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Abstract

Data science is likely to lead to major changes in cardiovascular imaging. Problems with timing, 

efficiency, and missed diagnoses occur at all stages of the imaging chain. The application of 

artificial intelligence (AI) is dependent on robust data; the application of appropriate 

computational approaches and tools; and validation of its clinical application to image 

segmentation, automated measurements, and eventually, automated diagnosis. AI may reduce cost 

and improve value at the stages of image acquisition, interpretation, and decision-making. 

Moreover, the precision now possible with cardiovascular imaging, combined with “big data” from 

the electronic health record and pathology, is likely to better characterize disease and personalize 

therapy. This review summarizes recent promising applications of AI in cardiology and cardiac 

imaging, which potentially add value to patient care.
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To date, the application of data science to medicine has been less apparent than in other 

areas of daily life. However, growing interest in its application to clinical practice may 

portend an era of more dramatic change, and this may be particularly true in imaging. As in 

other data-heavy areas of biomedical science (such as proteomics, metabolomics, 

lipidomics, and genetics), the integration of imaging and clinical data, including the 

electronic health record (EHR) and pathology, may provide new discoveries. Indeed, the 

precision now possible with cardiovascular imaging makes it an important potential 
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contributor to “big data” approaches to sub-phenotype heterogeneous disease groups, such 

as heart failure and atrial fibrillation, which at present receive uniform rather than 

personalized treatments. Hypotheses generated from the associations identified from “big 

data” will inform traditional research designs that will explain these new observations. More 

importantly, the current model of image acquisition, interpretation, and decision-making 

presents problems with timing, efficiency, missed diagnoses, and false positive diagnoses. 

The growth of cardiovascular imaging has come at a significant financial cost, and by 

facilitating image acquisition, measurement, reporting, and subsequent clinical pathways, 

artificial intelligence (AI) may reduce cost and improve value. This review summarizes 

recent promising AI applications in cardiology and cardiac imaging that potentially add 

value to patient care.

INTRODUCTION TO AI

TERMINOLOGY AND TECHNIQUES.

AI describes a computational program that can perform tasks that are normally characteristic 

of human intelligence (such as pattern recognition and identification, planning, 

understanding language, recognizing objects and sounds, and problem solving). In practical 

terms, AI can be thought of as the ability of a machine, or device, to make autonomous 

decisions based on data it collects (1). In medicine, this typically involves data (health 

records or information extracted from images), being used to predict a likely diagnosis, 

identify a new disease, or select a best choice of treatment (2,3). Initial pioneers of AI 

emerged in the 1950s. However, tangible progress was not made until robust computational 

methods were developed to stratify and weight data (2,4), and datasets began to increase 

significantly in size over the last 25 years. Within the last few years, techniques for 

processing data through multilayered networks, the unprecedented increase in accessible 

datasets, and the emergence of user-friendly software packages to work with the data have 

meant an AI-driven revolution in health care is becoming realistic (3).

Machine learning (ML) is a technique used to give AI the ability to learn. Specifically, the 

technique can learn rules and identify patterns progressively from large datasets, without 

being explicitly programmed or any a priori assumptions. ML techniques have been 

effectively used for prediction and intelligent decision-making in many areas of everyday 

living, including internet search engines, customized advertising, filtering of spam emails, 

character recognition and language processing, finance trending, and robotics (5,6). Two key 

requirements for ML to function are: 1) data that are relevant and detailed enough to answer 

the question being asked; and 2) a computational ML technique appropriate for the type, 

amount, and complexity of the data available (1). Finally, what is generated from the 

machine learning needs to be validated and shown to be useful in clinical practice (Central 

Illustration).

DATA AND INFORMATION.

“Big data” is used to describe large amounts of collected data. In health care, this includes 

medical health records, patient results, outcome data, genomic data, and importantly, image-

derived information (7). “Biobanks” and “bio-resources” are a particular form of organized 
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“big data” collection usually as part of a formal research program with rigorous data 

collection and quality control (8,9). “Atlases” are big data collections in which data is 

merged to provide reference information on variation within an organized system, such as 

the structure of the heart (10,11).

Although “big data” is valuable for the application of AI, it is not essential, and simple ML 

applications can be applied to most datasets. However, for many datasets to be usable for 

ML, the original dataset is enriched by the addition of new information pertaining to data 

structure. This is achieved by breaking the data into individual pieces of information 

described as features. Each feature describes a particular characteristic or datapoint that can 

then be used within computational techniques. In imaging, this could be a pixel density or 

brightness, a vector of motion or a measurement from images, or a clinical report (12). The 

quality, accuracy, and richness of features in data will determine how effective 

computational techniques can deliver an AI. Provision of inappropriate or incorrectly 

categorized data effectively means that the dataset does not resemble the real world closely 

enough for ML to create a representative model. This may result in inappropriate decisions.

COMPUTATIONAL APPROACHES AND TOOLS.

There are, broadly, 2 possible ways for a machine to learn. Either unsupervised, in which 

pattern recognition is allowed to develop freely within the data supplied, or the program can 

be supervised to look for patterns of data that fit a particular outcome of interest (13) (Table 

1).

In supervised learning, there is an iterative analysis of data, with individual features selected, 

processed, and weighted to identify the best combination to fit the outcome of interest. 

Regression analysis is an uncomplicated form of supervised ML has been in widespread use 

for many years. Although this is not typically thought of as AI, stepwise models are 

effectively learned (13). Newer statistical programs have now emerged to perform this 

associative analysis in a more sophisticated way, including support vector machines and 

random forests (14,15). Deep learning (DL) methods mimic human cognition by using 

multiple layers of convolutional neural networks. DL methods provide a means of informing 

associations based on previous experience, effectively training the process so that the 

probability of correct classification increases (12,16). These learning methods have been 

applied to image segmentation using techniques such as Marginal Space Learning, which 
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undertakes parameter estimation in a series of approximations of object position, orientation, 

and anisotropy, reducing the number of testing hypotheses by about 6 orders of magnitude 

compared with full space learning.

In unsupervised learning, the program is not trying to fit data to an outcome, but instead is 

just trying to identify any potential consistent patterns in the data (10). These approaches 

include principal component analysis (11) and cluster analysis approaches, which include a 

vast diversity of the algorithms, including “k-means” clustering (Table 1). The choice of 

cluster analysis not only depends on the data and the intended use of the results, but also on 

the domain knowledge of the researcher, which can introduce subjectivity. Newer techniques 

of clustering have recently evolved for understanding the similarities between patients (Table 

2). For example, network graphs are structures that describe the relationship between objects 

and have played an important role in social networking, engineering, and molecular and 

population biology (17). A novel and improved technique to integrate and visualize 

cumulative associations in data, topological data analysis, has been recently adopted and 

may allow visualization of multidimensional imaging and patient parameters (18–21). 

Topological data analysis can cluster complex, high-dimensional data when most traditional 

data mining methods falter. For example, the connection between cardiac imaging utilization 

and its relationship to hospitalization outcomes can be displayed in a network for isolating 

patients with high-risk features (Figure 1). Once a model is developed, a new patient’s risk 

features may be recognized using similarity analysis, and some of these data could be useful 

for physicians for phenotypic differentiations of cardiovascular diseases. Indeed, combining 

these different statistical tools increases the discriminatory and learning power of AI. For 

instance, unsupervised learning can be applied to patients with known outcomes to identify 

novel features that could then be fed into supervised models (22). Data can also be tested in 

parallel or sequentially through different methods, such as a “random forest” and a “neural 

network,” to identify the best fit differentiation, a method known as “ensemble” machine 

learning. Once the statistical program has identified a consistent way of differentiating data, 

then the terms algorithm and model start to be used. These refer to the fact a particular 

pattern has now been identified, which can be used to predict the likely relevance or 

meaning of future data.

APPLICATION AND VALIDATION.

After a model or algorithm has been defined, an important next step is to determine whether 

the model remains accurate if new data are fed into the model. Therefore, typically, data are 

needed for both “training” (i.e., developing the model) and for “testing” (i.e., seeing how 

well the defined algorithm continues to predict the same outcome if new data are supplied). 

For the validation regimen in machine learning, it is very important that the data used for 

training is not used for testing of ML models. Sometimes the same dataset is presented as 

being used for both training and testing, but this is only valid if the dataset has been 

subdivided and the testing performed iteratively on the data not used for training, referred to 

as “x-fold cross-validation.” For example, training can be performed on 90% of the data and 

testing on the remaining unseen data iteratively 10 times (23). This would be referred to as 

10-fold cross-validation and has been shown to have smaller bias for discriminant analysis 

than a traditional split-sample approach (training and testing) (24).
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With small datasets or datasets without much heterogeneity, there is a risk of overfitting—in 

effect, the model may only be suited to the dataset from which it was derived. If the dataset 

available is of sufficient size, then a portion of the data can be exclusively held back for this 

testing, or new data may be collected from external sources or from a different time period. 

These new data may have slightly different characteristics to explore how generalizable a 

model is to other data or to identify what degree of variation in features starts to make the 

model fail. As methods start to be tested in clinical practice, terminology is also developing 

around how AI can be used as a tool. Typically these uses include the use of a quantitative 

strategy to automatically generate measures (25), enabling notification devices to flag up 

particular problems, and as diagnostic support tools to generate recommendations and 

related information that can be used by a clinician to reach a conclusion. Fully automated 

diagnostic tools will ultimately provide medical opinions (12,26), but will also require 

extensive validation before regulatory approval.

APPLICATION OF AI FOR IMAGE AND DATA INTERPRETATION

DISEASE PHENOTYPING AND CLUSTER ANALYSIS.

Cluster analysis is an unsupervised ML technique that provides a process of creating 

homogenous, related groups from hidden patterns in data without a priori knowledge (i.e., 

oblivious to current classification of the data) (Table 1). Clustering can be an extremely 

effective tool for understanding the connecting links between clinical information from 

electronic medical records and clinical imaging for discovering relevant disease phenotypes 

and taxonomies (Table 3). Clustering proliferated in the past decades in various other fields, 

but its application in cardiology has remained relatively sparse (27–36).

CLINICAL APPLICATIONS OF TYPES OF CLUSTERING.

Clustering may be used as a stand-alone tool to acquire insight into the distribution and 

complex summary of the cardiac imaging parameters or patient data, an exploratory or 

hypothesis generation and testing method, or a pre-processing tool for other ML algorithms 

(Table 1). Hierarchical clustering (Figure 2) is particularly relevant for cardiac diseases that 

are highly heterogenous. In hypertensive patients, model-based clustering has been used to 

show 2 phenogroups with distinct pathophysiological sub-types that may benefit from 

targeted therapies (30). Similarly, the k-means approach has been used to identify subgroups 

of patients with differing degrees of organ damage and the genetic patterns of 

reninangiotensin-aldosterone system polymorphisms in hypertensive patients (37). Several 

other algorithms, including density models, have been used in breast cancer research (38), 

identifying protein complexes (39), and segmentation of lung nodule image sequences.

Cluster analysis may provide robust opportunities for grouping relevant clinical and imaging 

information. Hierarchical clustering has been used to identify 3 clusters with different 

echocardiographic phenotypes that emphasize the prognostic advantage of left ventricular 

(LV) remodeling in patients with diabetes mellitus (27). Several other investigators have 

recently applied hierarchical clustering to understand phenotypic presentations in heart 

failure. Hierarchical clustering has been used to aggregate LV strain data to isolate 3 distinct 

clusters of patients with different severities of diastolic dysfunction and LV filling pressures 
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(40). In another study, a similar agglomerative hierarchical clustering showed that 2 different 

clusters of patients with diastolic dysfunction showed differences in all-cause mortality, all-

cause rehospitalization, cardiac mortality, and cardiac rehospitalization. A propensity score 

was generated to assess the likelihood of cluster membership and established that clustering 

was superior to expert consensus-based echocardiography guideline recommendations for 

classifying the severity of diastolic dysfunction. Similarly, other investigators have also used 

hierarchical clustering in heart failure patients with preserved ejection fraction (EF) to 

identify differences in clinical, cardiac structural, and invasive hemodynamics and associate 

these with clinical outcomes (32).

Clustering has been relatively little used in cardiovascular image processing, but may offer 

some value. An algorithm called density-based spatial clustering of applications with noise 

can help localizing the LV endocardial border in echocardiography for extracting cardiac 

measurements such as wall motion, area, and 3-dimensional (3D) visualization (34).

ROLE OF AI IN DIAGNOSTIC SUPPORT

Most of the diagnostic support for cardiovascular imaging assumes the segmentation of 

anatomical structures such as ventricles, valves, or coronaries, and the precise measurements 

of various parameters, including EF, perfusion defect, or the extent of coronary stenosis.

IMAGE SEGMENTATION.

Segmentation is the process of content extraction that takes as an input a medical image, 

volume, or sequence of images or volumes to produce associated shapes, such as 2D 

contours or 3D meshes. A 3D mesh represents the vertices of an anatomical 3D object, 

defined, for example, by the chambers of the heart or heart vasculature. Cardiovascular 

image segmentation is a developing field in which AI-based (especially DL) methods have 

recently shown substantial improvements in performance.

Multiple segmentation methods rely on landmarks or key points that anchor the contour to 

specific and well-defined anatomical points, such as the apex of the LV. One of the most 

recent methods for robust localization of anatomical landmarks relies on multi-scale deep 

reinforcement learning (41,42). The modeling of anatomical appearance and the search for 

landmarks are coupled in a behavioral framework that exploits the strengths of deep 

reinforcement learning and multiscale representations. As a result, the method is trained not 

only to distinguish the target anatomical landmark, but also how to localize the landmark by 

learning and following an optimal navigation path through the volume. The reported method 

has been tested on 5,000 3D computed tomography (CT) volumes, totaling 2,500,000 slices. 

It achieves complete accuracy at detecting whether the landmarks are captured in the field-

of-view of the scan, localizing multiple cardiovascular landmarks in <1 s.

Once specific landmarks in the data are known, various AI-powered segmentation methods 

can be called to delineate the heart and vascular structures. One of the earliest publications 

in this category relied on a database of annotated echocardiography images of the LV. It 

trains an adaptive boosting classifier to detect the localization, orientation, and scale of the 

LV and infer its shape, based on the joint distribution of appearances and shapes in the 
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database. The method has been extended to 3D by formulating a learning process in 

marginal spaces of reduced dimensionality, and employing a probabilistic boosting tree as a 

classifier. The first application covered the segmentation of all 4 chambers of the heart from 

CT images (43). More recently, DL methods combined with level sets have been applied for 

the segmentation of LV from cardiac magnetic resonance (CMR) images (44). To evaluate 

myocardial motion, segmentation is typically followed by a temporal tracking algorithm that 

follows the myocardial border across frames (45,46).

Modeling and segmentation of the heart valves have received special interest due to the 

emergence of minimally invasive valve implant procedures, which require valve modeling 

and precise sizing of the implants. Marginal space learning has been used to model and 

segment all 4 heart valves (mitral, aortic, pulmonary, and tricuspid) from cardiac CT, 

together with the pulmonary trunk (47). In addition, this method used a constrained 

multilinear shape model to represent complex spatio-temporal variations of the heart valves. 

Modeling of the complex structures of mitral and aortic valves, including subvalvular 

apparatus, has been also proposed from transesophageal echocardiography data (48,49).

Interventional cardiology demands advanced imaging, modeling, segmentation of 

anatomical structures of the heart, and multimodality registration, all with a focus on real-

time guidance. C-arm x-ray is one of the common modalities in the operating room due to its 

versatility to switch between 3D (CT) and real-time x-ray. As a result, multiple efficient 

methods for C-arm CT have been developed, including the segmentation of left atrium and 

pulmonary veins for image-guided ablation of atrial fibrillation (50) and aorta segmentation 

and valve landmark detection for transcatheter aortic valve implantation (51). The latest 

methods for registration are inspired by deep reinforcement learning and formulate image 

registration as strategy learning, with the goal of finding the best sequence of motion actions 

that result in image alignment (52).

Epicardial adipose tissue (EAT) is a metabolically active fat depot within the visceral 

pericardium that directly surrounds the coronary arteries. Several studies have shown that 

EAT exerts a local pathogenic effect on coronary vasculature and on the heart (53–57) and is 

related to adverse cardiovascular events (57,58). Deep learning has been used to perform 

automated quantification of EAT to measure EAT volume and density from calcium scoring 

CT scans in a study with 250 patients. In that study, fully automated quantification showed 

high agreement and correlation to expert manual measurement (59) (R = 0.924; p < 

0.00001).

AUTOMATED MEASUREMENTS.

M-mode and Doppler echocardiography are common imaging modalities used for cardiac 

examination. Being based on 1 single interrogation beam, M-mode is capable of high 

temporal and spatial resolution along a single scan-line, and is thus effective in capturing 

subtle motion patterns. The Doppler signal is widely used to acquire a velocity-time image 

for assessing valvular regurgitation and stenosis. ML can be employed to automate (60) a 

number of measurements associated with M-mode (e.g., right ventricle internal dimension in 

diastole, interventricular septum thickness in diastole/systole, LV internal dimension in 

diastole/systole, LV posterior wall thickness in diastole/systole) and Doppler (e.g., mitral 
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inflow, aortic regurgitation, tricuspid regurgitation). Research in B-mode echocardiography 

has been pursued to detect and estimate locally abnormal wall motion of the LV for early 

detection of coronary heart disease (61). Furthermore, the development of AI systems that 

directly evaluate medical images to derive a diagnosis (i.e., end-to-end learning) is an 

increasingly popular approach.

The detection and grading of coronary stenosis in computed tomography angiography (CTA) 

is an important field of cardiac measurements (62) based on coronary centerline tracing, 

lumen segmentation, and stenosis detection and classification. The hemo-dynamic 

importance of a given stenosis can be estimated through AI techniques, an efficient method 

with accuracy comparable to computationally expensive 3D flow simulations (63).

The development of personalized models from patient data that estimate not only the heart’s 

anatomy and dynamics, but also the hemodynamics(64), electrophysiology (65,66), and 

biomechanics(67) are capturing increasing attention. Such AI-based technologies, allowing 

comprehensive assessment of the heart, vasculature, and cardiac disease, will provide 

important steps toward precision medicine (68,69).

ROLE OF AI IN IMAGE INTERPRETATION

IMAGING DATABASES.

A critical aspect of ML for cardiac imaging applications is the availability of the data for 

learning and training. The quality and scope of the data will determine the applicability and 

accuracy of the algorithm, regardless of the ML approach. In cardiology, several efforts are 

underway to create large databases that allow development and application of ML systems. 

These databases can be created from the EHR, but imaging datasets are usually not 

integrated in these records and require separate time-consuming data collection and 

verification. Additionally, outcome data—key for training of ML systems—are not typically 

available in the EHR. Keeping in mind the goal of translating ML into wider clinical 

practices, it is of key importance that these databases include sufficient “real-world” 

heterogeneity, reflecting the spectrum of practice and imaging protocols in the field. 

Although there are large multicenter clinical databases containing cardiac imaging 

information, most often the imaging variables are limited to subjective visual scoring results. 

There are some recent initiatives, however, to develop imaging databases for ML that 

contain raw patient images. These will be invaluable in the development of ML methods for 

cardiac imaging.

An example of a cardiac imaging database that can be utilized for image-based ML is the 

CMR image database created for the 2016 Kaggle Data Science Bowl competition, in which 

>1,000 CMR datasets were provided by the National Institutes of Health. In this 

competition, the goal was to automatically compute LV end-systolic and -diastolic volumes 

from deidentified cine CMR. The LV volumes were also labeled by the experts for 

validation, and teams competed for the most accurate determination of LV volumes. 

However, currently, this database is limited to image analysis only, as it does not contain 

clinical data endpoints or outcomes.
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Another large international imaging registry (>20,000 image cases from 9 centers), with 

associated clinical data and outcomes (revascularization, invasive coronary angiography, and 

major adverse cardiac events), was recently established with the goal of developing image-

based ML for nuclear cardiology (70). The REFINE SPECT (REgistry of Fast Myocardial 

Perfusion Imaging with NExt generation SPECT) includes clinical data variables, stress test 

variables, and DICOM (Digital Imaging and Communications in Medicine) image datasets 

from single photon emission computed tomography (SPECT) myocardial perfusion image 

(MPI) scans (including gated, static, stress, and rest images) (71). Preprocessing by 

quantitative software allows derivation of individual imaging features including regional 

variables (Figure 3). Over 200 standard imaging features were automatically derived from 

images and thus were not influenced by the variability of clinical interpretation.

AI METHODS IN CARDIOVASCULAR IMAGING.

Two distinct approaches have been reported in the application of AI to cardiac imaging. 

Classical ML methods have been used with a multitude of clinical and/or pre-computed 

image features to predict diagnostic or prognostic outcomes from large datasets. More 

advanced AI methods, such as DL methods, have been applied to actual images to obtain 

diagnoses. Unlike conventional AI approaches, DL does not require so-called “feature 

engineering” (i.e., computation and extraction of “custom-tailored” imaging variables), but 

instead directly interrogates images for image segmentation or outcome prediction tasks. DL 

is particularly suited for large and complex datasets with many features—for example, 

genomics and imaging datasets.

Classical AI.—The underlying principle of this approach is that a set of weak base 

classifiers can be combined to create a single strong classifier by iteratively and 

automatically adjusting their appropriate weighting. A series of base classifier predictions 

and an updated weighting distribution are produced per iteration. These predictions are then 

combined by weighted majority voting to derive an overall classifier—the ML risk score 

ranging from 0 to 1—as a continuous estimate of the predicted risk.

The accuracy of classical AI (LogitBoost) to predict all-cause mortality at 5-year follow-up 

was evaluated in the CONFIRM (Coronary CT Angiography EvaluatioN For clinical 

Outcomes: An InterRnational Multicenter registry) (N = 10,030). All available clinical (25 

parameters) and visually assessed CTA parameters (44 parameters) were objectively 

evaluated. ML involved automated feature selection by information gain ranking, followed 

by model building with LogitBoost and 10-fold cross-validation. An ML risk score 

combining clinical and CTA data exhibited a significantly higher area under the curve 

(AUC) (ML AUC = 0.79) for the prediction of death compared with established risk indexes 

and visual CTA assessment (Figure 4) (23). After age, the number of segments with 

noncalcified and calcified plaque had the highest information gain for all-cause mortality 

(23).

In >6,800 asymptomatic patients undergoing coronary calcium scoring (CCS), in MESA 

(Multi-Ethnic Study of Atherosclerosis), AI demonstrated superior performance to CCS to 

predict adverse cardiovascular events (72). A composite risk score of coronary CTA stenosis 
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and plaque measures has been shown to significantly improve identification of impaired 

myocardial flow reserve by 13N-ammonia positron emission tomography (ML AUC = 0.83 

vs. CTA Stenosis = 0.66) (73).

AI has also been applied to predict lesion-specific ischemia. In the NXT (Analysis of 

Coronary Blood Flow Using CT Angiography: Next Steps) trial, in which 254 patients 

underwent CTA prior to invasive coronary angiography with fractional flow reserve (FFR), 

an assessment of plaque characteristics was shown to improve the discrimination of lesion-

specific ischemia compared with stenosis alone (74). A substudy explored whether clinical 

data, quantitative stenosis, and plaque metrics from CTA could be effectively combined with 

AI to predict lesion-specific ischemia(75). This combination provided a higher AUC for 

predicting ischemia than pre-test likelihood of coronary artery disease or quantitative CTA 

metrics (ML AUC = 0.84 vs. best clinical score = 0.63, CTA stenosis = 0.76, low-density 

noncalcified plaque volume = 0.77; p < 0.006) (75) (Figure 5). Such machine learning risk 

scores can be incorporated back into software tools and improve assessment of patient risk 

(Figure 6) (75). A random forest method to integrate several image-derived features has also 

been applied to estimate CTA image quality with equivalent results as expert visual 

assessment (76).

Deep learning.—The seminal work by Krizhevsky and Hinton (77) applied DL to natural 

image classification of 1.3 million images, with over 1,000 identifiable objects on the 

images. The output of DL could provide a diagnosis, prediction, interpretation, or (more 

commonly) a transformed image—for example, anatomical labeling of the dataset, or an 

image with improved quality.

Following the spectacular success of DL in the computer vision field, numerous applications 

of DL to medical imaging have been proposed, with particular growth in the last 2 years. 

One of the contributing factors to this growth is the recent availability of relatively cheap 

computing graphic processing units (developed initially for the computer gaming industry), 

and multiple open software DL toolkits available to all researchers. DL algorithms have been 

applied to a fully automated organ or lesion segmentation, detection, and less commonly for 

classification, demonstrating large gains in performance compared with traditional methods. 

The most common application to date has been the analysis of pathology images, but several 

cardiac image analysis methods have recently been proposed.

In cardiology, DL has been applied to the segmentation of CMR, CT and ultrasound images 

of the LV, CCS (78), and coronary centerline extraction (79,80). The research has been 

enabled by the availability of publicly accessible training image datasets, especially for 

CMR, where a large publicly available repository has been created. In fact, the winning 

teams in the 2016 Kaggle CMR competition utilized a DL approach to estimate the LV 

volumes. In 1 published example of this work, researchers demonstrated successful fully 

automated measurement of LV volumes utilizing a total of 1,340 subjects for training and 

validation (81). DL approaches outperformed previous algorithms, which relied on 

painstaking feature engineering and image processing. The obtained DL results were also 

comparable to the reported inter-reader variability values for multiple independent expert 

readers. Considering that a skilled cardiologist must routinely analyze CMR scans to 
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determine EF, which can often take up to 20 min to complete, such a fully automated 

approach may be of great clinical value, and may represent the first application of DL into 

clinical practice.

To date, to our knowledge, only 1 application in cardiology has attempted direct diagnosis 

by DL from the whole patient image. The challenge in this task is obtaining sufficient data, 

because the diagnosis is performed on a per-vessel or per-patient basis (utilizing the entire 

3D or 4-dimensional image), in contrast to segmentation tasks, which are usually performed 

in 2D on a per-slice basis. Betancur et al. (82) used 1,638 SPECT MPIs from the REFINE 

SPECT registry, and obtained by the latest-generation SPECT cameras, in patients with 

suspected coronary artery disease (82) to train and validate a DL system for automatic 

detection of angiographically significant disease from SPECT MPI. To manage 

computational efficiency and memory, they utilized automatically derived compact 2D polar 

map displays as an initial input to the convolutional neural network, rather than entire 3D 

image datasets (Figure 7). The DL network was trained to detect obstructive disease in each 

vascular territory. With this approach (including cross-validation to separate training and 

testing data) they were able to outperform the current standard for quantification of these 

images on both per-patient and per-vessel basis. The time needed for the evaluation of a new 

patient with the pre-trained model was <1 s even without the dedicated graphics board used 

during the training of the system.

DL in cardiac CT.—DL has been recently applied to cardiac CT—both for automated 

CCS from low-dose CT as well as CTA, showing good agreement with the expert reader 

(78,83).

DL can be used for image-based identification of disease or outcome prediction. In a recent 

study, DL was used for automated analysis of standard coronary CTA images to identify 

hemodynamically significant coronary stenosis (84). DL has also enabled faster onsite 

computation of noninvasive FFR. In recent studies, a DL method was trained on a large 

database of synthetically generated coronary models and was shown to be equivalent to an 

onsite computational fluid dynamics-based algorithm in a study of 85 patients with CTA 

followed by invasive FFR (AUC to predict invasive FFR: 0.91 for both), with the DL 

algorithm requiring significantly shorter execution times (about 2 s) (63,85). This method 

has been validated very recently in data from 5 centers, to compute onsite FFR from CTA in 

a consortium of 351 patients (with 525 vessels interrogated with invasive FFR) (86).

FULLY AUTOMATED DIAGNOSIS.

While most current applications of ML on cardiology image data were applied to segment 

the images or derive some quantitative parameters, researchers have also attempted to 

provide a classification of disease and diagnosis by ML. Ultimately, the physician’s final 

clinical diagnosis usually requires considering additional clinical information such as age, 

patient history, and symptoms, in addition to features extracted from the images. This 

complex task is currently performed “ad hoc” by physicians—often without clearly defined 

probabilistic algorithms. ML methods can potentially provide a rapid and precise 

computation of post-imaging disease or outcome probability, based on the integration of 
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imaging and clinical variables. This approach was demonstrated in several recent studies, 

particularly in SPECT MPI, where the level of automation for image analysis is high 

compared to other modalities.

In a single-center study, the LogitBoost ML method was applied to integrate clinical and 

quantitative perfusion assessment (total perfusion deficit) from SPECT MPI images in 1,181 

patients. When clinical information was provided to ML in addition to the imaging features, 

ML achieved higher AUC (0.94 ± 0.01) than total perfusion deficit (0.88 ± 0.01) or 2 visual 

readers (0.89, 0.85; p < 0.001), for the detection of coronary disease (22,87). In another 

study, ML was demonstrated to predict which patients would undergo early revascularization 

after SPECT MPI using 713 patient studies with available invasive angiography and SPECT 

MPI images, and compared with 2 experienced, board-certified clinicians (88). Quantitative 

SPECT MPI parameters were integrated with basic clinical parameters (patient sex, history 

of hypertension and diabetes, ST-segment depression on ECG, ECG and clinical response 

during stress, and post-ECG probability). The AUC for revascularization prediction by ML 

was similar to that for the visual scores of one reader and superior to that of the other reader 

(Figure 8). A similar LogitBoost approach was also shown to predict major adverse cardiac 

events in 2,619 patients with SPECT MPI more accurately than expert visual read or 

standard quantification (82), with good agreement for predicted and observed event rates 

(Figure 9). Unlike human readers, the ML algorithms provide a continuous probability for a 

given outcome, which can aid the clinicians in final diagnostic decision and treatment 

choice.

PITFALLS AND PROBLEMS

Although these initial results are exciting—potentially dramatically enhancing uniformity 

and objectivity of the patient diagnosis—many steps need to be undertaken for this approach 

to be translated into everyday clinical practice. Even if strict multiple split-sample regimens 

(10-fold cross validation) are used for ML validation, multicenter evaluations will be 

essential before clinical deployment (especially when clinical features are involved) to 

demonstrate the generaliz-ability to various cohorts. A step further would be the external 

validation, where the developed models are applied to the population from centers that did 

not participate in model creation. When comparing ML techniques with currently 

established techniques, the latter is in some cases a visual assessment. Depending on the 

reference standard, ML might yield a continuous probability for a “normal” or “abnormal” 

scan diagnosis (e.g., positive or negative perfusion scan or stenosis severity), or as a means 

of quantification of an imaging biomarker (e.g., extent of perfusion abnormality or epicardial 

adipose tissue). Clearly, depending on the reference standard and validation, the utility of 

ML will be different for each of these tests.

Ultimately, the most important ML application could be the quantitative ML-aided 

prediction of the potential benefit of available patient therapy, rather than only patient 

diagnosis. For example, it was previously established in a single-center study that a 10% 

threshold for ischemia after SPECT MPI represents a threshold for the benefit of 

revascularization versus therapy (89). In the era of patient-specific treatment prescriptions, it 

is conceivable that ML algorithms utilizing all available data could be more precise. 
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Although such end-to-end ML application could be potentially seen as a threat by 

physicians, they and their patients will ultimately benefit from having the ability for 

individualized and objective treatment recommendations (5).

Even if an ML system is proven effective and thoroughly validated, there are practical 

difficulties in potential clinical deployment, such as data quality. Homogenization of clinical 

data recording and imaging protocols will be essential before data from different centers can 

be used as input by a standard ML model. Although the use of clinical data adds significant 

information to images, it will require seamless integration of EHR data with the image 

datasets.

The topic of cost for the development of ML has received scant attention. The admittedly 

early steps summarized in the previous text have been based on extensive software 

development and IT infrastructure, as well as large clinical datasets. Further advances to 

more complex ML will require significant investment.

Finally, there are legal issues. Typically, current diagnostic software tools are considered by 

the U.S. Food and Drug Administration in the United States as Class 2 (medium-risk) 

devices, with their role solely as a diagnostic aid for the physicians. If fully automated 

systems were to be used ultimately for the treatment prescription or diagnosis, they would 

need to be classified as Class 3 (high-risk) devices, with a much higher bar concerning 

performance and validation. Although overall performance of the ML maybe higher than 

that of the physician, there will always be individual cases where a physician could provide 

a better answer. Therefore, it is likely that physician control and override of these ML 

systems will always be required in the foreseeable future.

CURRENT APPLICATIONS

IMAGE ACQUISITION.

The broader medical applications of AI techniques include guiding how people perform 

procedures such as imaging scans, optimizing patient flows through departments, or 

automating image processing (3,90). The recognition of imaging planes may guide 

inexperienced clinicians in the acquisition of high-quality scans, and may also be used to 

resequence the display of studies so as to improve reading efficiency.

IMAGE ANALYSIS.

Medical imaging has been a vanguard for application of AI in medical practice due to the 

existing reliance on expert image interpretation. Radiology has been leading this field, and 

cardiovascular imaging is seeking to parallel its advances for optimizing the accuracy and 

quality of images (16,90,91). Medical imaging has provided some particularly interesting 

opportunities for application of AI from troves of image data (92). For example, features of 

each pixel can be considered in multiple ways: edges and patterns such as borders can be 

identified, movement of features can be characterized as vectors, colors can be extracted, 

and shapes with similar related characteristics such as image density can be identified. Data 

in images can also be enhanced through application of manual or automated techniques that 

define shapes within the image (for example, the LV border [43]), or the cardiac plane of 

Dey et al. Page 13

J Am Coll Cardiol. Author manuscript; available in PMC 2020 March 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



interest (93). These techniques may identify a region of interest for study, such as a valve 

(48,94). Also, quantified metadata extracted from images such as EF, strain, or velocity are 

being usefully packaged with image data for subsequent analysis. Finally, data encoded 

within the stored image file, such as age, sex, or medical record number can be extracted. 

Thus, AI technologies are showing their potential to change how cardiovascular imaging is 

used and interpreted, improving quality control, test selection, quantification, reporting, 

diagnostics, ease of use, and workflow.

PATIENT OUTCOMES.

From published data to date, ML algorithms have already shown to improve accuracy of 

diagnostic tests (63,75,82,85,87) and prediction of disease (95). Concurrently, ML 

integration of clinical data and imaging measures has been shown to improve prediction of 

prognostic outcomes (23,70,96). Several of these studies have conclusively shown that for 

per-patient risk prediction, it is most effective to objectively rank and then integrate all 

available clinical and imaging measures with machine learning. ML algorithms also have the 

potential to find new insights in real data, particularly when objective feature ranking is 

performed (23,75). In a multicenter study, Dey et al. (75) found that contrast density 

difference had the highest information gain for lesion-specific ischemia by invasive FFR 

over quantitative stenosis and plaque metrics from CTA. A higher contrast density difference 

indicates a lower minimum luminal area and higher luminal attenuation gradient; thus, it 

includes the contribution of both quantitative measures. For plaque measures, low-density 

noncalcified plaque (97), which has been also shown to predict cardiac death, was the 

highest-ranked feature for lesion-specific ischemia.

INTEGRATION INTO CLINICAL ROUTINE.

In the current published data, development of ML models and their validation has been 

demonstrated in clinical studies. In the near future, it is easy to envisage ML working in the 

background of standard cardiac imaging reporting and quantitative analysis software, 

gathering the variables automatically and allowing on-the-fly risk score computation. This 

principle is already utilized daily by many applications that utilize ML “behind the scenes,” 

unknown to the user. For example, the personalized advertisements and browsing 

suggestions that appear in real-time during web-browsing are all based on the passive 

collection of variables and their seamless input into ML algorithms. With automated feature 

ranking, ML is almost fully automated, requiring only minimal input during model building. 

In the near future, as ML algorithms are incorporated into clinical routine for image 

acquisition, image analysis, and prediction of patient outcomes, we expect that such 

personalized medicine would help physicians find the right answers for their patients whose 

“lives and medical histories shape the algorithms” (5).

CONCLUSIONS

AI describes applications to identify patterns in data that are characteristic of human 

intelligence. It depends on appropriate data being supplied and its quality, and the right 

software being applied to identify the patterns. AI is likely to provide a process to improve 

speed and quality of acquisition, reduce measurement time, and allow prompt diagnoses, 
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which in turn would improve workflow and patient care. The development of AI 

applications with big imaging registries will facilitate precision medicine and increase the 

utility of imaging tests for the patient. However, its introduction will bring a number of 

challenges. First, imaging specialists are mostly trained by manual analysis, and the “human 

neural network” is grown by practice. The replacement of the majority of this workload by 

AI will have training implications that warrant consideration in order to safeguard the 

“human neural network.” Second, consideration should be given by cardiologists as to the 

questions these techniques are applied to and determine what outcome needs to be achieved 

for patients. Finally, although AI may be used to predict likely outcomes, automatic 

generation of management decisions seems less desirable than a human neural network 

engaging with the clinical, personal, environmental, and social aspects of each individual 

patient. In the near future, therefore, the value-adding potential of AI is most likely to be as 

intelligent precision medicine tools for imaging specialists and clinicians.
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ABBREVIATIONS AND ACRONYMS

AI artificial intelligence

CMR cardiac magnetic resonance

CTA computed tomography angiography

DL deep learning

EAT epicardial adipose tissue

EF ejection fraction

EHR electronic health record

FFR fractional flow reserve

LV left ventricular/ventricle

ML machine learning

MPI myocardial perfusion imaging/image

SPECT single photon emission computed tomography
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HIGHLIGHTS

• Problems with timing, efficiency, and missed diagnoses occur at all stages of 

the imaging chain. The application of AI may reduce cost and improve value 

at all stages of image acquisition, interpretation, and decision-making.

• The main fields of AI for imaging will pertain to disease phenotyping, 

diagnostic support, and image interpretation. Grouping of relevant clinical 

and imaging information with cluster analysis may provide opportunities to 

better characterize disease. Diagnostic support will be provided by automated 

image segmentation and automated measurements. The initial steps are being 

taken towards automated image acquisition and analysis.

• “Big data” from imaging will interface with high volumes of data from the 

electronic health record and pathology to provide new insights and 

opportunities to personalize therapy.
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FIGURE 1. Steps in Performing Clustering Algorithm on the Data
The raw data is initially pre-processed and transformed, if needed. (A) Dendrogram of 

hierarchical clustering where height is the distance and each leaf represent a patient. The 

colored boxes represent the patients within the cluster. The number of clusters depends on 

where the dendrogram is cut. Agglomerative clustering is the bottom-up approach, where the 

patients are grouped in the higher hierarchy. Divisive clustering is the top-down approach 

where a single cluster is divided as it moves down the hierarchy. (B) Panel showing k-means 

cluster at multiple iterations. The algorithm calculates the centroid at each iteration and 

modulates the cluster until it converges. (C) Eps is the minimum distance between 2 points 

and MinPts is the minimum number of points to form a dense region. The algorithm 

searches the points based on these parameters and creates the cluster if the criteria are met. 

(D) Cluster analysis using model-based algorithm which detects 3 clusters in the mixture 

using Gaussian probabilistic model.
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FIGURE 2. Topological Data Analysis for Isolating Patient Clusters
An existing published dataset containing clinical features of hospitalized patients with 

inpatient echocardiography utilization was used to create a network where clinically similar 

hospitalized subjects clustered in nodes and connected with overlapping subjects to form the 

edges. The topological network allows rapid visualization and interpretation of outcomes of 

interest. The distribution and frequency of echocardiograms performed in hospitalized 

patient clusters is shown in shades of red (A). The nodes are subsequently color coded with 

outcomes of interest like the length of stay (in days) to reflect visually any relationships with 

performance of echo-cardiography (B). The upper left region of the map (circle) shows an 

area where there is high utilization of echocardiography. Interestingly, this region has 

patients who are sicker, have longer length of stay (B), and also higher mortality (C).
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FIGURE 3. Organization and Content of the REFINE SPECT Registry for the Purposes of 
Machine Learning (Blue)
Clinical data collection and analysis; (orange) imaging data collection and analysis; and 

(gray) integration of clinical and imaging databases. Reproduced with permission from 

Slomka et al. (71). MACE = major adverse cardiovascular events; MPI = myocardial 

perfusion imaging; QC = quality control; QGS = quantitative gated SPECT; QPS = 

quantitative perfusion SPECT; SPECT = single photon emission computed tomography.
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FIGURE 4. ML to Predict All-Cause Mortality
Receiver-operating characteristic curves for prediction of death with 5-year follow-up 

compared to the Framingham risk score (FRS) and computed tomography angiography 

(CTA) severity scores (Segment Stenosis Score [SSS], Segment Involvement Score [SIS], 

modified Duke Index [DI]). *ML had significantly higher AUC than all other scores (P 

<0.001). Reproduced with permission from Motwani et al. (23). AUC = area under the 

curve; ML = machine learning.
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FIGURE 5. Prediction of Lesion-Specific Ischemia by the Integrated Ischemia Risk Score by 
ML-Combined
(A) ML-combined versus quantitative plaque volumes (LD-NCP [low density noncalcified 

plaque], NCP, and total plaque volume). (B) ML-combined versus quantitative stenosis and 

pre-test likelihood of coronary artery disease. ML-combined had a significantly higher AUC 

compared with individual quantitative CTA plaque measures or the pre-test likelihood. 

*indicates AUC significantly different (p < 0.05) than that from the other measures. 

Reproduced with permission from Lee et al. (12). Abbreviations as in Figure 4.
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FIGURE 6. Information Gain for Age, Sex, and Quantitative CTA Measures for Lesion-Specific 
Ischemia
In the left panel, measures directly related to plaque volumes are in light blue and the 

remaining measures are in dark blue. Variables with information gain >0.001 were used in 

machine learning. Contrast density difference had the highest information gain among 

quantitative CTA metrics. Reproduced with permission from Dey et al. (75). The right 
panel shows an example of the machine learning prediction of lesion-specific ischemia in a 

patient undergoing CTA. NCP and CP are shown in red and yellow image overlay in the 

left anterior descending (LAD) artery of a 67-year-old male symptomatic patient undergoing 

CTA, along with the integrated machine learning ischemia risk score (60% in the LAD). 

Invasive FFR measured in the LAD artery was 0.73. FFR = fractional flow reserve; LCX = 

left circumflex artery; RCA = right coronary artery; other abbreviations as in Figures 4 and 

5.
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FIGURE 7. Training of a Deep Convolutional Neural Network
Patterns of SPECT perfusion defects are identified by feature extraction (left) into a deep 

learning process (center) that combines parameters of location, shape, and density. This 

generates a probability of obstructive coronary artery disease in the left anterior descending 

artery (LAD), left circumflex artery (LCx), and right coronary artery (RCA) territories 

(right), which is trained by obstructive stenosis correlations by invasive coronary 

angiography. FC = fully connected layer; Max-pooling = filter that retains only the 

maximum value in a 2 × 2 patch; QPS = quantitative perfusion SPECT; ReLU = rectified 

linear unit (linear function mapping input to output values with a threshold). Adapted with 

permission from Betancur et al. (82).
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FIGURE 8. The ROC Curves Comparing the ML Algorithm Versus Ischemic TPD and Expert 
Visual SDS for Predicting Revascularization
Reproduced with permission from Arsanjani et al. (88). ML = machine learning; ROC = 

receiver-operating curve; TPD = total perfusion deficit; VSDS = visual summed difference 

score.
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FIGURE 9. Observed Proportion of Events and Predicted ML Score Grouped by Every Fifth 
Percentile of Risk Blue bars
indicate observed proportion of events, and orange points indicate predicted ML. Adapted 

with permission from Betancur et al. (70). MACE = major adverse cardiovascular events; 

ML = machine learning.
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TABLE 2

Comparison of Clustering With Other Analysis

Clustering Classification Graph Topology

• Unsupervised

• Data are grouped into 
categories based on 
some measure of 
similarity or distance

• Statistical technique 
used in many fields 
including machine 
learning, pattern 
recognition, image 
analysis, information 
retrieval, and so on in 
identifying 
similarities or 
distance

• Graphs can be 
clustered and 
measured by 
clustering 
coefficient–a measure 
of the degree to 
which nodes tend to 
cluster

• Supervised

• Data are 
assigned 
labels based 
on the pattern 
and existing 
classes

• Evaluated 
regarding 
accuracy and 
sensitivity in 
identifying 
the output

• Mathematical 
structures used for 
modeling 
relationships 
between objects

• Comprises of a set 
of vertices (V, 
nodes) with edges 
(E, arcs or lines)

• Can be directed or 
undirected

• 1-dimensional 
simplicial complex

• In a discrete metric 
space due to the 
distance function

• Mathematical 
abstract structure 
that is concerned 
with the properties 
of space and the 
shape

• Preserves 
properties of space
—deformation, 
stretching

• Space is defined by 
points and open 
sets _ Graphs can 
be considered a 
subset of topology
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