,n)89Zr Sputtered layer Oxalate 48.1 1 h 14 100 25 μm [9]

10 89Y(p,n)89Zr Sputtered coin Oxalate 6.4–18 30 min or
2 h

12.5 or 12.8 10–40 90–250 μm [10]

11 89Y(p,n)89Zr Y(NO3)3 solution
(2.75 M)

Oxalate 4.36 ± 0.48 2 h 14 40 Liquid target [11]

Fig. 2 Structure of DFO and its
89Zr-complex
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Rousseau and co-workers based on an iminodipropionamide
scaffold. This work was a modification of their previous study
that elongated the aliphatic chain on the main ligand and re-
duced the distance between ligand and isothiocyanate moiety.
Despite improved stability, the biodistribution and PET imag-
ing properties of these ligands showed no significant differ-
ences compared to those this group studied previously or to
DFO [28].

Macrocyclic structures including hydroxamate moieties
have also been developed, such as triacetylfusarinine C
(TFAC), desferrichrome (DFC), and tetrahydroxy
octaazacyclohexatriacontan-octaone (CTH36). This type of
ligand was reported to form steadier coordination than linear
ligands. In addition, as a result of the macrocycle effect, a
ligand that has a macrocyclic structure could possess an ad-
vantage due to the strong stability of the complex [29–32].

Other Types of Chelators

There is a similar structure between hydroxypyridone
(HOPO) and hydroxamate; hence, HOPO was also employed

as a polydentate hydroxypyridone ligand. The development of
a HOPO ligand for chelating 89Zr radionuclides was reported
byDeri and co-workers. 3,4,3-(LI-1,2-HOPO), which has four
hydroxypyridone moieties (Fig. 5), could make an octadentate
89Zr complex which significantly enhances stability compared
to DFO in DFT calculations. The 89Zr-HOPO complex was
inert to transchelation in EDTA and serum challenge tests. In
serum, the 89Zr complex was an almost intact radiotracer after
a 7-day incubation. 89Zr-HOPO also possesses satisfactory
biological behavior such as rapid renal excretion and low ra-
dioactivity in bone tissue. Conjugation of 89Zr-HOPO with
antibodies to make bifunctional ligands is currently an active
area of research [33].

Hydroxyisophthalimide (IAM) ligands, originally used for
lanthanides, were also described to produce stable 89Zr com-
plexes. Bhatt group investigated two analogs of IAM, includ-
ing IAM 1 and IAM 2 which differed by one pensile IAM
group (Fig. 6). The result showed that the stability of 89Zr-
IMA 1 was greater than that of 89Zr-DFO which was in turn
greater than that of 89Zr-IMA 2 (with 72%, 41%, and 26%
tracer intact, respectively, after a 7-day incubation with
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DTPA). However, in the amino model, 89Zr-IAM 1 and 89Zr-
IAM 2 accumulated muchmore in the kidneys, liver, and bone
than did 89Zr-DFO. 89Zr-immuno-PET imaging with 89Zr-
IAM 1 is currently still under further investigation [34].

Ligands containing carboxylate and amino donors, such as
EDTA and DTPA, have also been reported to complex with
89Zr [35]. Recently, the Wadas group used various kinds of
tetraazamacrocycle ligands, namely, DOTA, DOTP, and
DOTAM, to react with 89ZrCl4 to form Zr complexes
(Fig. 7) [36]. The stability of resulting Zr-complexes (Zr-
DOTA, Zr-DOTP, Zr-DOTAM) which were tested with an
excess amount of EDTA or a high concentration of metal ions
(Fe , Zn , Co , Cu , Mg , Gd , Ga ) was showed as following
order: Zr-DOTA >> Zr-DOTP> Zr-DOTAM> Zr-DFO. In ad-
ditions, they found that Zr-DOTA was stable, showing no
change even after 7 days.

In in vivo biodistribution experiments, 89Zr-DOTAM
showed a large amount of radioactivity in the liver and spleen,
while 89Zr-DOTA showed relatively low radioactivity in the
liver, kidneys, and bone. Results from 89Zr-DOTP were gen-
erally similar to those from 89Zr-DOTA, except that high
amounts of radioactive material were found in the bone with
89Zr-DOTP. Based on these results, dynamic PET imaging
studies were conducted using 89Zr-DOTA and 89Zr-DFO. In
contrast, 89Zr-DFO accumulates significantly in the kidneys
after 4 and until 24 h. However, 89Zr-DOTA accumulates less
in the kidneys and bones than does 89Zr-DFO. A small amount
of 89Zr-DOTA was observed in the bladder at 4 h, and after
24 h, the radioactivity in the bladder was found to be negligi-
ble. Thus, it was found that 89Zr-DOTA was easily cleared
from the living body over a short period of time. Therefore,
we confirmed that 89Zr-DOTA could be effectively applied to
precision medicine without the disadvantages that come with
89Zr-DFO, which is currently used.

Immuno-PET Studies Using 89Zr

In order to apply 89Zr to precision medicine, immuno-PET
studies using 89Zr-labeled monoclonal antibodies (mAbs)

Fig. 4 Other hydroxamate-type ligands

Fig. 5 Structure of 3,4,3-(LI-1,2-HOPO)
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have been carried out by various researchers (Table 3).
For instance, measurements of metastasis in persons with
breast cancer have been carried out using trastuzumab
[49]. Trastuzumab is a target for human epidermal growth
factor receptor 2 (HER2), which has been used to diag-
nose HER2-positive breast cancer, and thus, treatment
with trastuzumab has shown positive results in patients

with HER2-positive breast cancer and gastric cancer [50,
51]. In one case, HER2-negative early breast cancer pa-
tients were found to have HER2-positive cancer metasta-
ses with PET/CT scans using 89Zr-trastuzumab (Fig. 8)
[49]. In addition, 89Zr-trastuzumab PET was used to eval-
uate the alteration of HER2 expression in patients with
HER2-positive breast cancer after they were treated with
the anti-angiogenic agent NVP-AUY922, the novel heat
shock protein 90 (HSP90) inhibitor. This study suggested
that 89Zr-immuno-PET can be useful for determining the
alteration of antigen expression and for monitoring the
response to treatment with anti-cancer agents [52].

Studies targeting vascular endothelial growth factor A
(VEGF-A) have also been conducted using 89Zr-labeled
mAbs [39, 40, 52–54]. VEGF-A is overexpressed in malig-
nant breast tumors and ductal carcinoma in situ and is known
to be associated with various diseases. Bevacizumab has been
reported as a monoclonal antibody that targets VEGF-A, and
it has been successfully utilized in several studies. In partic-
ular, 89Zr-bevacizumab PET has been used for various ail-
ments such as breast cancer, pelvic cancer, renal cell carcino-
ma, and neuroendocrine tumors to effectively identify the
biological properties of the tumor and confirm the effective-
ness of treatment (Fig. 9).

EGFR is also another interesting target antigen. Cetuximab
is a widely known agent to target EGFR. Attachment of
cetuximab to EGFR prohibits binding of growth factor to the
receptor, and the receptor tyrosine kinase activity is prevented.
Thus, biological events such as cell growth, proliferation and
differentiation, and cellular invasiveness and apoptosis can be
slowed or stopped. 89Zr-cetuximab has been used to evaluate
patients with advanced colorectal cancer; tumor uptake was
investigated via checking the biodistribution of this labeled
antibody [55].

Visualization of metastatic prostate cancer is critical to
monitoring the treatment of metastatic prostate cancer.
HuJ591 was developed for selectively targeting the extracel-
lular domain of prostate-specific membrane antigen (PSMA),
which most prostate cancers express. An immuno-PETFig. 7 Structure of tetraazamacrocylic ligands and their 89Zr complexes

Fig. 6 Structure of hydroxyisophthalimide (IAM) ligands
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imaging study in patients with metastatic prostate cancer
using 89Zr-huJ591 was performed [56]. In this case, 5 mCi
of 89Zr-huJ591 was injected into 10 patients, and its distribu-
tion, elimination, and lesion accumulation were examined. In
the PET image, 89Zr-huJ591 was found to accumulate in le-
sions in the bone and soft tissues more effectively than 99mTc-
MDP or FDG. In particular, when analyzing images using
89Zr-huJ591, 11 out of 12 lesions were positive, which
proved to be superior to corresponding PET scans using
FDG that yielded only 9 positive results.

Another study used 89Zr-labeled cmAb U36 to detect
head and neck squamous cell carcinoma (HNSCC) tumors
in 20 patients. This study suggested that most of primary
tumors were identified by 89Zr-immuno-PET, and perfor-
mance results of 89Zr-immuno-PET for the detection of
lymph node metastasis were no different from those of
computed tomography (CT) or magnetic resonance imag-
ing (MRI) [37].

There are no important drug targets for cancers such as
pancreatic and ovarian carcinoma. However, it was report-
ed that membrane-bound surface glycoprotein mesothelin
(MSLN) is overexpressed in pancreatic and ovarian cancer.
Thus, the anti-MSLN antibody MMOT0530A was discov-
ered as a potential imaging biomarker [42, 57]. PET studies
using 89Zr-MMOT0530A indicated that its tumor uptake in
patients with either pancreatic cancer or ovarian cancer
could be clearly visualized. IHC studies suggested that
MSLN expression levels, determined with IHC scores,
were strongly associated with the intensity of tumor uptake
of 89Zr-MMOT0530A.

Conclusion

These results suggest that further study of 89Zr will solve
current shortcomings and contribute to molecular imaging

Table 3 Application of 89Zr-mAb
in clinical oncology studies Year mAb Target Tumor type Refs.

2006 Chimeric mAb U36 CD44v6 Head and neck cancer [37]

2012 Ibritumomab-tiuxetan CD20 B cell lymphoma [38]

2013 Bevacizumab VEGF-A Breast cancer [39]

2014 Bevacizumab VEGF-A Neuroendocrine tumors [40]

2015 Fresolimumab TGF-β Glioma [41]

2016 MMOT0530A MSLN Pancreatic, ovarian cancer [42]

2017 Cetuximab EGFR Head and neck, lung cancer [43]

2017 Rituximab CD20 B cell lymphoma [44]

2017 Lumretuzumab HER3 Multiple cancer types [45]

2017 Bevacizumab VEGF-A Metastatic renal cell carcinoma [46]

2018 Trastuzumab HER2 Breast cancer [47]

2018 Atezolizumab PD-L1 Bladder cancer, non-small cell lung cancer,
triple-negative breast cancer

[48]

Fig. 8 Eighty-three-year-old
woman with primary ER-
positive/HER2-negative invasive
ductal breast carcinoma. a 89Zr-
trastuzumab maximum intensity
projection demonstrates several
foci of 89Zr-trastuzumab avidity
that localize to osseous structures.
b Axial CT and 89Zr-trastuzumab
PET/CT demonstrate 89Zr-
trastuzumab avidity in proximal
left femur. Reprinted with
permission from ref. [49].
Copyright 2016 Society of
Nuclear Medicine
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research using PET, such as 68Ga. In particular, development
of new coordinate chemistry for 89Zr labeling has led to wider
application of 89Zr in clinical studies. In oncology, 89Zr-
immuno-PET techniques have significantly enhanced tumor
detection and the efficiency of treatment. Until now, there has
been no standard scale for the use of 89Zr. Thus, some image
processing steps, including measurements of tumor uptake
and data analysis, should be validated and standardized for
wider usage. Overall, based on previous studies, it can be
expected that 89Zr will be more successfully applied to the
diagnosis and treatment of patients via 89Zr-immuno-PET in
the future.
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