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Abstract. 	This study aimed to investigate the effect of resveratrol supplementation in maturation medium on the developmental 
ability and bioenergetic\oxidative status of prepubertal goat oocytes selected by brilliant cresyl blue (BCB). Oocytes collected 
from slaughterhouse-derived ovaries were selected by 13 µM BCB staining and classified as grown BCB+ and growing BCB- 
oocytes. All oocytes were matured in vitro in our conventional maturation medium and supplemented with 1 µM (BCB+R 
and BCB-R) and without (Control groups: BCB+C and BCB-C) resveratrol. After 24 h, IVM-oocytes were fertilized with 
fresh semen and presumptive zygotes were in vitro cultured for 8 days. Oocytes were assessed for blastocyst development 
and quality, mitochondrial activity and distribution, and levels of GSH, ROS, and ATP. BCB+R (28.3%) oocytes matured 
with resveratrol presented significantly higher blastocyst development than BCB+C (13.0%) and BCB- groups (BCB-R: 
8.3% and BCB-C: 4.7%). Resveratrol improved blastocyst development of BCB-R oocytes at the same rate as BCB+C 
oocytes. No differences were observed in blastocyst quality among groups. GSH levels were significantly higher in resveratrol 
groups (BCB+R: 36554.6; BCB-R: 34946.7 pixels/oocyte) than in control groups (BCB+C: 27624.0; BCB-C: 27655.4 pixels/
oocyte). No differences were found in mitochondrial activity, ROS level, and ATP content among the groups. Resveratrol-
treated oocytes had a higher proportion of clustered active mitochondria in both BCB groups (BCB+R: 73.07%; BCB-R: 
79.16%) than control groups (BCB+C: 19.35%; BCB-C: 40%). In conclusion, resveratrol increased blastocyst production 
from oocytes of prepubertal goats, particularly in better quality oocytes (BCB+).
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Goat production in Mediterranean countries is economically and 
socially important. For these species, artificial insemination 

(AI) is the most used reproductive technology. However, in vitro 
embryo production (IVEP) using oocytes derived from prepubertal 
animals in conjunction with in vitro embryo transfer, termed as 
juvenile in vitro embryo transfer (JIVET), can accelerate genetic 
gain by shortening generation intervals. The addition of JIVET to 
artificial insemination yielded an extra 25 to 60% genetic gain in 
sheep programs [1]. The first births using JIVET were reported in 
the late 1970s [2] but the efficiency of this technology remains low, 
mainly due to the low competence of these oocytes compared to 
those from adult females. The reduced in vitro embryo development 
of these oocytes has been related to oocyte structural and molecular 
abnormalities [3–7], which are signs of their poor quality.
In order to improve in vitro embryo production, the selection of 

high-quality oocytes is crucial. Brilliant cresyl blue (BCB) staining 

is a non-invasive method used for the selection of immature oocytes 
[8]. BCB is a glucose-6-phosphate dehydrogenase (G6PD) substrate, 
from which it is reduced from blue to a colorless compound. G6PD 
activity gradually decreases as oocytes reach their maximum growth 
phase [9]. Thus, grown oocytes present a low G6PD activity and 
cannot reduce BCB, so they show a blue cytoplasm (BCB+), while 
growing oocytes with high G6PD activity reduce BCB and present an 
unstained cytoplasm (BCB-) [10]. Several studies in cattle [11, 12], 
sheep [13, 14], horses [15], goats [16], buffalos [17] and mice [18] 
showed that BCB+ oocytes presented higher embryo development 
competence compared to BCB- oocytes. However, in adult goats, 
3.6% of morphologically good oocytes were found to show signs 
of degeneration following BCB staining [8].
An important factor contributing to the poor quality of in vitro 

matured oocytes could be their sensitivity to oxidative stress [19]. 
These oocytes are less able to maintain an appropriate redox ho-
meostasis in response to oxidative stress generated by the in vitro 
condition compared to those from adult females [20]. This could 
be caused by an altered synthesis of endogenous antioxidants [20, 
21]. The addition of antioxidants to the maturation medium has been 
proposed as a good strategy to overcome the effect of oxidative 
stress allowing an increase in oocyte embryo development [19, 22].
Resveratrol (3,4,5-trihydroxy-trans-stilbene) is a small polyphenol 

synthesized by several plants, such as nuts, mulberry and grapes 
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[23]. This phytoalexin is a potent antioxidant that, by activation of 
SIRT1, a NAD+ dependent deacetylase belonging to the sirtuin family, 
induces the upregulation of the endogen antioxidant system [24]. 
Recent studies highlighted that, SIRT1 acts as sensor of the redox 
state in oocytes and granulosa cells [24]. Furthermore, resveratrol is 
involved in the regulation of energy homeostasis [25], metabolism 
[26], estrogen levels [27], and genomic stability [28]. It has also been 
observed that resveratrol supplementation during in vitro maturation 
(IVM) positively affected oocyte quality, fertilization and embryo 
development outcomes in goats, cattle, and pigs [29].
This study investigated the effect of resveratrol supplementation 

of IVM media on the developmental ability of prepubertal goat 
oocytes selected by BCB. To this end the bioenergetic/oxidative 
status of in vitro matured oocytes, oocyte cleavage, and blastocyst 
formation and quality, following in vitro fertilization, were analyzed.

Materials and Methods

Materials
Unless stated otherwise, all chemicals were obtained from Sigma-

Aldrich Chemical Co (St. Louis, MO, USA).

Oocytes collection and BCB staining
Oocytes were collected from ovaries of slaughtered juvenile (30 to 

45-day-old) goats (Capra hircus). Oocytes with two or more complete 
layers of compact cumulus cells and with a uniform cytoplasm were 
selected for IVM. In the experiments two and three, morphologically 
selected oocytes were incubated with 13 µM BCB for 45 min under 
5% CO2 in air at 38.5°C. After BCB exposure, oocytes were classified 
based on cytoplasm coloration, BCB+ (blue) or BCB- (colorless), 
and were in vitro matured [13].

In vitro maturation, in vitro fertilization (IVF) and embryo 
culture (IVEC)
Groups of 25–30 oocytes were matured in TCM-199, supplemented 

with 5 µg/ml follicle-stimulating hormone, 5 µg/ml luteinizing 
hormone, 1 µg/ml 17 β estradiol, 10 ng/ml EGF, 10% fetal bovine 
serum, 5 µg/ml gentamycin, 1 mM L-glutamine, and 0.2 mM 
sodium pyruvate, for 24 h under 5% CO2 in air at 38.5°C. After 
IVM, the oocytes were inseminated with fresh semen, obtained 
from three Murciano-Granadino bucks of proven fertility. Highly 
motile spermatozoa were selected using Bovipure density gradient 
kit (Nidacon EVB S.L., Barcelona, Spain). Oocytes were transferred 
into BO-IVF medium (IVF Bioscience; UK) for fertilization with 
1 × 106 spermatozoa/mL for 20 h, under 5% CO2, 5% O2 and 90% 
N2 atmosphere, at 38.5°C. After in vitro fertilization, presumptive 
zygotes were cultured in BO-IVC (IVF Bioscience; UK) for 8 days, 
under 5% CO2, 5% O2 and 90% N2 atmosphere, at 38.5°C. The 
cleavage rate and blastocyst rate/blastocyst cell number were recorded 
at 48 h and on day 8.

Assessment of nuclear status
After IVM, denuded oocytes were fixed in ethanol and stained 

with 1 µM Hoechst 33342 solution (Invitrogen) for 1 h. The nuclear 
configurations were classified, using an epifluorescent microscope 
(Olympus BX50), as germinal vesicle (GV), germinal vesicle break-

down (GVBD), metaphase I (MI), or metaphase II (MII).

Blastocyst differential staining
Analysis of blastocyst cell numbers was performed by differential 

staining of the inner cell mass (ICM) and trophectoderm (TE) cell 
compartments [30]. Blastocysts were first incubated, briefly, for 15 sec 
in TCM199 with 1% Triton X-100 and 100 µg/ml propidium iodide, 
then transferred into an ethanol solution with Hoechst 33342 for 
3 h. A digital image of each blastocyst was taken by epifluorescence 
microscopy and the numbers of TE (red) and ICM (blue) nuclei were 
counted using ImageJ software (ImageJ 1.5Oi).

Measurement of glutathione (GSH) and reactive oxygen 
species (ROS) levels
Denuded oocytes at the MII stage (presence of the first polar body) 

were incubated in the dark for 30 min with 10 µM 2’7’-dichlorodi-
hydrofluorescein diacetate (H2DCF-DA; Molecular Probes, Eugene, 
OR, USA) or 10 µM 4-chloromethyl-6,8-difluoro-7-hydroxycoumarin 
(Cell Tracker Blue; CMF2HC; Molecular Probes, Eugene, OR, USA) 
for reactive oxygen species or glutathione detection, respectively. An 
epifluorescent microscope with a UV filter (460 nm for ROS and 370 
nm for GSH) was used to take digital images, and the fluorescence 
intensities of the oocytes were analyzed using ImageJ software [31].

Quantification of adenosine 5’-triphosphate (ATP) 
intracellular content
Groups of 6 MII oocytes were denuded by gentle pipetting and 

placed into Eppendorf tubes with 200 µl ultrapure water and stored at 
–80°C until their analysis. The ATP content of oocytes was measured 
using the adenosine 5-triphosphate bioluminescent somatic cell assay 
kit (FLASC) as described previously [32]. The bioluminescence 
generated by ATP-dependent luciferin-luciferase reaction was im-
mediately measured using a luminometer.

Evaluation of mitochondrial distribution and activity
After IVM, MII oocytes were denuded and incubated in the dark 

for 30 min with 200 nM MitoTracker Orange CMTMRos (Molecular 
Probes, Eugene, OR, USA), under 5% CO2 in air, at 38.5°C. After 
incubation, oocytes were fixed in 3% paraformaldehyde for 60 min 
at 38°C and stained with 1 µM Hoechst 33342 solution. Oocytes 
were stored at 4°C in the dark until their analysis [13].
Mitochondria analysis was performed using Leica TCS SP5 CLSM 

with LAS lite 170 Image software equipped with a 405 nm diode 
laser and a multiphoton laser. In each individual oocyte MitoTracker 
fluorescence intensities were measured at the equatorial plane as 
described previously [33]. Leica LAS AF Lite image analysis software 
package (Leica Microsystems GmbH, Wetzlar, Germany) was used 
for the quantitative analysis of fluorescence intensity. Mitochondrial 
distribution patterns were classified in two groups, as previously 
reported [34], with some modifications: 1) Pattern A: homogeneous 
fine, with small granulations spread throughout the cytoplasm; 2) 
Pattern B: heterogeneous clustered, with large granulations spread 
throughout the cytoplasm or located in specific cytoplasmic domains.

Experimental design
Experiment 1: Effect of resveratrol supplementation at different 
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concentrations on oocyte developmental competence.
The dose-responsive effects of resveratrol on oocyte developmental 

competence were evaluated. Resveratrol was added to the IVM 
medium at concentrations of 0.5 µM and 1 µM. A group of oocytes 
were cultured, in the absence of resveratrol, as control (C). After in 
vitro fertilization (IVF) cleavage rate, blastocyst formation and cell 
number were evaluated.
Experiment 2: Effect of 1 µM resveratrol supplementation on the 

developmental competence of oocytes selected by BCB staining.
Based on the results of experiment 1, we evaluated the effect of 1 

µM resveratrol on the developmental competence of oocytes selected 
by BCB staining. Oocytes were matured in vitro with (BCB+R; 
BCB-R) or without (BCB+C; BCB-C) 1 µM resveratrol. After IVF 
and in vitro embryo culture, cleavage rate, blastocyst formation and 
cell number were assessed.
Experiment 3: Effect of 1 µM resveratrol supplementation on the 

bioenergetic/oxidative status of oocytes selected by BCB staining.
Oocytes at the metaphase II stage from the different groups were 

analyzed for: intracellular ROS and GSH levels (Experiment 3a), 
intracellular ATP content, mitochondrial activity, and organization 
(Experiment 3b).

Statistical analysis
For each experiment, at least three replicates were carried out. 

The oocytes used in each replicate were from the same group of 
abattoir-derived ovaries collected on the same day. After BCB selec-
tion, BCB+ and BCB- oocytes were randomly distributed across 
resveratrol groups.
Statistical analysis was performed using STATA\IC 11.0 software 

package. Data were first checked for normal distribution and were 
analyzed using the Shapiro-Wilk test. Data for maturation, cleavage, 
blastocyst rates and blastocyst cell number, expressed as mean 
values ± standard errors of mean (SE), were normally distributed and 

analyzed using one-way ANOVA, followed by Bonferroni’s post-hoc 
test. Data for intracellular ROS and GSH levels, ATP content and 
mitochondrial activity, expressed as mean values ± standard errors 
of mean (SE), were not normally distributed and were analyzed 
with a non-parametric Kruskal-Wallis test. Active mitochondrial 
distribution was analyzed by Chi-square and Fischer’s exact tests 
where appropriate. The overall chi-square was calculated and found 
to be significant before performing the Fischer’s exact test to detect 
differences among experiment groups. Differences of 0.05 or less in 
the probability values were considered significant.

Results

Experiment 1: Effect of resveratrol supplementation at 
different concentrations on oocyte developmental competence 
and blastocyst cell number
Results on the effect of resveratrol supplementation, at different 

concentrations, on oocytes developmental competence after IVF 
are reported in Table 1. Cleavage and blastocyst rates were lower 
(P < 0.05) when 0 µM and 0.5 µM resveratrol was added to the 
IVM medium compared with the addition of 1 µM resveratrol. 
Total blastocyst cell numbers did not differ among groups (Table 1).

Experiment 2: Effect of 1 µM resveratrol supplementation 
on the developmental competence of oocytes selected by BCB 
staining
Supplementation with 1 µM resveratrol during IVM did not affect 

meiotic progression and the ratio of nuclear maturation within BCB+ 
or BCB- groups (Table 2). No differences were found in the cleavage 
rate among groups (Table 3). The blastocyst rate (blastocyst / total 
oocytes) was higher (P < 0.05) in the BCB+C group compared to 
that of BCB-C group. Resveratrol supplementation increased the 
blastocyst rate of BCB- oocytes at the same rate as BCB+C. BCB+R 

Table 1.	 Effect of different resveratrol concentrations on embryo development and blastocyst cell numbers of prepubertal goat oocytes 
(Experiment 1)

Resveratrol concentration 
(µM) No. oocytes No. cleaved No. blastocysts/cleaved No. blastocysts/total Blastocyst cell number

(% ± SE) (% ± SE) (% ± SE) (mean ± SE)

0 164 100 (61.2 ± 2.0) a 11 (10.9 ± 2.5) a 11 (6.8 ± 1.6) a 127 ± 10.8
0.5 152 89 (56.7 ± 5.3) a 11 (14.5 ± 3.4) a 11 (7.9 ± 1.7) a 167.5 ± 23.8
1 163 137 (83.5 ± 2.8) b 32 (24.5 ± 2.0) b 32 (20.1 ± 1.3) b 156.5 ± 13.9

a, b Values with different superscript letters within a column differ significantly (P < 0.05). Three replicate trials were performed.

Table 2.	 Effect of 1 µM resveratrol, added to the IVM medium, on meiotic progression of prepubertal 
goat oocytes selected by brilliant cresyl blue (BCB) staining (Experiment 2)

Groups No. oocytes GV GVBD MI MII
(% ± SE) (% ± SE) (% ± SE) (% ± SE)

BCB+C 53 0 1 (2.2 ± 1.3) 4 (7.3 ± 2.3) 48 (90.4 ± 1.1)
BCB+R 46 0 0 3 (6.5 ± 0.1) 43 (93.5 ± 0.1)
BCB-C 47 0 1 (1.9 ± 1.1) 6 (12.9 ± 0.5) 40 (85.2 ± 0.6)
BCB-R 50 1 (1.9 ± 1.1) 1 (1.9 ± 1.1) 8 (16.4 ± 3.1) 40 (79.9 ± 1.0)

GV, germinal vesicle; GVBD, germinal vesicle breakdown; MI, metaphase I; MII, metaphase  II. 
Three replicate trials were performed.
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presented a higher (P < 0.05) blastocyst rate than the BCB+C, BCB-C 
and BCB-R groups (Table 3). The total, ICM and TE blastocyst cell 
numbers did not differ among groups (Table 3).

Experiment 3: Effect of 1 µM resveratrol supplementation on 
the bioenergetic/oxidative status of oocytes selected by BCB 
staining
Experiment 3a: Intracellular GSH levels were higher (P < 0.05) in 

both BCB+ (36554.6 ± 3049.25 pixels/oocyte) and BCB- (34946.8 
± 1877.8 pixels/oocyte) groups treated with resveratrol during IVM 
compared to their respective controls, BCB+C (27624.0 ± 1513.67 
pixels/oocyte) and BCB-C (27655.42 ± 1489.8 pixels/oocyte) groups 
(Fig. 1). We did not find any significant differences in ROS levels 
among experimental groups (BCB+C: 32740.3 ± 3165.0; BCB+R: 
26314.1 ± 2857.0; BCB-C: 59071.3 ± 14079.0; BCB- R: 30587.3 
± 3337.0 pixels/oocyte) (Fig. 1).
Experiment 3b: The intracellular ATP contents of the oocytes (Fig. 

2) were not significantly different among groups (BCB+C: 3586.4 
± 203.6; BCB+R: 3219.0 ± 171.9; BCB-C: 3769.2 ± 267.6; 4083.1 
± 291.6 Fmol/oocyte).
We did not find any significant differences in the fluorescent image 

intensities of active mitochondria (BCB+C: 17.2 ± 2.6; BCB+R: 
13.5 ± 1.4; BCB-C: 16.5 ± 2.5; BCB-R: 16.0 ± 2.4 AU) (Fig. 3).
Mitochondrial distribution patterns were different (P < 0.05) 

between control and resveratrol-treated oocytes in both BCB groups. 

Resveratrol-treated oocytes had a higher (P < 0.05) rate of pattern 
B mitochondria distribution (BCB+R: 73.07%; BCB-R: 79.16%) 
compared to controls (BCB+C, 19.35% and BCB-C, 40%; Fig. 4).

Discussion

In the present study, we investigated the potential beneficial 
effect of resveratrol supplementation of the maturation medium on 
the embryo developmental competence of prepubertal goat oocytes 
selected by BCB staining.
Increasing evidence proves that the addition of resveratrol during 

in vitro maturation has positive effects on in vitro embryo production 
in different species [29]. In adult goats, resveratrol improved the 
developmental potential of parthenogenetic-derived blastocysts 
and hand-made cloned blastocysts [35]. Resveratrol acts in a dose-
dependent manner and the optimal concentration is species-specific 
[29]. We have demonstrated that, resveratrol at a concentration of 
1 µM, significant increased blastocyst development of prepubertal 
goat oocytes compared to 0.5 µM and control groups. After selection 
with BCB, BCB+ oocytes, matured in the presence of resveratrol 
(BCB+R), developed to the blastocyst stage at significantly higher 
rates than those of the control group (BCB+C). Moreover, resveratrol 
positively affected BCB- oocytes, improving their competence to 
blastocyst development up to the rates of BCB+ oocytes matured 
in conventional medium.

Table 3.	 Effect of 1 µM resveratrol, added to the IVM medium, on embryo development and blastocyst cell number of prepubertal goat 
oocytes selected by brilliant cresyl blue (BCB) staining (Experiment 2)

Groups No. oocytes No. cleaved No. blastocysts/cleaved No. blastocysts/total Blastocyst cell number (mean ± SE)
(% ± SE) (% ± SE) (% ± SE) Total ICM TE

BCB+C 110 87 (78.4 ± 3.6) 14 (16.0 ± 0.5) a 14 (13.0 ± 0.7) a 134.6 ± 7.4 30.2 ± 3.5 106.8 ± 21.8
BCB+R 116 103 (88.3 ± 2.6) 32 (32.1 ± 1.3) b 32 (28.3 ± 0.9) b 167 ± 12.6 43.4 ± 4 133.4 ± 12
BCB-C 95 67 (71.1 ± 6.9) 4 (8.3 ± 1.5) a 4 (4.7 ± 0.4) c 136 ± 4.9 32.5 ± 0.5 122.5 ± 28.5
BCB-R 88 67 (78.0 ± 8.9) 8 (11.1 ± 1.4) a 8 (8.3 ± 0.8) ac 120.5 ± 12.4 31.3 ± 5.5 89.2 ± 8.2
a, b, c Values with different superscript letters within a column differ significantly (P < 0.05). Four replicate trials were performed.

Fig. 2.	 ATP content (mean ± SE) of brilliant cresyl blue (BCB)-
selected prepubertal goat oocytes matured with or without 1 µM 
resveratrol (Experiment 3b).

Fig. 3.	 Mitochondrial activity of brilliant cresyl blue (BCB)-selected 
prepubertal goat oocytes in vitro matured with or without 1 
µM resveratrol (Experiment 3b). Fluorescence intensity was 
measured at the equatorial plane. Values are expressed as 
arbitrary units (Means ± SE).
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In our study oocyte nuclear maturation (MII stage) was not affected 
by resveratrol treatment, which is in line with results from other 
studies on bovines [36], goats [35] and pigs [37]. On the contrary, 
Wang et al. (2014) found that resveratrol promoted oocyte nuclear 
maturation due to its antioxidant properties and the induction of 
progesterone secretion [38]. We observed that oocytes with low 
G6PDH activity (BCB+) had higher developmental competence than 
those with high enzyme activity (BCB-). These findings have been 
previously shown in our laboratory in goats [16, 39], cattle [12] and 
sheep [13], and by other authors, in different species [11, 14, 15, 17, 
18]. A recent study observed that in spite of similar mitochondrial 
distribution between both BCB groups, mtDNA content experienced 
a 1.9-fold increase in BCB+ cattle oocytes which confirmed their 

Fig. 1.	 Effect of 1 µM resveratrol, added to the in vitro maturation medium, on GSH and ROS intracellular levels of prepubertal goat oocytes 
selected by brilliant cresyl blue (BCB) staining (Experiment 3a): intracellular GSH (a) and ROS levels (b) of in vitro matured prepubertal 
goat oocytes. Epifluorescence photomicrographs of MII oocytes stained with CellTracker Blue to determine GSH levels (a’) and with 
2′7′-dichlorodihydrofluorescein diacetate (H2DCFDA) to detect ROS (b’). Values with different superscript letters (a vs. b) are significantly 
different (P < 0.05). Scale bar = 100 µm.

Fig. 4.	 Mitochondrial organization of brilliant cresyl blue (BCB)-
selected prepubertal goat oocytes in vitro matured with or 
without 1 µM resveratrol (Experiment 3b). a) Distribution 
of mitochondrial aggregation patterns in metaphase II 
prepubertal goat oocytes, different superscript letters (a vs. b) 
are significantly different (P < 0.05). b) Representative CLSM 
images of mitochondrial aggregation patterns in prepubertal 
goat oocytes after staining with MitoTracker orange CMTM 
Ros: A) Homogeneous small granulations spread throughout 
the cytoplasm (pattern A); B) Heterogeneous large granulations 
spread throughout the cytoplasm or are located in specific 
cytoplasmic domains (Pattern B). Scale bar = 50 µm.
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higher competence compared to BCB- oocytes [40].
On the other hand, some findings contradicted the utility of this test 

for selecting competent oocytes in bovines and pigs [8]. Moreover, the 
existence of a high caspase-3 activity in bovine blastocysts developed 
from BCB+ oocytes and a higher BCL-2 associated X protein (BAX) 
protein level in the BCB+ oocytes could imply a harmful effect of this 
staining [8]. In order to understand the reasons of the positive effect 
of resveratrol on embryo development of prepubertal goat oocytes, 
we evaluated the oxidative and bioenergetic status of oocytes. Our 
findings showed that resveratrol significantly increased intracellular 
GSH levels of in vitro matured oocytes in both BCB groups. In pigs 
[37], cattle [38] and goats [35], the beneficial effect of resveratrol 
on oocyte developmental competence has been associated with its 
antioxidant activity which increases intracellular GSH levels and 
decreases ROS levels. In our study, besides the increase in GSH 
content, resveratrol treatment did not affect ROS levels in both BCB+ 
and BCB- groups. Antioxidants do not always act in a univocal 
manner; indeed, increased GSH levels are not always associated 
with reduced ROS levels, as observed by other authors [22, 31]. 
Several reports suggest that IVM media supplementation with other 
antioxidants alleviated oxidative stress during in vitro maturation of 
poor-quality oocytes and improved early embryo development through 
a mechanism, including increase in GSH content [41–43]. GSH is 
the major non-protein sulfhydryl compound in mammalian cells and 
protects cells from oxidative damage [44]. The GSH level in oocytes 
increased as the oocyte resumed meiosis, and higher concentrations 
were found in mature oocytes than in immature [45]. The intra-oocyte 
GSH level can be considered as a marker of cytoplasmic maturity 
due to the close correlation with embryonic development [46]. In 
the adult goat, more competent oocytes (BCB+) presented higher 
intracellular GSH levels and the capacity to develop to the blastocyst 
stage after parthenogenetic activation [47]. Moreover, a reduction in 
GSH levels has been correlated with low developmental competence 
of oocytes derived from prepubertal mice and pigs [20, 21]. Several 
studies prove that GSH promotes decondensation of the sperm head 
and male pronucleus formation during fertilization [16,48], but 
also plays an important role in the development of parthenogenetic 
embryos [35, 37, 47].
Furthermore, GSH is involved in several biological processes, 

including DNA and protein synthesis, cell proliferation and protection 
of mitotic spindle from oxidizing agents [49, 50]. Another finding from 
our study was the effect of resveratrol on mitochondria organization. 
In fact, supplementation of the maturation medium with resveratrol 
induced a modification of active mitochondrial distribution in the 
cytoplasm of BCB+ and BCB- oocytes from a fine homogeneous 
pattern to a clustered distribution.
It has been shown that the activation of SIRT1 by resveratrol 

enhanced mitochondrial biosynthesis and degradation, thus, improving 
mitochondrial function and the developmental ability of oocytes 
[51]. In addition, resveratrol treatment could efficiently correct the 
defective phenotypes of mitochondrial organization in in vitro aged 
or methylglyoxal-treated mouse oocytes [52, 53]. Mitochondrial 
distribution and activity are considered good markers of oocyte quality. 
During in vitro maturation, changes in mitochondrial distribution 
and activity occur supporting oocytes maturation in cattle [54], dogs 
[55], goats [6], sheep [13], horses [56], pigs [57] and humans [58].

In a comparative study, Leoni et al. (2015) documented different 
active mitochondrial organizations in sheep MII-oocyte with high 
(adult) and low (prepubertal) developmental competence. A fine 
homogeneous dispersion of active mitochondria was observed at 
the GV stage in both oocyte types. This organization persisted in 
prepubertal MII-oocytes while adult MII-oocytes acquired a clustered 
distribution [34]. A clustered active mitochondrial organization was 
associated with maturation and high developmental competence in 
horse [56], dog [59], pig [60] and human [58] oocytes.
In our study, the presence of large clustered granules in resveratrol-

treated MII-oocytes, which showed the highest GSH levels and 
developmental competence, suggests that the clustered mitochondrial 
phenotype may reflect the correct cytoplasmic maturity.
Quantitative analysis revealed that resveratrol neither affected ATP 

content nor the mitochondrial activity of prepubertal goat oocytes; 
indeed no significant difference was found among groups. In contrast, 
resveratrol treatment increased ATP content and the mitochondrial 
membrane potential in bovine in vitro matured oocytes [61].
In summary, the results of the present study show that supple-

mentation of resveratrol during in vitro maturation improved embryo 
development to blastocyst stage, particularly in better quality oocytes 
(BCB+). Increased GSH levels and mitochondrial cluster distribution, 
could be some of the mechanisms underlying the positive effect of 
resveratrol supplementation on oocyte quality.
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