
nanomaterials

Article

Hexagonal CuCo2O4 Nanoplatelets, a Highly Active
Catalyst for the Hydrolysis of Ammonia Borane for
Hydrogen Production

Jinyun Liao, Yufa Feng, Shiqi Wu, Huilong Ye, Jin Zhang, Xibin Zhang, Feiyan Xie and Hao Li *

School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China;
jyliao@126.com (J.L.); yufafeng@126.com (Y.F.); 15217835009@163.com (S.W.); yehuilong6364@163.com (H.Y.);
eeedwardjin@163.com (J.Z.); zxbin1@163.com (X.Z.); xfy@hzu.edu.cn (F.X.)
* Correspondence: lihao180@126.com; Tel.: +86-752-252-7229

Received: 24 December 2018; Accepted: 25 February 2019; Published: 4 March 2019
����������
�������

Abstract: Catalytic hydrolysis of ammonia borane (AB) has been considered as an effective and
safe method to generate hydrogen. Development of highly active and low-cost catalysts is one of
the key tasks for this technology. In this work, hexagonal CuCo2O4 nanoplatelets with a thickness
of approximately 55 nm were prepared. In AB hydrolysis, those nanoplatelets exhibited ultrahigh
catalytic activity with turnover frequency (TOF) of 73.4 molhydrogen min−1 molcat

−1. As far as we
know, this is one of the highest TOF values ever reported for non-noble metal catalysts. In addition,
the effects of viscosity and different alkalis on the hydrolysis were also investigated. It is revealed
that high viscosity of the reaction medium will retard the hydrolysis reaction. The presence of NaOH,
KOH, and Na2CO3 in the reaction solution is favorable for hydrolytic process. In contrast, NH3·H2O
will slow down the hydrolysis rate of ammonia borane. This work can provide some novel insight
into the design of catalysts with both high performance and low cost. Besides, some findings in
the present study can also offer us some information about how to improve the hydrolysis rates by
optimizing the hydrolysis condition.
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1. Introduction

Hydrolysis of ammonia borane (AB) is a very promising way to provide hydrogen for mobile
hydrogen-oxygen fuel cells [1–3], which can find many important applications in new energy vehicles
in the near future. According the reaction equation,

H3NBH3(aq) + 2H2O(l)→ NH4
+(aq) + BO2

−(aq) + 3H2(g) (1)

per mole AB can produce 3 moles hydrogen by a simple hydrolytic reaction at room temperature and
atmospheric pressure. In this hydrogen-production technology, a catalyst is necessary in view of the
slow kinetic of the hydrolysis process. Since Xu’s pioneering works on AB hydrolysis catalyzed by
transition metals was reported [4,5], a number of heterogeneous catalysts have been developed for
that hydrolytic reaction [6–11]. Among these catalysts, noble metal based catalysts are too expensive
despite their high catalytic performance [6–8]. In contrast, non-noble-metal catalysts are very cheap,
but their activity is far from satisfactory [9–11]. Therefore, it is highly desirable to develop some
catalysts with high catalytic performance and low cost, which is crucial for large-scale applications of
this technology.

Generally speaking, there are three main routes to enhance the reaction rate of a catalytic process.
The first one is development of a new type of catalyst with high catalytic activity. The second one is
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to increase the activity of the catalyst by surface decoration, foreign element doping, etc. The third
one is to optimize the reaction conditions, such as temperature, pH value, viscosity, substrate/catalyst
ratio. As for the third point, many parameters in the hydrolytic reaction of AB, such as reaction
temperatures, catalyst dosages, substrate concentrations, have been extensively investigated in
previous works [12–18]. However, other factors—including viscosity of the medium, alkali—have been
seldom concerned, which may significantly affect the hydrolysis rate of AB. As for the effect of alkali
on AB hydrolysis, we have found in our previous work that a proper amount of NaOH in the reaction
medium can significantly enhance AB hydrolysis [9]. However, the effects of the concentration of the
alkali on the rate of AB hydrolysis have not been systematically investigated. Thus, whether there
is an optimal concentration of alkali for AB hydrolysis remains unclear. In the practical application
of AB hydrolysis, many factors—such as temperature, additive in solution, and the byproduct of the
reaction—may affect the viscosity of the reaction medium, which will affect the reaction rate of AB
hydrolysis. Thus, it is of importance for us to know the impact of the viscosity to hydrolysis reaction.

In this work, hexagonal CuCo2O4 nanoplatelets with a thickness of about 55 nm were prepared by
a hydrothermal approach followed by a calcination process. Vijayakumar et al. have prepared CuCoO4
nanobelts by using Co(NO3)2/Cu(NO3)2 as Co/Cu resource, urea as precipitant, and sodium dodecyl
sulfate (SDS) as surfactant, respectively [19]. Jadhav et al. have grown the flower-like CuCo2O4

on Ni foam by hydrothermal method followed by heat treatment [20]. Sun et al. have reported
the synthesis of 3D free-standing hierarchical CuCo2O4 nanowires by a hydrothermal method [21].
As far as we know, CuCo2O4 nanoplatelets have not been reported yet in the literature. In AB
hydrolysis, those nanoplatelets exhibited ultrahigh catalytic activity with turnover frequency (TOF)
of 73.4 molhydrogen min−1 molcat

−1, which is higher than those of CoP nanoparticles (72.7 molhydrogen
min−1 molcat

−1) [22], Cu0.8Co0.2O/Graphene oxide (70.0 molhydrogen min−1 molcat
−1) [23],

Ni0.9Mo0.1/graphene (66.7 molhydrogen min−1 molcat
−1) [24], CuCo/diamine-functionalized reduced

graphene oxide 51.5 molhydrogen min−1 molcat
−1) [25], NiCo2O4/Ti (50.1 molhydrogen min−1

molcat
−1) [12], CoP nanoarray (42.8 molhydrogen min−1 molcat

−1) [26], Co/CTF(42.3 molhydrogen
min−1 molcat

−1) [27], Ni nanoparticles supported on three-dimensional N-doped graphene
(41.7 molhydrogen min−1 molcat

−1) [28], CuCo@MIL-101(19.6 molhydrogen min−1 molcat
−1) [29], and

CoNi/Graphene (16.8 molhydrogen min−1 molcat
−1) [30], However, this TOF value is still lower than

that of Cu0.6Ni0.4Co2O4 nanowires (119.5 molhydrogen min−1 molcat
−1) [2], Ni/ZIF-8 nanocatalyst

(85.7 molhydrogen min−1 molcat
−1) [31], and CuCo/g-C3N4-1(75.1 molhydrogen min−1 molcat

−1) [32].
In the viscosity range from 1.08 to 32.95 mPa·s, high viscosity has a negative effect on AB hydrolysis.
In addition, it is revealed that NaOH and Na2CO3 can enhance AB hydrolysis but NH3·H2O will
retard that hydrolytic reaction.

2. Experimental Section

In a typical process, 4.0 mmol Co(CH3COO)2 and 2.0 mmol CuSO4 were mixed in 20 mL water
by stirring. Subsequently, 20 mol ethanolamine was added to a beaker containing 20 mL water. After
the two solutions were blended, 40 mL NaOH solution (2.5 M) was added slowly into the mixture.
The obtained suspension was transferred into a Teflon-lined stainless autoclave, which was sealed and
placed into a drying oven. The temperature was maintained at 160 ◦C for 8 h. When the hydrothermal
treatment finished, the resultant solid products were collected, rinsed and subjected to a heat treatment
of 600 ◦C for 2 h. The heating rate was 10 ◦C/min and the calcination was carried out in the air.

Rigaku TTR3 X-ray powder diffractometer (Tokyo, Japan) with a Cu K radiation (λ = 1.5406 Å)
was applied to record the powder X-ray diffraction (XRD) patterns of the samples. Hitachi SU-8100
scanning electron microscope (Hitachi, Japan) was utilized to observe the morphology of the catalysts.
Tecnai G2 F20 S-TWINT transmission electron microscope (FEI, Hillsboro, OR, USA) was used to obtain
TEM and HRTEM images. Kratos Axis Ultra (DLD) X-ray photoelectron spectroscope was applied to
analyze the elements and chemical states on the surface of the sample. Viscosity was determined with
a NDJ-5S Digital Viscometer (Shanghai Lichen Bangxi Instrument Co. Ltd., Shanghai, China).
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Typically, 10.0 mg catalyst (ca. 0.0435 mmol) was dispersed 5.0 mL water by ultrasonication
treatment in the reaction vessel, which was then put into a water bath for maintaining the reaction
temperature of 298 K. After that, 15 mL mixture solution containing NaOH (20.0 mmol) and AB
(2.6 mmol) was added into the vessel, which was connected to a graduated gas burette. The volume
of produced hydrogen was determined by water displacement in the burette. In order to investigate
that effect of viscosity of solution on the release rate of hydrogen, a glycerol/water mixture instead of
water was used a solution, and viscosity was measured at 298 K.

3. Results and Discussion

Figure 1 shows the XRD pattern of the as-prepared CuCo2O4 nanoplatelets. As shown, eight
characteristic peaks at 2θ = 31.1◦, 36.6◦, 38.3◦, 44.5◦, 55.5◦, 59.0◦, 65.0◦, and 77.1◦ are observed,
corresponding to the diffraction from (220), (311), (222), (400), (422), (511), (440), and (533) planes
of spinel phase of CuCo2O4 (PDF#76-1887). According to the Scherrer equation, the crystallite size
is calculated to be 16.6 nm based on the (311) peak width at half-height, which is the peak with
highest intensity. In the basic reaction medium, Co2+ and Cu2+ ions will be changed into Co(OH)2

and Cu(OH)2, respectively. During the calcination process, CuCo2O4 is formed. The reaction can be
formulated as

2Co2+ + Cu2+ + 6OH− → 2Co(OH)2 + Cu(OH)2 (2)

2Co(OH)2 + Cu(OH)2 + 1/2O2 → CuCo2O4 + 3H2O (3)
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Figure 1. XRD pattern of the CuCo2O4 nanoplatelets.

Figure 2a,b are the low-magnification SEM images of the CuCo2O4 samples, indicating that a large
amount of CuCo2O4 nanoplatelets can be obtained by our synthetic route. Figure 2c shows that the
typical thickness and size of the hexagonal nanoplatelets are around 55 nm. Particle size distribution
in Figure 2d indicates that the mean size of the nanoplatelets is around 400 nm. Figure 3a,b are the
TEM images of the CuCo2O4 sample, which further confirms the hexagonal structure of nanoplatelets.
HRTEM image in Figure 3c displays the crystal distance of 0.46, 0.24 nm, corresponding to the (111)
and (311) planes of spinel phase of CuCo2O4 [33–35]. The selected area electron diffraction (SAED)
pattern demonstrates that the CuCo2O4 nanoplatelets are well crystalized.

To know more about the formation of CuCo2O4 nanoplatelets, we carried out some control
experiments. First, we synthesized the CuCo2O4 sample in the absence of ethanolamine. SEM image
(Figure S1a) indicates the product is the aggregation composed of irregularly shaped nanoparticles.
When the sodium citrate instead of ethanolamine is used as complexing agent, nanoparticles and
nanoplatelets coexist in the sample (Figure S1b). These observations hint that ethanolamine plays an
important role in determining the final morphology of the sample.
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Figure 4 is the FTIR spectrum of CuCo2O4 nanoplatelets, in which two peaks at 573 and 659 cm−1

can be observed. These two peaks can be indexed to the Co3+-O2− and Cu2+-O2− functional groups in
the CuCo2O4, further demonstrating that our sample is CuCo2O4 [36].
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Figure 4. FTIR spectrum of the CuCo2O4 nanoplatelets.

The elements on the surface of CuCo2O4 nanoplatelets were analyzed with XPS and the results
shown in Figure 5. Figure 5a is the XPS spectrum of Co2p of the CuCo2O4 nanoplatelets. As it can
be seen in Figure 5a, the Co (2p1/2) peak can be decomposed into two peaks at 796.6 eV and 794.8 eV.
Meanwhile, the Co (2p3/2) peak can be decomposed into two peaks at 781.3 eV and 779.8 eV. The peaks
at 796.6 eV and 781.3 eV are attributed to the Co2+ state and those at of 794.8 eV and 779.8 eV are
indexed to the Co3+ state [19]. It should be mentioned that the spin-orbit splitting for the Co2+ doublet
is 15.3 eV and for the Co3+ doublet is 15.0 eV, hinting that the these Co species are presented as cobalt
oxides instead of cobalt hydroxides [37]. Similarly, two peaks at 954.3 eV and 934.2 eV are observable in
the Cu 2p region of the XPS spectra (Figure 5b), which is related to the Cu (2p1/2) and Cu (2p3/2) peaks,
respectively [19]. Besides, two peaks at 962.3 eV and 942.2 eV can be seen, which are the satellite peaks
of Cu 2p. All these peak values are in good agreement with those for Cu2+ (CuCo2O4) in previous
works [19,38]. In summary, Cu2+, Co2+, and Co3+ have been detected with XPS on the surface of the
CuCo2O4 sample. This observation is coincident with those XPS results reported for CuCo2O4 in
the literature.
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Viscosity is a very important parameter in the reaction medium, which may significantly affect
the reaction rate. However, to the best of our knowledge, the effect of viscosity on the hydrolysis of
AB has not been reported yet. In this work, for the purpose of investigating viscosity effect, 0–12 mL
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glycerol is introduced into the reaction medium. It should be mentioned that the total volume of water
and glycerol before mixing is fixed at 20 mL. Note that the 2.6 mmol AB will react with 5.2 mmol water
(0.094 mL). Thus, the water in the reaction medium is remarkably excessive even in the case of only
8 mL water in the mixed solvent. On the other aspect, although AB can react with methanol to produce
hydrogen by a catalytic methanolysis process, we found that nearly no hydrogen was produced when
AB/glycerol was solvent and CuCo2O4 nanoplatelets acted as a catalyst in a preliminary experiment.
This indicates that glycerol can hardly react with AB, but it can adjust the viscosity of the reaction
medium. Therefore, the effect of glycerol on the hydrolysis can be attributed to the viscosity. As shown
in Figure 6a, the hydrogen generation rate decreases when the volume of glycerol increases. In addition,
the induction time of the hydrolysis reaction will increase as the increase of the volume of glycerol.
For example, when the volume of glycerol is no more than 4 mL, it will take less than 10 s to produce
hydrogen after the catalyst comes into contact with the reaction solution. In contrast, when the volume
of glycerol in reaction medium increases to 12 mL, the induction time reaches about 60 s. Table 1 shows
the data of viscosity of reaction medium, the corresponding TOF values and induction time. Figure 6b
shows the relationship between the TOF values and the viscosity. According to the mechanism for
AB hydrolysis proposed by Mahyari et al., the transportation of the AB molecule to the catalyst
surface to form an activated complex species are the key step in AB hydrolysis [28]. Thus, the AB
transportation rate and the desorption rate of the intermediates from catalyst surface will influence the
overall hydrolysis rate. Evidently, high viscosity will lower the mass transportation rate and therefore
the TOF values decrease and meantime the induction time increases.
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Figure 6. Hydrogen release curves in mixed solvent with different volume of glycerol. The total volume
of water and glycerol before mixing is fixed at 20 mL.

Table 1. Data of viscosity of reaction medium and the corresponding TOF values and induction times.

Volume of Glycerol in
Reaction Medium (mL) Viscosity (mPa·s) TOF

(molH2 min−1 molcat
−1) Induction Time(s)

0 1.08 73.4 2
2 1.54 49.5 8
4 2.35 33.2 8
6 3.67 27.7 20
8 6.52 21.0 35
10 12.45 13.6 47
12 32.95 5.2 56

To exclude the possibility of the activity loss of the catalyst caused by surface poisoning via
glycerol adsorption, we carried out a series of contrast experiments, in which the viscosity of the
reaction medium was adjusted with ethylene glycol instead of glycerol. The total volume of water and
ethylene glycol before mixing is still fixed at 20 mL. When the volume of ethylene glycol is 2, 6, and
12 mL, the viscosity of the reaction medium is 1.52, 2.83, and 8.33, and the corresponding TOF values
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are 48.7, 31.1, and 15.6 molH2 min−1 molcat
−1, respectively. Additionally, we also adjusted the viscosity

of reaction medium by polyacryamide. It is found that when the viscosity of the reaction medium
is 3.25, 4.3, 6.4, and 9.3 mPa·s, and the corresponding TOF values are 12.1, 9.3, 8.8, and 7.1 molH2

min−1 molcat
−1, respectively. These observations further imply that it is the high viscosity of reaction

medium that cause the activity decrease.
In this work, we have investigated the influence of NaOH, Na2CO3 and ammonia on AB

hydrolysis. Figure 7a,b show the hydrogen release curves from reaction medium with different
NaOH concentration and the corresponding TOF values. Evidently, the introduction of NaOH will
remarkably affect the rate of hydrogen production. In the absence of NaOH in the reaction medium,
the TOF is only 5.47 molhydrogen min−1 molcat

−1. In contrast, the TOF increase to 73.4 molhydrogen
min−1 molcat

−1 at NaOH concentration of 1.0 M. A further increase of NaOH concentration will result
in a slight decrease of TOF value. According to reaction (1), NH4

+ will be formed during the hydrolytic
process. When OH− is added into the reaction medium, it will react with NH4

+ by the following
reaction. NH4

+ + OH− → NH3·H2O. Thus, from the viewpoint of shift of chemical equilibrium, the
hydrolysis reaction may be enhanced by introducing OH− into the reaction system. In addition, the
introduction of OH− into the reaction system can improve the electronic properties of the catalyst,
which is favorable for the interaction with catalyst and AB [18]. However, excessive NaOH (>1 M) has a
negative effect on AB hydrolysis. We find that the viscosity of the reaction medium increases as NaOH
concentration increases (please see the relationship between the viscosity and NaOH concentrations
in Figure S2), which will lead to the slow transportation of AB from bulk solution to the surface of
the catalyst. Therefore, the hydrolytic process is hindered and the reaction rates decrease. We also
investigate the effect of KOH concentration on AB hydrolysis and find that KOH concentration has
almost the same influence on AB hydrolysis as NaOH. This implies that it is the anions (OH-) instead
of the cations (Na+ or K+) that affect the hydrolysis reaction. Figure 7c,d show the hydrogen release
curve in the presence of Na2CO3 with different concentrations and the corresponding TOF values
variation. Although Na2CO3 can also improve the hydrolysis of AB, its impact is significantly lower
than those of NaOH and KOH. This is understandable because Na2CO3 is a weak alkali and can
provide less OH- than NaOH and KOH. Note that ammonia gas may be generated in basic solution,
which will contaminate the collected hydrogen. However, the obtained gas could be easily depurated
with water or an acidic solution, which will absorb ammonia gas. As for the effect of ammonia on
AB hydrolysis, the TOF value will decrease when the concentration of ammonia is larger than 0.25 M
(Figure 7e). As shown in Figure 7f, TOF will decrease linearly with the increase of the concentration of
ammonia. Quite different with the effects of other alkalis on AB hydrolysis, NH3·H2O shows negative
influence on the hydrolytic reaction of AB. NH3·H2O will produce NH4

+ via a dissociation reaction,
NH3·H2O→ NH4

+ + OH−, which may retard AB hydrolysis.
In our previous work, we have found that the active species of Cu0.6Ni0.4Co2O4 in AB hydrolysis is

metallic Co, Ni, and Cu on the catalyst surface, which were formed by the reduction of Cu0.6Ni0.4Co2O4

with AB [2]. In the present study, it is highly believed that metallic Co and Cu on the catalyst surface,
which were formed by the similar process, can serve as the active species. Actually, XPS data of the
used catalyst (Figure 8) demonstrates that the formation of metallic Co and Cu on the surface of the
catalyst. The synergistic effect of resultant metallic Co and Cu on CuCo2O4 surface can be attributed
to the relatively high catalytic activity of our catalyst in AB hydrolysis. In addition, metallic Co and
Cu on the catalyst surface, and the internal CuCo2O4 can form a metal−support interaction, which
is favorable for AB hydrolysis [1]. This may be another reason for the high activity of our CuCo2O4

catalyst. SEM image of the used catalyst (Figure S3) indicates that the morphology of the nanoplatelets
is still retained after reaction.
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4. Conclusions

In summary, CuCo2O4 nanoplatelets with a thickness of about 55 nm were prepared by a
hydrothermal approach followed by a calcination process. In AB hydrolysis, those nanoplatelets
exhibited superior catalytic activity with TOF of 73.4 molhydrogen min−1 molcat

−1. To know the optimal
conditions for AB hydrolysis catalyzed by CuCo2O4 nanoplatelets, we also investigated the effects of
alkali with different concentration and viscosity on the hydrolytic reaction. It was revealed that both
NaOH, and Na2CO3 in the reaction medium could improve the hydrolysis rate of AB. In particular,
the TOF value in the presence of a suitable concentration of NaOH is more than 10 times as high as that
in the absence of NaOH. In contrast, ammonia would retard the hydrolytic reaction. In addition, high
viscosity of reaction medium had a significant negative effect on AB hydrolysis. These observations
are helpful for us to select the proper reaction conditions for AB hydrolysis in practical applications.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/9/3/360/s1,
Figure S1: SEM images of the sample prepared in the absence of ethanolamine and the sample prepared by using
sodium citrate instead of ethanolamine as complexing agent, Figure S2: Effect of NaOH concentrations on the
viscosity of the medium, Figure S3: SEM image of the CuCo2O4 nanoplatelets after catalytic reaction.
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