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Abstract

Data commons collate data with cloud computing infrastructure and commonly used software 

services, tools, and applications to create biomedical resources for the large-scale management, 

analysis, harmonization, and sharing of biomedical data. Over the past few years, data commons 

have been used to analyze, harmonize, and share large-scale genomics datasets. Data ecosystems 

can be built by interoperating multiple data commons. It can be quite labor intensive to curate, 

import, and analyze the data in a data commons. Data lakes provide an alternative to data 

commons and simply provide access to data, with the data curation and analysis deferred until 

later and delegated to those that access the data. We review software platforms for managing, 

analyzing, and sharing genomic data, with an emphasis on data commons, but also cover data 

ecosystems and data lakes.

The Challenges of Large Genomic Datasets

The commoditization of sensors has resulted in new generations of instruments that produce 

large datasets that are available to genetics researchers. Next generation sequencing 

produced whole exome and whole genome datasets that were 200 to 800 GB or larger, and 

large projects such as The Cancer Genome Atlas (TCGA) [1] contain more than 2 PB of data 

and derived data.

Over the next few years, the research community will collect single-cell atlases [2], next 

generation imaging that captures the cellular microenvironment, and atlases about the cancer 

cells’ interactions with the immunological system, all of which will produce ever larger 

datasets.

The accumulation of all these data has resulted in several challenges for the genetics 

research community. First, the size of the datasets is too large for all but the largest research 

organizations to manage and analyze. Second, the current model in which research groups 

set up their own computing infrastructure, download their own copy of the data, add their 

own data, and analyze the integrated dataset is simply too expensive for the government and 

private funding organizations to support. Third, the information technology (IT) expertise to 
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set up the required large-scale computing environments and the bioinformatics expertise to 

set up the required bioinformatics environments are difficult for most organizations to 

support. Fourth, because of batch effects (see Glossary) [3], it is usually considered wise to 

re-analyze all of the data (from raw data) using a common set of bioinformatics pipelines to 

minimize the presence of batch effects.

The importance of the appropriate data and computing infrastructure to create ‘knowledge 

bases’ and ‘knowledge networks’ to support precision medicine has been described in 

several reports [4,5].

In this review article, we describe some of the data, analysis, and collaboration platforms 

that have emerged to deal with these challenges.

Platforms for Data Sharing

Cloud Computing

Over the past 15 years, large-scale internet companies, such as Google, Amazon, and 

Facebook, have developed new computing infrastructure for their own internal use that 

became known as cloud computing platforms [6]. Some of these companies then made these 

platforms available to customers, including Amazon’s Amazon Web Services (AWS), 

Google’s Cloud Platform (GCP), and Microsoft’s Azure. Importantly, open source versions 

of some these platforms were also developed [7], including OpenStack (openstack.org) and 

OpenNebula (opennebula.org), enabling organizations to set up their own on-premise clouds. 

On-premise clouds are also called private clouds [8] to distinguish them from commercial 

public clouds that are used by multiple organizations.

NIST has developed a definition of cloud computing that includes the following 

characteristics [8]: (i) elastic in the sense that large-scale resources are available and (ii) self-

provisioned in the sense that a user can provision the computing infrastructure required 

directly through a portal or application programming interface (API).

Although it took time for cloud computing to be adapted for biomedical informatics, there 

was early recognition within the cancer community of the importance of this technology 

[9,10], and several university- and institute-based projects developed production-level cloud 

computing platforms to support the cancer research community, including the Bionimbus 

Protected Data Cloud [11], the Galaxy Cloud [12,13], Globus Genomics [14], and the 

Cancer Genome Collaboratory [15]. In addition, commercial companies, including 

DNAnexus [16] and Seven Bridges [17], developed cloud-based solutions for processing 

genomic data.

It may be helpful to divide computing platforms supporting biomedical research into three 

generations: (i) databases, (ii) data clouds, and (iii) data commons (Figure 1).

Databases and Data Portals

First generation platforms operated databases in which biomedical datasets were deposited, 

beginning with GenBank [18]. As the web became the dominant infrastructure for 
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collaboration, data portals emerged as applications that made the data in the underlying 

databases readily available to researchers. For the purposes here, one can think of a data 

portal as a website that provides interactive access to data in an underlying database. 

Although data portals are outside the scope of this review article, it is still important to 

mention the University of California, Santa Cruz (UCSC) Genome Browser [19] and 

cBioPortal [20] as some of the most important examples from this category.

The UCSC Genome Browser has been in continuous development since it was first launched 

in 2000 to help visualize the first working draft of the human genome assembly [19]. Today, 

it contains more than 160 assemblies from more than 90 species and can be run not only 

over the web but also downloaded and run locally using a version called genome browser in 

a box (GBiB) [21].

The cBioPortal for Cancer Genomics [20] is a widely used resource that integrates and 

visualizes cancer genomic data, including mutations, copy number variation, gene 

expression data, and clinical information. Currently, cBioPortal includes data from TCGA 

that are processed by Broad’s Firehose and data from the International Cancer Genomic 

Consortium (ICGC) that are processed by the PANCAN Analysis Working group, plus 

additional smaller datasets [22]. cBioPortal was one of the first cancer data portals to 

organize data by genomic alterations, such as mutations, deletions, copy number variation, 

and expression levels, in a way that seemed natural to research oncologists and to tie the 

alterations back to the original cases to support further investigation when desired.

With next generation sequencing, the size of genomics datasets began to grow, and large-

scale computing infrastructure is required to process, manage, and distribute data. Several 

systems were developed to process datasets such as the TCGA. CGHub was developed to 

host the BAM files from the TCGA project [23] by the UCSC. The Firehose system, 

developed by the Broad Institute, integrates data from TCGA and processes the data using 

applications from Genome Analysis Toolkit (GATK) [24] and applies algorithms such as 

GISTIC2.0 [25] and MutSig [26]. The results can be browsed and accessed via a website 

(gdac.broadinstitute. org) and are available in Broad’s FireCloud system [27].

Data Clouds

Second generation systems co-locate computing with biomedical data enabling researchers 

to compute over the data. A good example of this is the BLAST service [28] provided by the 

National Center for Biotechnology Information. Over the past decade, cloud computing has 

enabled the co-location of on-demand, large-scale computing infrastructure that has created 

new opportunities for the large-scale analysis of hosted biomedical data. Here, we use the 

term ‘data cloud’ for this integrated infrastructure. A working definition of a data cloud for 

biomedical data is a cloud computing platform [6] that manages and analyzes biomedical 

data and, usually, integrates the security and compliance required to work with controlled 

access biomedical data, such as germline genomic data. Examples of biomedical data clouds 

include the Bionimbus Protected Data Cloud developed by the University of Chicago [11], 

the Cancer Genomics Cloud developed by Seven Bridges Genomics [17], the Cancer 

Collaboratory developed by the Ontario Institute for Cancer Research [29], and the Galaxy 

Cloud [12,13] developed by the Galaxy Project.
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We now describe three important milestones in the use of large-scale cloud computing in 

genomics. The first milestone was the launch of the National Cancer Institute (NCI) 

Genomics Data Commons [30] that used an OpenStack-based private cloud to analyze and 

harmonize genomic and associated clinical data from more than 18 000 cancertumor-normal 

pairs, including TCGA [1]. By data harmonization, we mean applying a uniform set of 

pipelines for cleaning, applying quality control criteria, processing, and post-processing 

submitted data[31]. The second milestone was the development of the three NCI Cloud 

Pilots: the ISB Cancer Genomics Cloud by the Institute for Systems Biology [32], FireCloud 

by the Broad Institute [27], and the Cancer Genomics Cloud by Seven Bridges Genomics 

[17], each of which provided cloud-based computing infrastructure to analyze TCGA data. 

The first two Cloud Pilots used GCP and the third used AWS. A third important milestone 

was the analysis of 280 whole genomes using multiple distributed public and private clouds 

by the PANCAN Analysis Working Group [29].

Cloud computing is widely used today to support scientific research for many disciplines 

outside of the biomedical sciences. In general, the architecture for these systems is simpler 

since the security and compliance infrastructure required for working with controlled access 

biomedical data is not required.

Data Commons

Third generation systems integrate biomedical data, computing and storage infrastructure, 

and software services required for working with data to create a data commons. Some 

examples of data commons and six core requirements for data commons are reviewed in 

[33]. A working definition of a ‘data commons’ is the colocation of data with cloud 

computing infrastructure and commonly used software services, tools, and applications for 

managing, integrating, analyzing, and sharing data that are exposed through APIs to create 

an interoperable resource [33].

Some of the core services (data common services) required for a data commons are as 

follows:

i. authentication services for identifying researchers;

ii. authorization services for determining which datasets researchers can access;

iii. digital ID services for assigning permanent identifiers to datasets and accessing 

data using these IDs;

iv. metadata services for assigning metadata to a digital object identified by a digital 

ID and accessing the metadata;

v. security and compliance services so that data commons can support controlled 

access data;

vi. data model services for integrating data with respect to one or more data models; 

and

vii. workflow services for executing bioinformatics pipelines so that data can be 

analyzed and harmonized.
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Accessing controlled access data requires services (i) and (ii). With service (iii), data stored 

in commons are findable and accessible. With service (iv), data stored in data commons can 

be reusable and interoperable. In practice, for data to be reusable depends in large part on the 

quality of the data annotation prepared by the data submitter. With services (iii) and (iv), 

data stored in commons are findable, accessible, reusable, and interoperable and thus is 

sometimes abbreviated as FAIR. The importance of making biomedical data FAIR has been 

stressed in efforts such as the European FORCE11 Initiative [34] and the National Institutes 

of Health (NIH) Big Data to Knowledge (BD2K) initiative [35]. Recently, a framework for 

metrics to measure the ‘FAIRness’ of services has also been developed [36].

Workflow services (vii) in data commons are quite varied and include running existing 

workflows that have been integrated into the commons and can be used to analyze data in 

the commons, pulling existing workflows from workflow repositories outside the commons 

and applying them to data in the commons, and developing new workflows and using them 

to analyze data in the commons. Also, some commons allow users to execute workflows, 

while others limit this to the data commons administrators.

An example of a data commons is the NCI Genomic Data Commons (GDC) [30,37], used 

by more than 100 000 distinct cancer researchers in 2018. With the GDC [30], data 

commons began to curate and integrate contributed data using a common data model [core 

service (vi)], harmonize the contributed data using a common set of bioinformatics pipelines 

[core service (vii)], support the visual exploration of data through a data portal, and expose 

APIs to the core services (i)-(v) to support third party applications over the integrated and 

harmonized data.

Project Data: Object Data and Structured Data

Data in a data commons are usually organized into projects, with different projects 

potentially having their own data model and collecting different subsets of clinical, 

molecular, imaging, and other data. It is an open question of how best to organize data 

across projects so that it can integrated, harmonized, and queried. One natural division that 

is emerging is the distinction between the structured data, the unstructured data, and the 

data objects in a project. The object data typically include FASTQ or BAM files [38] used 

in genomics, image files, video files, and other large files, such as archive or backup files 

associated with a project. The structured data include clinical data, demographic data, 

biospecimen data, variant data [39], and other data associated with a data schema. The 

unstructured data include text, notes, articles, and other data that are not associated with a 

schema.

Part of the curation process is to align the structured data in a project with an appropriate 

ontology. Examples include using the human phenotype ontology [40] and the NCI 

Thesaurus [41] for curating clinical phenotype data and CDISC [42] for curating clinical 

trials data. It can be quite challenging and labor intensive to match ontologies to clinical 

data, and several tools have been developed to make this easier [43,44].

If we call all the structured data, unstructured data, and associated schemas ‘project core 

data’, then it is quite common for the project’s object data to be 1000 times (or more) larger 
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than the project’s core data. For example, with the TCGA’s projects [1], the data objects 

were measured in 10s to 100s TB, while the project’s core data were measured in 10s of GB.

In practice, a project’s object data are assigned globally unique identifiers (GUIDs) and 

metadata and stored in clouds using services (iii) and (iv) and are immutable (although new 

versions may be added to the project), while the project core data are often updated, as part 

of the curation and quality assurance process and as new data are added to the project.

A project’s object data are searched via its metadata [core service (iv)], while a project’s 

core data can be searched via its data model [core service (vi)]. Of course, a project’s object 

data can be processed to produce features that can then be managed and searched. Examples 

include developing algorithms for identifying particular types of cells in cell images and 

searching for these cells or processing BAM files to compute data quality scores and 

searching for BAM files with particular data quality problems. When data are curated and 

integrated with a common data model, synthetic cohorts can be created through a query, 

such as ‘find all males over 50 years of old that smoked and have a KRAS mutation [45].’

Another way to think of this is that core services (i)-(v) support the ‘shallow’ indexing and 

search via metadata, while core services (i)-(vi) support ‘deep’ indexing and search via the 

data model attached to project core data. In either case, when the services are exposed via 

APIs to third party applications, data become portable and data commons become 

interoperable, both of which are usually thought of as important requirements [33].

Data Lakes

Sometimes the term ‘data lake’ is used when data are stored simply with digital IDs and 

metadata (shallow indexing), but without a data model. Data models and schemas are used 

when the data are written or when the data are analyzed, but not when the data are stored. 

Additional information about data lakes can be found in [46]. Since it can be very labor 

intensive to import data with respect to a data model, and since not all the data in a 

commons are used, this has the advantage that the effort to align the data with a data model 

is not needed until the data are analyzed. Of course, at the time the data are analyzed and 

aligned with a data model, the expertise to do this may no longer be easily available.

Through the use of cloud computing, data commons can support large-scale data, but this 

also creates sustainability challenges, due to the cost of large-scale storage and compute. 

One sustainability model that can be attractive to an organization is to provide the data at no 

cost, but to control the cost of the computing resources by using a ‘pay for compute model’ 

[33], establishing quotas for compute, giving compute allocations, or distributing ‘chits’ that 

can be redeemed for compute.

Just as data lakes required less curation than data commons, data catalogs required less 

curation than data lakes. A ‘data catalog’ is simply a listing of data assets, some basic 

metadata, and their locations, but without a common mechanism for accessing the data, such 

as used in a data lake.

Grossman Page 6

Trends Genet. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Workflows

Bioinformatics workflows are often data intensive and complex, consisting of several 

different programs with the outputs of one program used as the inputs to another. For this 

reason, specialized workflow management systems have been developed so that workflows 

can be mapped efficiently to different high-performance, parallel, and distributed computer 

systems. Workflow languages have been developed so that domain specialists 

knowledgeable about the workflows can describe the workflows in a manner that is 

independent of the specific underlying physical architecture of the system executing the 

workflows. Despite many years of effort though, there is still no standard language for 

expressing workflows in general and bioinformatics workflows in particular [47,48]. Within 

the cancer genomics community, the Common Workflow Language (CWL) [49] is gaining 

in popularity. The GA4GH Consortium (ga4gh.org) supports a technical effort to standardize 

bioinformatics workflows, which includes the workflow execution services (WES) and task 

execution service (TES). With the growing use of container-based environments for 

program execution, such as Docker, it is becoming more common to encapsulate workflows 

in containers to make them easier to reuse [50]. Before the wide adoption of containers, 

workflows were encapsulated in virtual machines for the same reason. Examples of services 

for accessing reproducible workflows include Dock-store [51] and Biocompute Objects [52].

Data and Commons Governance

A common definition of IT governance is [53]: (i) Assure that the investments in IT generate 

business value. (ii) Mitigate the risks that are associated with IT. (iii) Operate in such a way 

as to make good long-term decisions with accountability and traceability to those funding IT 

resources, those developing and support IT resources, and those using IT resources. This 

definition can be easily adapted to provide a good definition for data commons governance: 

(i) Assure that the investments in the data commons generate value to the research 

community. (ii) Manage the balance between the risks associated with participant data and 

the benefits realized from research involving these data [54]. (iii) Operate in such a way so 

as to make good long-term decisions with accountability and traceability to those sponsors 

that fund the data commons; the engineers that develop, manage, and operate the data 

commons; and the researchers that use it.

An overview of principles for data commons and a description of eight principles for 

biomedical data commons can be found in [55]. A survey of how data are made available 

and controlled in commons is in [56]. A survey of data commons governance models is in 

[57]. The GA4GH framework for sharing data is described in [54].

The data governance structure for international data commons, such as the INRG Data 

Commons [58] and the ICGC Data Commons [59], can be challenging and may have 

restrictions on the movement of the underlying controlled access genomic data.

Building and Operating a Data Commons

Building a data commons usually consists of the following steps (Figure 2):
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i. Put in place data governance agreements that govern the contribution, 

management and use of the data in the data commons and common governance 

agreements that govern the development, operations, use, and sustainability of 

the commons.

ii. Develop a data model (or data models) that describe the data in the commons.

iii. Set up and configure the data commons itself.

iv. Work with the community to submit data to the data commons.

v. Import, clean, and curate the submitted data.

vi. Process and analyze the data using bioinformatics pipelines to produce 

harmonized data products. This is often done with analysis working groups.

vii. Open up the commons to external researchers, third party applications, and 

interoperate with other commons.

To support the activities, a data commons usually has the following components:

i. A data exploration portal (or more simply a data portal) for viewing, exploring, 

visualizing and downloading the data in the commons.

ii. A data submission portal for submitting data to the commons.

iii. An API supporting third party applications.

iv. Systems for the large-scale processing of data in the commons to produce 

derived data products.

v. Systems to support analysis working groups and other team science constructs 

used for the collaborative analysis and annotation of data in the commons. What 

are being called ‘workspaces’ are one of the mechanisms that are emerging to 

support this.

Data Ecosystems Containing Multiple Data Commons

As the number of data commons grow, there will be an increasing need for data commons to 

interoperate and for applications to be able to access data and services from multiple data 

commons. It may be helpful to think of this situation as laying the foundation for a data 

ecosystem [60].

Sometimes the data commons services (i)-(vi) described above are called ‘framework 

services’ since they provide the framework for building a data commons, and, in fact, can be 

used to support multiple data commons that interoperate (Figure 3, Key Figure). As 

mentioned above, when these services are exposed through an API, either as part of a data 

commons or as a part of framework services supporting multiple data commons, they can 

support an ecosystem of third party applications [45].

There is no generally accepted definition of a data ecosystem at this time, but, at the 

minimum, a ‘data ecosystem’ for biomedical data (as opposed to a data commons) should 

support the following:
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i. Authentication and authorization services so that a community of researchers can 

access an ecosystem of data and applications with a common (research) identity 

and common authorization that is shared across data commons and applications.

ii. A collection of applications that are powered by APIs that are FAIR compliant 

that are shared across multiple data commons.

iii. The ability for multiple data commons to interoperate through framework 

services and, preferably, through data peering [33] so that access to data across 

data commons and applications is transparent, frictionless, and without egress 

charges, as long as the access is through a digital ID.

iv. Shared data models, or portions of data models, to simplify the ability for third 

party applications to access data from multiple data commons and applications. 

Projects within a larger overall program, or in related programs, may share a data 

model. More commonly, different projects may share some common data 

elements within a core data model, with each project having additional data 

elements unique for that project.

v. Support for workspaces that may include the following:

a. the ability to create synthetic (or virtual) cohorts and export cohorts to 

workspaces;

b. the ability to execute bioinformatics workflows within workspaces; and

c. workspace services for processing, exploring, and analyzing data using 

containers, virtual machines, or other mechanisms.

vi. Security and compliance services.

Often workspace services (vb) and (vc) use a user-pay model as mentioned above.

An example of a cancer data ecosystem is the NCI Cancer Research Data Commons or 

NCRDC [61]. The NCRDC spans the GDC [30] and the Cloud Resources [61], so that both 

AWS and the GCP can be used to both analyze data from the GDC as well as to support 

integrative data analysis across data uploaded by researchers with data from the GDC and 

other third party datasets. Data commons for proteomic and imaging data are in the process 

of being added to the NCRDC. The NCRDC uses the framework services described above 

so that multiple data commons and other NCRDC resources can share authentication, 

authorization, ID, and metadata services. In particular, this approach allows applications to 

be built that span multiple data commons.

Concluding Remarks and Future Directions

We have reviewed some of the more recent data and computing platforms that have been 

used to analyze large-scale data being produce in biology, medicine, and health care, with a 

particular emphasis on data commons. See Figure 4 for an overview of the different 

platforms. Data commons provide several important advantages, including the following:

• Data commons support repeatable, reproducible, and open research.
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• Some diseases are dependent upon having a critical mass of data to provide the 

required statistical power for the scientific evidence (e.g., to study combinations 

of rare mutations in cancer).

• With more data, smaller effects can be studied (e.g., to understand the effect of 

environmental factors on disease).

• Data commons enable researchers to work with large datasets at much lower cost 

to the sponsor than if each researcher set up their own local environment.

• Data commons generally provide higher security and greater compliance than 

most local computing environments.

• Data commons support large-scale computation so that the latest bioinformatics 

pipelines can be run.

• Data commons can interoperate with each other so that over time data sharing 

can benefit from a ‘network effect’.

Over the next few years, one of the most important changes will be the ability of patients to 

submit their own data to a data commons and to gain some understanding of their own data 

in terms of the overall data available in the commons and their broader data ecosystem the 

commons is part of (see Outstanding Questions). The ability of patients to contribute their 

own data and to have control over how the data are used by the research communit [62] is an 

important aspect of what is sometimes called patient partnered research.
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Glossary

Application programming interface (API)
An API is a specification for how two different software programmers communicate with 

each other and an implementation of the specification in computer code

BAM
The binary alignment map is a binary format that is widely used for storing molecular 

sequence data

Batch effects
Batch effects are differences in samples that are the results of differences in laboratory 

conditions; materials used to prepare the samples, such as reagents; personnel that prepare 

the samples; and other differences. Batch effects are often an important confounding factor 

in high-throughput sequence data

Container
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A container for running software is a package of software that includes everything needed to 

run a software application, including the application’s code, as well as the runtime 

environment, system tools, system libraries, configurations, and settings. Containers are 

designed to be run in different types of computing environments with no changes

Data cloud
A data cloud is a cloud computing platform for managing, analyzing, and sharing datasets

Data commons
A data commons co-locates data with cloud computing infrastructure and commonly used 

software services, tools, and applications for managing, integrating, analyzing, and sharing 

data that are exposed through APIs to create an interoperable resource

Data harmonization
Data harmonization as the process that brings together data from multiples sources and 

applies uniform and consistent processes, such as uniform quality control metrics to the 

accepted data; mapping the data to a common data model; processing the data with common 

bioinformatics pipelines; and post-posting the data using common quality control metrics

Data lake
A data lake is a system for storing data as objects, where the objects have an associated 

GUID and (object) metadata, but there is no data model for interpreting the data within the 

object

Data object
In cloud computing, a data object consists of data, a key, and associated metadata. The data 

can be retrieved using key and the metadata associated with a specific data object can be 

retrieved, but more general queries are not support. Amazon’s S3 storage system is a widely 

used storage system for data objects

Data portal
A data portal is a website that provides interactive access to data in an underlying data 

management system, such as a database. Data commons and data lakes can also have data 

portals

Docker
Docker is a software program for running containers developed by the company Docker, Inc. 

The containers it runs are often called Docker containers

Genome Analysis Toolkit (GATK)
GATK is a widely used collection of bioinformatics pipelines and associated best practices 

for variant discovery and genotyping developed by the Broad Institute

GISTIC2.0
GISTIC is a probabilistic algorithm for detecting somatic copy number alterations that are 

likely to drive cancer growth

Globally Unique Identifier (GUID)
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A GUID is an essentially unique identifier that is generated by an algorithm so that no 

central authority is needed, but rather different programs running in different locations can 

generate GUID with a low probability that they will collide. A common format for a GUID 

is the hexadecimal representation of a 128-bit binary number

MutSig
MutSig (for mutation significance) is a probabilistic algorithm and associated software 

application that analyzes a list of mutations produced from DNA sequencing data to identify 

genes that were mutated more often than expected by chance, given background mutation 

processes

NIST
The National Institute of Standards and Technology is a US federal agency that advances 

measurement science and develops standards. NIST has developed definitions in standards 

for cloud computing and information security

Structured data
Data are structured if they are organized into records and fields, with each record consisting 

of one or more data elements (data fields). In biomedical data, data fields are often restricted 

to controlled vocabularies to make querying them easier
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Highlights

Data commons collate data with cloud computing infrastructure and commonly used 

software services, tools, and applications to create biomedical resources for the large-

scale management, analysis, harmonization, and sharing of biomedical data.

Data commons support repeatable, reproducible, and open research.

Data lakes provide access to a collection of data objects that can accessed via digital IDs 

and searched via their metadata.

A simple data ecosystem can be built when a data commons exposes an API that can 

support a collection of third party applications that can access data from the commons. 

More complex data ecosystems arise when multiple data commons can interoperate and 

support a collection of third party applications over a common set of core services 

(framework services), such as services for authentication, authorization, digital IDs, and 

metadata.
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Outstanding Questions

In practice, uploading clinical phenotype data into a data commons so that it is aligned 

with the data common’s data model and can be harmonized with the other data in the 

commons is quite labor intensive. An open question is how to develop bioinformatics 

tools and associated frameworks so that data can be transformed automatically or semi-

automatically into the proper format.

Developing software architectures and associated platforms that can that can query and 

aggregate data from multiple data commons is an important challenge.

In general, different commons will have both large and small differences in the practices 

and standards used for assigning clinical phenotype. Developing applications that can 

query and aggregate data from multiple data commons even when there are minor (or 

major) differences between the clinical phenotype data is an important challenge.

In practice, researchers will be analyzing data using applications that are hosted across 

multiple commercial public clouds, while those operating data commons will try to 

reduce their costs by focusing on one or two public or private clouds. What are the soft-

ware architectures and operating procedures so that data commons can operate across just 

one or two public or private clouds but support researchers across multiple clouds?

Moving data projects between data commons is important so that data commons do not 

begin to ‘silo’ data. What are appropriate serialization for-mats so that projects can be 

efficiently imported and exported between data commons?
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Figure 1. 
Some of the Important Differences between Data Clouds and Data Commons.
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Figure 2. Building a Data Commons.
Data commons support the entire life cycle of data, including defining the data model, 

importing data, cleaning data, exploring data, analyzing data, and then sharing new research 

discoveries.
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Figure 3. Key Figure Data Commons Framework Services
This diagram shows how data commons framework services can support multiple data 

commons and an ecosystem of workspaces, notebooks, and applications.
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Figure 4. Data Platforms.
Data platforms can be categorized along four axes: the data architecture, the extent of the 

data curation and harmonization, the analysis architecture of a resource, and the analysis 

architecture of the ecosystem. The red lines can be viewed as classifying platforms using 

parallel coordinates and these four dimensions. The top line is the parallel coordinates 

associated with the National Cancer Institute (NCI) Cancer Research Data Commons, the 

line below is the parallel coordinates for the NCI Genomic Data Commons, the two lines 

below are two possible architectures for data lakes, while the bottom line is an architecture 

for a repository of files. Abbreviations: API, application programming interface; DCF, data 

commons framework; NA, not applicable; SaaS, software as a service.
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