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Abstract

The derivation of atomic polarizabilities for polarizable force field development has been a long 

standing problem. Atomic polarizabilities were often refined manually starting from tabulated 

values, rendering an automated assignment of parameters difficult and hampering reproducibility 

and transferability of the obtained values. To overcome this, we trained both a linear increment 

scheme and a multilayer perceptron neural network on a large number of high-quality quantum 

mechanical atomic polarizabilities and partial atomic charges, where only the type of each atom 

and its connectivity were used as input. The predicted atomic polarizabilities and charges had 

average errors of 0.023 Å3 and 0.019 e using the neural net, and 0.063 Å3 and 0.069 e using the 

simple increment scheme, respectively. As the algorithm relies only on the connectivities of the 

atoms within a molecule, thus omitting dependencies on the three-dimensional conformation, the 

approach naturally assigns like charges and polarizabilities to symmetrical groups. Accordingly, a 

convenient utility is presented for generating the partial atomic charges and atomic polarizabilities 

for organic molecules as needed in polarizable force field development.

Graphical Abstract

Large size quantum-mechanical calculations are utilized to predict partial charges and atomic 

polarizabilities to be used in force field development.
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1 Introduction

Molecular dynamics (MD) simulation has been used for decades to explore chemical and 

biochemical problems, and greatly contributed to the current understanding of soft matter. 

Predominantly, additive (nonpolarizable) force fields have been used to describe the 

Hamiltonian of a system, disregarding the explicit treatment of electronic polarizability 

which is required to change the molecular dipole moments as the polarity of the environment 

varies. Consequently, the description of phenomena such as molecules passing through a 

membrane or the folding of proteins was limited. Progress has been made to overcome this 

limitation through the introduction of explicit induced polarization to force fields, where 

polarization has been treated on the basis of classical Drude oscillators,1–3 fluctuating 

charges4 or induced atomic dipoles.5,6 The addition of polarizability was shown to improve 

agreement with experiment for a number of systems, for example for helix formation7 or 

DNA-ion interactions.8–10 Polarizable force fields are furthermore important for systems 

with high Coulomb forces, such as ionic liquids, where the inclusion of polarizability led to 

better agreement to experiments of dielectric spectra, conductivities and time-dependent 

fluorescence.11–13

Within the classical Drude oscillator model,14 parameters for a range of biomolecules, small 

organic molecules and atomic ions are available (see Ref. 1 and references therein). 

However, the chemical space of small organic, drug-like molecules is vast, and the current 

parametrization strategy is very tedious and time demanding. 1 Towards overcoming this an 

automated procedure to obtain parameters was proposed for the AMOEBA polarizable force 

field, operating on induced dipoles. 15 In addition, the General Automated Atomic Model 

Parameterization (GAAMP)16 can refine previously obtained force field parameters for 

polarizable Drude force fields using quantum mechanical (QM) calculations as target data. 

However, due to the necessity to conduct multiple QM calculations for each molecule, these 

approaches are time consuming such that these tools do not yet represent a general force 

field.

In contrast, a number of general nonpolarizable force fields exist, such as the CHARMM 

general force field (CGenFF),17–19 the general Amber force field (GAFF),20 the OPLS all-

atom force field (OPLS-AA)21,22 and the Merck molecular force field (MMFF).23–25 With 

these force fields and associated tools, it is possible to rapidly generate topologies and 

parameters for a large range of organic, drug-like compounds. Notably, CGenFF and MMFF 

involve algorithms that totally avoid the need to perform QM calculations during generation 

of the electrostatic parameters. For polarizable force fields to move into areas like drug 

discovery or the design of ionic liquids similar tools will be required. However, the 

development of such tools in the context of a general polarizable force field is challenging as 

it requires algorithms to predict the required electrostatic parameters, including partial 

atomic charges, atomic polarizabilities, anisotropic polarizabilies, Thole scale factors and 

lonepairs as well as bonded and van der Waals parameters.

Towards this goal we present a parameter estimation tool delivering ab-initio quality partial 

charges and atomic polarizabilities in a rapid fashion. The approach builds on approaches 

that exist for the prediction of partial charges17,26–28 through the calculation of atomic 
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polarizabilities and partial atomic charges using QM-based methods to produce a large 

training set as required for optimization of rapid parameter estimation schemes. While QM 

calculation of atomic polarizabilities for neutral compounds has been known for some years,
29–32 the description of charged species has been found only recently.33,34 This new 

approach allows for the rapid estimation of atomic polarizabilities that may be combined 

with known approaches for the determination of partial atomic charges. Taking advantage of 

this, in the present study we conducted QM calculations of atomic polarizabilities of 11500 

molecules with a high model chemistry (MP2 with Sadlej’s polarizable PVTZ basis set35). 

Partial charges were obtained by two stage restricted electrostatic potential (RESP) 

fitting36,37 using the same model chemistry. The resulting atomic electrostatic parameters 

were then used to train both a linear increment scheme, as well as a neural network to 

predict polarizabilities and charges depending on the identity of an atom and that of its 

neighboring atoms. Furthermore, lone pairs and anisotropies were set up based on the atomic 

connectivities, consistent with the Drude-polarizable force field. Thus, we present a 

powerful prediction tool of electrostatic parameters to be used in Drude polarizable force 

fields. Importantly, this represents a significant step towards a Drude general force field 

(DGenFF) in analogy to the current additive CGenFF.

2 Computational Details

2.1 Atom-type based structure identifiers

To describe the identity of an atom and its surrounding structure, vectors containing the 

connectivity or distance information were calculated for each atom. Both approaches make 

use of the 157 CGenFF17 atom types, but process the relevant data differently.

The connectivity vectors hold information about the atom identity and neighboring atoms 

connected via no more than three edges. Each vector is a row vector of length 628 and 

contains only integer numbers. The first 157 values hold information about the atom identity, 

i.e. the value 1 in the column corresponding to the respective atom type and 0 in all other 

columns (often referred to as one-hot encoding). Bond information is stored in the second 

set of 157 columns, where the value in the column for type A is increased by 1 if the atom is 

bonded to an atom of type A (connected via one edge). The third and fourth set of 157 

columns correspond to angles and dihedrals in analogy to the bond section (connections via 

two or three edges).

The distance vectors are row vectors of length 942 and also contain only integer numbers, 

where distance information was extracted from the optimized QM geometries (MP2/6–

31+G(d)). Each atom type corresponds to six columns in the vector, depending on the 

distance of the atom to the point of interest. All possible distances are reduced to six bins, 

[0,0.5], [0.5,1.5], [1.5,2.5], [2.5,3.5], [3.5,4.5], [4.5,5.5] in units of Å. For each atom the 

distance vector arises by calculating the distances to all other atoms, and counting their 

occurrence with respect to distance and atom type. The atom type of the atom itself is also 

taken into account and added to the [0,0.5] bin. An example of the respective connectivity 

and distance vectors of a water molecule is given in Fig. 1.
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2.2 Training and test set

Atomic polarizabilities and partial charges of 189774 atoms in 11500 small molecules 

(containing no more than 30 atoms) were calculated via quantum mechanics using the 

program package Psi4.38 10000 molecules from the ZINC fragment-like database39 served 

as a training set for different algorithms predicting atomic polarizabilities and charges. The 

training set was selected to cover a broad range of functionalities, structure elements and 

atom types. To perform this the CGenFF program17 was run on all molecules from the ZINC 

database containing no more than 30 atoms to assign the atom types of about half a million 

molecules from which the corresponding connectivity structure vectors, Xi, were constructed 

as described above. Fig. 2 depicts how 10000 molecules were chosen from the database 

based on their atom types. First, all molecules with no more than ten atoms were chosen, and 

their connectivity vectors were summed up. Then, new molecules were chosen iteratively to 

increase the lowest values in the cumulative structure vector. In practice, molecules that 

contained a non-zero entry in the lowest value column of the cumulative vector were 

iteratively added to the training set.

Additionally, 1500 molecules commonly used in molecular dynamics simulation served as 

an independent test set, and were used to estimate average errors of the polarizability and 

charge predictions. 430 molecules were taken from CGenFF17 (set A), 89 from the database 

of ring structures from Ref. 40 (set B), 395 from the database of Ref. 41 (set C) and 586 

from the FreeSolv database42 containing water-soluble neutral molecules (set D).

2.3 Quantum mechanical calculation of partial charges and polarizabilities

The geometries of all molecules were optimized at a MP2/6–31+G(d) model chemistry. 

Partial charges at the optimized geometries were obtained by two stage restricted 

electrostatic potential (RESP) fitting36,37 at the MP2/Sadlej35 model chemistry. During the 

first stage, the electrostatic potential was fitted in the presence of a weak hyperbolic restraint 

towards zero, leading to small charges at buried sites (in contrast to conventional ESP 

fitting). During the second stage the partial charges were refitted to force equal charges on 

hydrogen atoms connected to the same carbon atom, with a stronger hyperbolic constraint 

towards zero. This charge redistribution only affects carbons attached to hydrogens, as well 

as the respective hydrogens, and does not change the assigned partial charges to polar 

moieties such as hydroxyl or carbonyl groups. The hyperbolic form of the penalty function 

is a ⋅ ∑ j ((q j
2 + b2)1/2 − b), with qj being the partial charge of atom j. The strength of the 

restraint is given by a and was set to 0.0005 au or 0.001 au for the weak and strong restraint 

respectively. The parameter b corresponds to the tightness of the hyperbola at values close to 

zero and was set to 0.1 au. The values were chosen according to Ref. 36. The electrostatic 

potential was calculated on four surfaces at 1.4, 1.6, 1.8 and 2.0 times the van-der-Waals 

radii. The grid density was set to 20 points per Å2.

In addition to the single point calculation for the RESP fitting, six single point energy 

calculations (MP2/Sadlej) at electric dipole fields of 0.0008 au in the positive and negative 

x, y and z direction were conducted and the resulting wave functions saved. The change in 

the electron distribution with an applied electric field gives rise to the atomic polarizabilities, 

using the post-processing scripts published in Ref. 32,33. In short, the components of the 
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atomic polarizability tensor αi of an atom i can be computed as the first derivative of the 

atomic dipole moment μi with respect to the electric field F as

αi, ab =
∂μi, a
∂Fb Fb = 0

, (1)

with a and b denoting the x, y and z directions. The origin independent atomic dipole 

moment μi of the non-overlapping atomic integration basin Ωi at the atomic site i at 

coordinates Ri is defined as

μi =
j = 1

Nb
qb i j Ri − Rb i j + Ωiρ r ⋅ r − Ri dr

= μic + μip,

(2)

where i is bonded to Nb sites j. The bond charge qb(ij) is the contribution of the directed bond 

between i and j to the net partial charge of atom i. Rb(ij) denotes the coordinates of the bond 

charge (this can be set to (Ri + Rj)/2). The polarization of the electron cloud around the 

nucleus, μip, was obtained from the GDMA code of Misquitta and Stone,43,44 where 

multipoles of order 1 (dipoles) were calculated for each atomic site. The contribution of 

charge transfer to the dipole moment, μic, was obtained from the charges and coordinates of 

each atomic site, where the bond charges qb(ij) arise from the GDMA net atomic charges qi 

by solving the set of equations

qi =
j = 1

Nb
qb i j (3)

qb i j = − qb ji (4)

i, j = 1 + i

ring
qb i j = 0 . (5)

2.4 Training of linear polarizability and charge increments

The training algorithm is based on a least-squares linear algebra solver. Using the atomic 

polarizabilities, charges and structure information of each atom in each molecule, a large set 

of linear equations is set up
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α i, QM = X ⋅ α incr (6)

q i, QM = X ⋅ q incr, (7)

where α i, QM refers to the QM atomic polarizabilities, and q i, QM to the QM partial charges. 

The matrix X is of size n x m and contains the structure vectors of all n atoms in the training 

set. Either the connectivity information can be used, where m is 628, or the distance 

information, where m equals 942. For either of the two approaches X contains information 

about the identity and surrounding of each atom in the database. The vectors α incr and q incr
hold m polarizability and charge increments, respectively. The set of equations is solved for 

α incr and q incr. Using the connectivity matrix the general identity, bond, angle and dihedral 

increments are obtained, whereas using the distance matrix increments depending on the 

atom type and distance to the central atom are obtained, disregarding the connectivity. Both 

can be utilized to predict polarizabilities and charges of new molecules.

2.5 Machine learning approach to predict polarizabilities and charges

In addition to the linear model, the connectivity based structural vectors were also utilized as 

input vectors for machine learning. In preliminary investigations, gradient tree boosting45 

and multilayer perceptron neural net46–48 approaches were applied and compared. Twenty 

percent of the training set examples were split off and used as a validation set in order to 

estimate the methods performance on data the algorithm was not trained on. After initial 

hyperparameter49 tuning, both methods yielded remarkably comparable mean absolute 

errors; however the neural net approach tended to produce lower magnitude outliers. Thus, 

the neural net approach was opted as the method of choice.

Development of the neural net model was performed as follows. The loss function50 was 

chosen as the mean square error (L2-norm) with no activation function46,47 in the output 

layer. Xavier uniform initialization51 was applied to the weights and biases. In order to 

elaborate reasonable boundaries, the hyperparameter space was initially explored manually. 

To prevent overfitting,46,52 L2-regularization as well as dropout were tested, with neither 

yielding a beneficial effect. Using the obtained boundary knowledge, grid search using 3-

fold cross-validation53 was performed. The Adam optimizer54 was used with initial learning 

rates 5 ✻ 10−3, 10−3 and 5 ✻ 10−4. Values 0.9 and 0.999 were chosen for the first and 

second momentum, respectively, 10−8 as the numerical stability parameter. Hidden Layer 

sizes of 256, 512, 1024 and 2048 neurons as well as two consecutive and three consecutive 

1024 neuron layers were tested. Early stopping on the validation set with a maximum of 

100, 250 and 500 epochs as well as training up to the according full number of epochs was 

explored. The performance of tangens hyperbolicus, rectified linear unit (ReLU, also known 

as rectification nonlinearity)55 and exponential linear unit (ELU)56 activation functions was 
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probed. Minibatch sizes of 256, 512 and 4096 were included in the grid search. Minimum 

maximum feature rescaling to the interval [0,1] was applied.

With respect to the mean absolute error as well as the maximum error across the training set, 

the following setup was chosen for production. Three consecutive 1024 neuron hidden layers 

were employed. The ReLU activation function was used. For each gradient step, shuffled 

minibatches of size 256 and 512 were chosen for charge and polarizability predictions, 

respectively. Training was performed for 250 epochs using a learning rate of 5 ✻ 10−4.

3 Results

Quantum mechanical atomic polarizabilities and RESP partial charges were calculated for 

all 11500 molecules (training set, and test sets A to D) using a high model chemistry: MP2/

Sadlej. For each atom the connectivity and distance structure vectors were calculated, based 

on the CGenFF atom types of the atom itself and the neighboring atoms connected via no 

more than three edges (connectivity scheme) or up to a distance of 5.5 Å (distance scheme). 

Distances were calculated on the single, QM minimized geometry obtained for each 

molecule. The obtained information of the training set (10000 molecules) was fed to either a 

linear regression or a machine learning algorithm to relate the structure vectors to the QM 

polarizabilities and charges. Thus, the trained increment or neural net algorithm can be used 

to predict polarizabilities and charges without the necessity of conducting QM calculations. 

To test the performance of the different algorithms on molecules they were not trained on, 

the QM values of the four independent test sets were compared to the respective predictions. 

In the following, we describe the results obtained by the linear increment approach and the 

multilayer perceptron neural network in detail.

3.1 Linear increments

Linear, additive increments based on the connectivity information were obtained by solving 

Eq. (6) and (7) for all 166056 atoms in the training set containing 10000 molecules from the 

ZINC database. A R2 of 0.975 was obtained for the regression of polarizability values, and 

0.919 for the corresponding partial charges. A comparison of the predicted values against the 

QM target data is shown in Fig. 3. Overall, the fit is very good, despite some outliers, which 

are discussed in the following. Polarizability predictions for molecules containing the atom 

types SG302, SG2D1, CG2D2O, CG2DC1 or CG2DC2 (gray dots in Fig. 3) were found to 

be problematic. The sulfur types correspond to thiolates and thiocarbonyls and show a wide 

variety of polarizabilities in QM. Large changes in polarizability were observed depending 

on the structure of the molecule, especially if the molecule can redistribute charge from the 

sulfur atom to the rest of the molecule through resonance. However, the increment scheme 

assigned only a narrow range of polarizabilities for the two sulfur types, which reflects a 

natural limitation of atom types and their inability to describe resonance effects. The carbon 

types correspond to conjugated double bonds. Large conjugated systems lead to large charge 

transfer contributions to the polarizability, which are underestimated by the prediction 

algorithm. The increment scheme takes into account structure information only up to three 

edges away from the atom of interest, and thus has no information about the actual length of 

a conjugated system. Since large polarizabilities caused by charge transfer are not desirable 
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for the use in Drude force fields (where charge transfer is not possible), this error is of minor 

importance.

The charge increment predictions fit the QM charges well, except for carbon atoms next to 

highly charged moieties, e.g. bonded to two phosphates. Average atomic and molecular 

deviations for both the polarizabilities (Δα) and the partial charges (Δq) are listed in the first 

rows of Table 1 (labeled ‘IC conn.’). The average error of the predicted atomic 

polarizabilities is only 0.063 Å3 while for molecular polarizabilities the average error is 0.47 

Å3. The low deviation of the predicted molecular polarizabilities from their QM counterpart 

is especially noteworthy, since the algorithm never trains on the overall molecular 

polarizabilities, but only on atomic polarizabilities. The deviations of the predicted charges 

are also quite low, 0.069 e for the directly predicted charges, 0.068 e after correction of the 

overall charge, and 0.14e for the summed up (uncorrected) charges.

Using the trained polarizability and charge increments, the electrostatic parameters of sets A 

to D were calculated and compared to QM, shown in Fig. 4 and Table 1. The deviations are 

very low, even lower than the deviations within the training set itself. The reason behind this 

peculiar behavior is the vast diversity of the molecules in the training set, where some 

uncommon structures are not well described. In contrast, sets A to D contain biologically 

relevant small molecules showing quite simple, common structures, which can be predicted 

very well using the increment scheme.

Table 1 also lists the average deviations of the predicted electrostatic parameters when 

trained on distance instead of connectivity data (rows labeled ‘IC dist.’). The obtained errors 

are nearly the same as in the connectivity increment algorithm, offering no general 

advantage, even despite the larger number of variables. Furthermore, the problematic atom 

types discussed above remain problematic, producing similar errors (data not shown). A R2 

of 0.976 for polarizabilities, and 0.907 for partial charges was obtained. Thus, the 

description of the structure via distance is comparable, and for some cases even inferior, to a 

connectivity-based algorithm. Furthermore, as distance-based estimations are sensitive to the 

three-dimensional structure of the molecules, they are not appropriate for use in force fields 

since the electrostatic parameters cannot change as a function of conformation. Thus, the 

remainder of this study focuses only on structure identifiers via connectivities.

3.2 Multilayer perceptron neural net

Despite the somewhat surprising general accuracy of the linear polarizability and charge 

increment scheme for molecules with simple, common structures, the linear scheme fails to 

describe nonlinear effects. For example, the nitrogen in S(−)-CH=N-R increases the 

polarizability of sulfur by a specific value, (namely its angle increment), without taking into 

account that such a structure could redistribute charge from sulfur to nitrogen, thus lowering 

the polarizability of sulfur. This is due to the increment scheme not taking into account the 

nature of the bridging atom in the angle increments, such that it uses the same angle 

increment for each specific pair of atom types separated by two edges, without connecting 

the information encoded in the respective atom types any further. A neural network, in 

contrast, connects all the information contained in the input vector, and is thus capable of 

detecting interrelations of specific atom types connected via a specific number of bonds. 
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Indeed, the trained neural net removes most of the outliers seen in the linear increment 

scheme and lowers the mean absolute deviations to the QM data substantially. In Fig. 5, the 

atomic and molecular polarizabilities and charges predicted from the neural net are plotted 

versus the respective QM values. Furthermore, histograms of the deviations are given. The 

algorithm is able to predict both polarizabilities and charges with mean absolute errors of 

0.023 Å3 and 0.019 e respectively, thus outperforming the increment scheme. These mean 

absolute deviations to the QM training data are given in Table 1 (labeled ‘ML conn.’). The 

neural net also predicts the polarizabilities and charges of the test sets A to D well, although 

it was not trained on them. A plot of the predicted versus the QM polarizabilities and 

charges is shown in Fig. 6 for all four test sets. Deviations are listed in Table 1. Again, the 

deviations of the machine learning predictions to the QM values are lower than the 

respective deviations within the increment method. The neural net furthermore produces less 

outliers than the increment algorithm, as visible from Fig. 5 and Fig. 6. The atom types that 

were found to be problematic for the increment scheme are well described by the neural 

network. The multilayer perceptron neural net trained in this study is thus able to supply ab-

initio quality atomic polarizabilities and partial charges for a wide variety of chemical 

compounds, without any severe outliers.

3.3 Prediction tool

To make the prediction algorithms available for a broader audience, a program was written 

in bash and python and can be downloaded from Ref. 57 or 58 free of charge together with 

instructions on how to use the script. It predicts atomic polarizabilities and partial charges 

via either the connectivity linear increment scheme or the neural net algorithm. As the 

predicted charges, q, typically do not add up to integers the prediction tool generates 

corrected charges (q’) that do. This is performed by distributing the net difference between 

the total charge summed over q with the expected integer charge over all atoms. For example 

if a 10 atom molecule has a net charge of 0.1 instead of 0, 0.01 will be subtracted from each 

partial charge, yielding q’. Furthermore, lonepair and anisotropy information is generated in 

analogy to the Drude Force Field. The program takes CGenFF combined topology and 

parameter files (str) as input, which can be generated from mol2 files using the CGenFF 

Program17 or online using the PARAMCHEM server. 18,19,59

4. Discussion

In the following we discuss the strengths and weaknesses of the employed algorithms, 

limitations, and potential improvements.

The linear increment scheme is able to predict atomic polarizabilities and charges well for 

most molecules, but fails to capture nonlinear effects, such as charge redistribution via 

resonance. It is nevertheless a simple and convenient scheme to quickly estimate 

polarizabilities and charges with low average errors, and can be used for molecules with 

simple, common structure elements, or whenever high precision is not necessary.

For molecules with more uncommon structures, or if more precise electrostatic parameters 

are needed we recommend to use the machine learning algorithm instead. It predicts 

accurate atomic polarizabilities and charges for all molecules in the training set, and 
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performs well for the four test sets which contain molecules often used in MD simulations. 

Since the predicted electrostatic parameters are intended to serve as the basis for a general 

polarizable force field valid for a wide range of small molecules, generality and 

transferability of the parameters are essential. Too high precision, which is usually 

connected to high specificy at the cost of generality (overfitting), may therefore be 

counterproductive. However, the obtained magnitude of average error, namely errors in the 

second decimal for both polarizability and partial charges, are remarkably low, and should 

suffice for most applications. If more specific parameters for a molecule possessing very 

uncommon structure elements are needed, regular QM calculations should be conducted and 

the electrostatic parameters optimized following the published protocols. It is also for this 

reason that more neuron layers were not added to construct a deeper neural net as this may 

hamper the generality of the obtained parameters due to overfitting. Thus, we do not 

recommend increasing the size of the neural net without further increasing the training set.

A larger training set will furthermore reduce the dependence of the predicted parameters on 

the geometry. The prediction itself does not rely on the atomic coordinates of a molecule, 

but the QM data the models are trained on depends on conformation and geometry. While 

the atomic polarizabilities are largely independent of the three-dimensional structure of a 

molecule, the partial charges change to some extent.60,61 To prevent the trained model to 

indirectly rely on geometry due to the conformation dependence of the input vector, a 

sufficient size of the training set is indispensable. Thus, an atom with a specific structure 

vectors occurs in multiple molecules with different geometries. Since the training set already 

consists of about 166.000 atoms in 10.000 molecules, the presented predicted electrostatic 

parameters should be largely independent of geometry.

Last but not least, a general limitation of the presented method to predict polarizabilities and 

charges based on CGenFF atom types and connectivities lies in the atom types: If a molecule 

contains an atom that cannot be described within the CGenFF framework, the corresponding 

structure vector cannot be set up. In this case the user will again need to resort to QM 

calculations combined with the known parametrization strategies.

5 Conclusion

We have shown that breaking down the structure of a molecule into simple atomic 

fingerprints relying only on CGenFF atom types produces atomic structure vectors suitable 

for predicting atomic polarizabilities and partial atomic charges. Each atomic fingerprint 

holds the atom types of the corresponding atom and the respective connected atoms, here up 

to three edges. The structure vectors were used to train both a linear increment scheme 

(linear regression), as well as a machine learning algorithm (multilayer perceptron neural 

network). The increment scheme, where the properties of an atom are defined based on 

increments depending on the atom type of the atom itself and of the connected atoms, 

performs quite well, despite its simplicity. Low average errors of 0.063 Å3 for atomic 

polarizabilities and 0.069 e for partial charges prove that both polarizability and charge can 

be described quite well by additive contributions based on the local structure. However, the 

increment scheme suffers from outliers, which are low in number, but severe (errors up to 2 

Å3). Poor predictions were in general observed whenever CGenFF atom types cannot 
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account for resonance effects, or specific pairs of atom types influence each other in a 

specific way. Such nonlinear effects could be described by training a neural network on the 

QM atomic polarizabilities and charges, using the same structure vectors as used in the 

increment scheme as input. Thus, the outliers could be reduced to nearly zero, and the 

average errors lowered to 0.023 Å3 and 0.019 e, respectively. This is remarkable, since the 

input of both increment system and neural network are the same, and basically suffer from 

the same problems, i.e. where atom type and local connectivity cannot describe an atom 

sufficiently. Thus, using either the more elaborate neural net algorithm, or even the simple 

increment scheme, we can predict high-level ab-initio electrostatic properties by supplying 

only the connectivities of a molecule. In fact, training of the linear increment scheme based 

on geometry instead of connectivity via inclusion of the atom-atom distances did not lead to 

improved polarizability or charge predictions. Since the prediction routine is independent of 

the conformation of a molecule, the geometry does not need to be known, which decreases 

the workload of electrostatics parametrization of a new molecule considerably. Due to the 

large training set where each structure element occurs in multiple molecules in different 

conformations the predicted parameters do not depend largely on geometry, and are both 

general and transferable between different molecules. Both algorithms (linear increments, 

and neural net) are available free of charge, and come with a complete program processing 

the structure of a molecule, setting up the atomic structure vectors, and feeding them 

through the requested algorithm. Thus, an important step towards the automated setup of 

polarizable force fields within the Drude framework was accomplished.
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Figure 1: 
Exemplary connectivity (‘Conn’) and distance (‘Dist’) vectors of a water molecule, if the 

complete atom type list consists of only the two fictitious types ‘OT’ and ‘HT’. During this 

work, a list of 157 atom types was used, similar to CGenFF. The numbers above each row in 

the distance scheme correspond to the respective bins (i.e. 0 corresponds to the bin [0,0.5[, 1 

to [0.5,1.5[ Å).
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Figure 2: 
Algorithm used for selection of fragment molecules from ZINC with maximal coverage of 

chemical functional groups. All molecules with no more than 10 atoms were included in the 

training set. Then, molecules larger than 10, but smaller than 30 atoms were selected 

iteratively according to underrepresented structure elements. First, all structure elements 

which are not present (i = 0) were put into a list of length j, then one new molecule was 

selected per structure element in the list, if possible. Next, structure elements which occured 

only once (i = 1) were put into a list, and new molecules matching those structure elements 

added accordingly. Thus, in each iteration i was increased by 1, column indices where 

X[index] = i put to a list of length j, and molecules added. The algorithm was halted after 

10000 molecules were chosen.
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Figure 3: 
Comparison of connectivity increment scheme (IC conn) predicted atomic (A) and 

molecular (B) polarizabilities, as well as atomic (C) and molecular (D) charges to the 

respective QM values. Top: direct comparison to QM. Bottom: histogram of the respective 

deviations. Gray dots indicate atom types SG302, SG2D1, CG2D2O, CG2DC1 or CG2DC2
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Figure 4: 
Predicted connectivity increment scheme (IC conn) atomic polarizabilities and charges of set 

A, B, C and D versus the QM values.
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Figure 5: 
Comparison of connectivity machine learning algorithm (ML Conn) predicted atomic (A) 

and molecular (B) polarizabilities, as well as atomic (C) and molecular (D) charges to the 

respective QM values. Top: direct comparison to QM. Bottom: histogram of the respective 

deviations.
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Figure 6: 
Connectivity machine learning algorithm (ML Conn) predicted atomic polarizabilities and 

charges of set A, B, C and D versus the QM values.
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Table 1:

Average errors in atomic (Δαi) and molecular (Δα) polarizability, as well as atomic (Δqi), corrected atomic 

(Δqi′) and molecular (Δq) charges. ’IC conn.’ refers to the increment scheme based on connectivities, ’IC dist.’ 

to the increment scheme based on distance bins, and ’ML conn.’ to the neural net using the connectivity 

vectors as inputs.

Δαi[Å
3] Δα[Å3] Δqi[e] Δqi′[e] Δq[e]

IC conn.

training set 0.063 0.47 0.069 0.068 0.14

set A 0.051 0.44 0.061 0.060 0.11

set B 0.053 0.40 0.051 0.051 0.09

set C 0.036 0.28 0.049 0.049 0.07

set D 0.043 0.36 0.053 0.053 0.09

IC dist.

training Set 0.064 0.44 0.076 0.075 0.15

set A 0.051 0.36 0.068 0.067 0.14

set B 0.054 0.33 0.060 0.059 0.13

set C 0.042 0.23 0.065 0.064 0.14

set D 0.046 0.31 0.064 0.065 0.18

ML conn.

training set 0.023 0.15 0.019 0.019 0.08

set A 0.035 0.27 0.042 0.041 0.13

set B 0.033 0.26 0.038 0.037 0.13

set C 0.028 0.20 0.033 0.033 0.11

set D 0.030 0.26 0.037 0.036 0.13
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