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abstract

PURPOSE Broad-panel sequencing of tumors facilitates routine care of people with cancer as well as clinical trial
matching for novel genome-directed therapies. We sought to extend the use of broad-panel sequencing results
to survival stratification and clinical outcome prediction.

METHODS By using sequencing results from a cohort of 1,054 patients with advanced lung adenocarcinomas,
we developed OncoCast, a machine learning tool for survival risk stratification and biomarker identification.

RESULTS With OncoCast, we stratified this patient cohort into four risk groups on the basis of tumor genomic
profile. Patients whose tumors harbored a high-risk profile had a median survival of 7.3 months (95% CI, 5.5 to
10.9 months) compared with a low-risk group with a median survival of 32.8 months (95% CI, 26.3 to 38.5
months) with a hazard ratio of 4.6 (P , .001), far superior to any individual gene predictor or standard clinical
characteristics. We found that comutations of both STK11 and KEAP1 are strong determinants of unfavorable
prognosis with currently available therapies. In patients with targetable oncogenes (eg, EGFR, ALK, ROS1) who
received targeted therapies, the tumor genetic background additionally differentiated survival with mutations in
TP53 and ARID1A, which contributed to a higher risk score for shorter survival.

CONCLUSION A mutational profile derived from broad-panel sequencing presents an effective genomic strat-
ification for patient survival in advanced lung adenocarcinoma. OncoCast is available as a public resource that
facilitates the incorporation of mutational data to predict individual patient prognosis and compare risk
characteristics of patient populations.
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INTRODUCTION

With the growth of precision medicine programs driven
by genomic testing as well as recent US Food and
Drug Administration clearance of next-generation se-
quencing (NGS) platforms for clinical use, there has
been rapid growth in the availability of broad-panel
sequencing data for patients with cancer. Broad-panel
sequencing facilitates clinical trial matching of novel
genome-directed therapies. Zehir et al1 delineated the
molecular landscape of 10,000 metastatic cancers in
a pretreated real-world cohort sequenced by the
Memorial Sloan Kettering-IntegratedMutation Profiling
of Actionable Cancer Targets (MSK-IMPACT) platform,
a hybridization capture-based NGS panel that can
detect mutations and copy number alterations in 341
or more cancer-associated genes.2 This study showed
that 37% of patients harbored at least one thera-
peutically actionable alteration, and 11%werematched
to genome-directed clinical trials.

In patients with lung adenocarcinoma, tumor geno-
typing is now an essential step in routine clinical

decision making. To determine treatment, patients
with lung adenocarcinomas are currently categorized
on the basis of the presence of mutated driver on-
cogenes (eg, EGFR, ALK, ROS1, and BRAF). A multi-
institutional study characterized genetic aberrations
across 10 genes in 733 tumor samples and identified
an oncogenic driver in 64% of the patients.3 By using
broad-panel sequencing, Jordan et al4 reported on
a single-institution experience of 860 patients with
metastatic lung adenocarcinoma. More than 37% of
patients received a matched therapy, and the use of
matched therapy was strongly influenced by the level
of pre-existent clinical evidence that the mutation
identified predicts the drug response.

Although the focus of tumor genotyping has been on
ascertaining mutations that identify therapeutic tar-
gets, there is considerable unexplained variability in
clinical outcomes, even within specific molecular
subsets of patients with metastatic cancer. Similarly,
association between high mutational load and clinical
benefit has been observed in patients treated with
programmed cell death protein 1/programmed

ASSOCIATED
CONTENT

Data Supplement

Author affiliations
and support
information (if
applicable) appear at
the end of this
article.

Accepted on January
25, 2019 and
published at
ascopubs.org/journal/
po on March 28,
2019: DOI https://doi.
org/10.1200/PO.18.
00307

1

http://ascopubs.org/journal/po
http://ascopubs.org/journal/po
http://ascopubs.org/doi/full/10.1200/PO.18.00307
http://ascopubs.org/doi/full/10.1200/PO.18.00307
http://ascopubs.org/doi/full/10.1200/PO.18.00307


death-ligand 1 (PD-1/PD-L1) inhibitors.5 However, addi-
tional markers are needed to predict durable benefit and
long-term survival among these patients. Previous attempts
to evaluate the effects of comutations have had a relatively
limited scope. Some studies have explored the effects of
single co-occurring alterations on outcome in patients with
EGFR-mutant and KRAS-mutant lung adenocarcinoma,
and they observed that the presence or absence of pairs of
co-occurring events could be used to identify those patients
with a poor prognosis most in need of novel therapeutic
approaches.3,6-8 However, a systematic approach is
needed to additionally improve our understanding of sur-
vival and treatment outcome of patients.

Thus, we developed OncoCast, a computational tool for
survival stratification, and applied it to a large clinical series
of patients with metastatic lung adenocarcinomas to im-
prove the understanding of heterogeneity in clinical out-
come for these patients and the mutation and comutational
patterns that underlie such heterogeneity. Analysis of this
large clinical cohort provides real-world evidence for un-
derstanding survival outcome for patients undergoing
current standard care for advanced lung adenocarci-
nomas. Such real-world evidence can supplement the
information from randomized clinical trials in that the re-
sults are more generalizable to patients treated outside
randomized clinical trials, and the larger sample sizes of
real-world data sets allow subset analysis that clinical
trials are not powered for. The open-source computa-
tional pipeline that we have developed can facilitate the
application of statistical and machine learning ap-
proaches for clinico-genomics analysis of precision
medicine data sets.

METHODS

The OncoCast method is described in the Data Supple-
ment. R package software is available at https://github.
com/shenmskcc/OncoCast. An interactive Web interface
was developed by using R Shiny with two main functions:
GeneView and PatientView. In GeneView, users can in-
teractively explore gene importance and comutation pat-
terns by risk groups. In PatientView, users can type in
a patient’s mutational profile and specify the clinical
characteristics. The genomic risk score along with the
predicted probability of survival at different time marks will
be calculated and will be viewable in a dynamic plot. The
Shiny app is available at https://github.com/shenmskcc/
LungIMPACT.

RESULTS

Cohort Characteristics

Consecutive patients with metastatic or recurrent lung
adenocarcinomas for which MSK-IMPACT data were
available were included. Electronic medical records were
used to identify patient clinical factors as well as survival
outcomes as previously described.4 Overall survival (OS)
was defined as the time from date of diagnosis of advanced

disease (stage IV or recurrent cancer) until date of death or
last follow-up. In this cohort, the majority (68%) of the
tumors in our cohort were biopsied and sequenced within
30 days of diagnosis of metastatic disease. However,
a fraction (21%) of the tumors were sampled and se-
quenced more than 6 months from the date of metastatic
disease, with 16% sequenced at more than 1 year and 8%
sequenced at more than 2 years, which represents older
samples used for sequencing analysis. Those patients with
older samples which had been taken at initial diagnosis of
advanced lung cancer were immortal from their initial
sampling time to the time of referral for MSK-IMPACT
sequencing. This interval can be long for a small fraction of
patients (8%with a delayed interval of more than 2 years, as
mentioned earlier), which introduces survival bias. Left
truncation was used to adjust for this bias. Details of left-
truncation analysis are described in the Data Supplement.
The most frequently mutated genes were TP53 (55.1%),
KRAS (30%), EGFR (29.4%), STK11 (17.7%), and KEAP1
(17.7%; Data Supplement). Among the frequently comu-
tated gene pairs, STK11 and KEAP1 were comutated in
10% of the tumors, and KRAS and STK11 were comutated
in 9% of the tumors (Data Supplement).

Prognostic Relevance and Clonality of Cancer Genes

To define the prognostic significance of MSK-IMPACT
panel genes that were sequenced, we developed Onco-
Cast, a machine learning tool for survival risk stratification
and biomarker identification by implementing a lasso-
penalized proportional hazards regression for deriving
prediction rules for OS and feature selection (Data Sup-
plement). OncoCast uses an ensemble learning strategy by
repeatedly splitting the cohort into training and test sets that
generate an ensemble of classifiers with varying selection of
genes and gene combinations (Data Supplement).

The median number of prognostic genes selected was 19
(range, 4-67 genes), with a total of 169 cancer genes
selected at least once by the ensemble learner. The relative
prognostic importance of each gene was measured by how
often it was selected (fraction of the models containing the
gene) and its average regression coefficients, which de-
termined the corresponding weights for individual genes in
the scoring rule. Figure 1A shows frequency of selection
and average coefficient value for individual genes. STK11
and KEAP1 were observed to be highly prognostically
relevant. They were followed in importance by TP53, KRAS,
SMARCA4, and EGFR. An additional 21 genes were se-
lected in at least 20% of the models (Fig 2A), including ALK
fusion (58%), ROS1 fusion (22%), and ERBB2 mutation
(31%), additionally highlighting the power of our approach
to aggregate effects from rare events, which otherwise
would not be included in standard association analyses.

Several recent studies examining tumor heterogeneity have
shown that clonal or truncal drug targets and/or tumor
neoantigens are more predictive of response to systemic
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targeted and immunotherapies than subclonal events.9-11

We thus used the high depth of coverage afforded by our
sequencing data (mean coverage, 758 ×) to determine the
clonality of the gene alterations found to be associated with

prognosis in the analysis we outlined earlier. Clonality
analysis revealed that all of the most prognostic alterations
were predominantly clonal, with average cancer cell frac-
tion above 85% (Fig 1B).
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FIG 1. Prognostic relevance and clonality of cancer genes. (A) Plot of selection frequency in eachmodel and regression coefficients for individual genes; the
black vertical bar shows favorable versus unfavorable association with overall survival. (B) Clonality analysis of the cancer gene alterations. Circle size is
proportional to mutation frequency.
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FIG 2. An integrated prognostic scoring system for metastatic lung adenocarcinomas. (A) Histogram of the
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OncoCast: An Integrated Prognostic Scoring System

Based on NGS Tumor Profiling

OncoCast aggregates prognostic effects across the se-
quenced cancer genes to derive a genomic risk score for
each patient (scaled from 0 to 10), with a higher score
indicating a greater likelihood of shorter survival. The
distribution of the risk scores revealed a wide spread within
the cohort (Fig 2A). To evaluate prognostic performance,
we calculated the C-index which measures the concor-
dance between the risk score and survival (Fig 2B). A three-
fold cross-validation was used for unbiased assessment.
Clinical demographic factors (including age, sex, smoking)
were weakly concordant with survival, with median
C-indices ranging from 0.53 to 0.57. By contrast, the
OncoCast risk score as determined by tumor genomic
profiling demonstrated a significantly better concordance
with a median C-index above 0.65. In advanced or met-
astatic lung cancers, studies have shown only weak to
moderate strength of survival association for clinical
factors.12,13 The genomic classifier we developed here
presents a significant improvement. In addition, the
OncoCast classifier on the basis of clinical-grade se-
quencing as part of routine care highlights the immediate
application and strong practical utility of this system. The
prediction strength is comparable to established gene
expression–based genomic classifiers in early-stage lung
cancer from a large multisite study.14 Inclusion of copy
number alteration (CNA) data in the analysis revealed no
discernible improvement in C-index when the CNA data
were incorporated (Fig 2B).

We categorized the patient cohort into low (0 to ≤ 25th
percentile), low-intermediate (. 25th to 75th percentile),
high-intermediate (. 75th to 90th percentile), and high
(. 90th percentile and above) risk groups informed by the
multiple modes of the risk score distribution (Fig 3A). For
the low-risk group, median OS was 32.8 months (95% CI,
26.3 to 38.5 months). By contrast, for the high-risk group,
the median survival was 7.3 months (95% CI, 5.5 to 10.9
months). There was a difference of more than 6 units in
average risk score between the high- and low-risk groups.
The OncoCast classification substantially outperformed all
of the individual genes as a predictor of OS (Fig 3B). The
hazard ratio (HR) was 4.6 (95% CI, 3.2 to 6.5) for the
OncoCast risk score for the high-risk versus the low-risk
group, far superior to clinical factors or any individual
gene. OncoCast risk score remained a highly significant
predictor after adjusting for clinical variables and treat-
ment types as potential confounding factors in a multi-
variable Cox regression model (Data Supplement).

To confirm the validity of the OncoCast survival stratifica-
tion, we applied it to a separate data set of patients with
mostly early-stage non–small-cell lung cancer obtained
from The Cancer Genome Atlas lung adenocarcinoma
analysis. We saw a similar stratification of the risk groups
(Data Supplement). The high-risk group showed

significantly worse OS with an HR of 1.9 (P = .03), and it
was highly enriched for concurrent STK11 and KEAP1
mutations.

Prognostic Mutation and Comutation Patterns

Overlaying the OncoCast risk score with the mutational
landscape in an OncoPrint plot highlights that the tumors
with the highest-risk profile were enriched for comutation of
STK11 and KEAP1 (Fig 4). STK11 is a tumor suppressor
gene that encodes for the serine/threonine kinase LKB1
that functions as a negative regulator of mammalian target
of rapamycin (mTOR) signaling. Consistent with its func-
tional role as a tumor suppressor, the majority of STK11
mutations were truncating and frameshift indels. To ex-
amine the status of the other allele in such cases, we
performed allele-specific CNA using the Fraction and
Allele-Specific Copy Number Estimates from Tumor Se-
quencing (FACETS) algorithm.15 Strikingly, more than 90%
of STK11 mutant tumors had evidence of biallelic in-
activation through loss of heterogeneity (LOH) of chro-
mosome 19p (Data Supplement). KEAP1 also resides in the
19p region with 89% of KEAP1-mutant tumors demon-
strating LOH. The majority of KEAP1 mutations were
missense, and the mutant copy was frequently duplicated
(present as copy-neutral LOH and uniparental gains) as
reflected in the average total copy number.

We also explored whether other tumor characteristics such
as tumor mutational signature or intratumor heterogeneity
were prognostic and associated with OncoCast risk score.
Previously defined smoking-associated and apolipoprotein B
mRNA editing enzyme, catalytic polypeptide-like (APOBEC)
signatures were the most prevalent mutational signatures in
this cohort. The identification of a smoking signature was
highly concordant with patient reported smoking status
(Fig 4). An APOBEC signature was enriched in low-risk
groups and in patients who self-reported as never
smokers. Themedianmutation burden in the overall data set
was 9.95 mutations per Mb (interquartile range, 4.97-19.
07). Tumor mutation burden was associated with risk groups
that had medians of 16.58, 16.05, 9.95, and 5.76mutations
per Mb in the high-, high-intermediate-, low-intermediate-,
and low-risk groups, respectively (Kruskal-Wallis test
P, .001; Data Supplement). However, mutation burden
did not provide additional prognostic value beyond OncoCast
risk score in a multivariable Cox model (Data Supplement).

Clonal diversity was calculated for each tumor by sum-
marizing the cancer cell fraction for all somatic mutations
using the Shannon index. A diversity index of zero represents
homogeneity, in which case all of the mutations detected in
the tumor are clonal (cancer cell fraction, 100%). The
median diversity index in the cohort was 1.19 (range,
0.00-56.32). A trend of increased clonal heterogeneity was
observed in high-risk groups (Data Supplement). Again,
clonal heterogeneity did not provide additional prognostic
value on top of the OncoCast risk score.
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Genotypes Associated With Risk Groups

To better understand the association between targetable
cancer driver mutations and OncoCast risk score, we

explored the distribution of genotypes within four major risk
categories (Fig 5). The low-risk group was highly enriched
for EGFRmutants and tumors harboring oncogenic fusions
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in ALK, RET, and ROS1. However, 30% of the low-risk
group tumors lacked targetable alterations in these four
genes. The defining characteristic for the patients in the
low-risk group without EGFR, ALK, RET, and ROS1 alter-
ations was an absence of any of the poor prognostic gene
alterations. In the high-risk groups, common comutation
patterns were observed. Strikingly, more than 95% of the
patients in the high-risk group had tumors that harbored
comutations of KEAP1 and STK11. The top three major
genotype categories in the high-risk group were KRAS-
STK11-KEAP1, TP53-STK11-KEAP1, and KRAS-STK11-
KEAP1-SMARCA4. Furthermore, when compared with The
Cancer Genome Atlas resected lung adenocarcinoma co-
hort, STK11 and KEAP1 comutation was two-fold more
common in the metastatic lung cohort (10.2% v 5.2%; P,
.001). This suggests that STK11 and KEAP1 comutation
defines a cohort of patients with resected lung adenocar-
cinoma at higher risk of disease progression and cancer-
specific mortality.

Survival Stratification in Specific Treatment Subsets

We then sought to demonstrate the ability of the OncoCast
technique to explore tumor genomic predictor outcomes in

the subset of patients with mutated driver oncogenes
treated with kinase inhibitors. The model, OncoCast-TR
(targeted therapies model), was derived using the genomic
profiles and survival outcomes from the start of therapy for
the 387 patients who received targeted therapies (EGFR,
ALK, ROS). Survival time was calculated from the start of
treatment to death or last follow-up. Late entry was
accounted for by using left-truncation analysis and in-
corporating time-to-tumor sampling and sequencing. The
risk score from the OncoCast-TR model clearly indicated
two groups with distinct survival differences (Fig 6A and
6B). TP53 is strongly associated with worse survival out-
come (Fig 6C), with 96% of patients in the TR2 group
harboring concurrent TP53 mutations and 0% concurrent
TP53 mutations in the TR1 group. ARID1A also showed
association with poor survival with 11 (78%) of 14 ARID1A
mutations in TR2.

Interactive Tool for Visualizing and Exploring Mutation

Pattern and Survival

To facilitate clinical translation and research use of the
data, we created an interactive Web application (Data
Supplement) that allows for visualization of mutation
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patterns and individualized prediction of OS to be gener-
ated on the basis of a user-defined mutational profile and
clinical characteristics. There are two main functional
modules: GeneView and PatientView. In GeneView, the
user can input the genes of interest and interactively ex-
plore the prognostic effects in a dynamic volcano plot and
with genotype pie charts. In PatientView, an OncoCast risk
score will be calculated from a user supplied mutational
profile. Along with a patient’s clinical profile, the application
outputs the predicted survival probabilities and 95% CIs.
Although the tool was built using the largest metastatic lung
adenocarcinoma cohort to date, it was designed to be
dynamically updated as new data are incorporated into
the model.

DISCUSSION

Tumors from patients with lung adenocarcinoma have
a high frequency of actionable oncogenic drivers.16,17 The
introduction of targeted therapy has transformed the
clinical care of patients with lung adenocarcinoma by in-
corporating tumor genotyping into therapeutic decision
making. However, the prognostic value of the additional
information from broad genomic profiling has not been
explored. We developed OncoCast, a statistical learning
tool, for integrating broad genomic profiling data and
clinical outcomes for survival stratification and the identi-
fication of associated biomarkers. By using an ensemble
learning approach, we demonstrated the prognostic utility
of data from a large panel NGS assay interrogating
341 cancer-associated genes in 1,054 patients with met-
astatic lung adenocarcinoma treated with currently avail-
able therapies. We show that it is a practical approach to
molecular stratification in metastatic lung adenocarcinoma
and provides the ability to identify biomarkers that predict
survival outcome.

Overlaying the OncoCast risk score with the tumor genomic
landscape revealed novel biologic and clinical insights. The

major prognostic genes associated with poor survival in-
cluded STK11, KEAP1, TP53, KRAS, and SMARCA4.
Remarkably, comutations of both STK11 and KEAP1 de-
fined an exceptionally high-risk profile with a short median
OS of 7.3 months and an increase of more than 6 units in
risk score compared with a low-risk group, corresponding
to an HR of 4.6. The low-risk group had no mutations in
these major poor prognostic genes. Some of the favorable
prognostic genes may reflect the availability of effective
targeted therapies in the case of EGFR, ALK, and ROS1.
However, in patients with these targetable oncogenes,
there is heterogeneity in the additional mutations their
tumors harbor. Our model is novel in that it outputs
a continuous risk score on the basis of the specific genetic
background of the patient’s tumor, including additional
genetic alterations beyond the driver oncogene. This pro-
vides finer granularity for understanding the heterogeneity
in clinical outcome. For example, our model revealed that
mutations in TP53 and ARID1A define a high-risk subgroup
with shorter survival in the tyrosine kinase inhibitor–treated
patient cohort.

Conversely, some of the unfavorable prognostic genes may
reflect negative associations with treatment responses (eg, the
recent observation that STK11 inactivation is associated with
poor responses to immunotherapy18). Our results additionally
highlight the significant risk imparted by concurrentmutations
in genes such as KEAP1, STK11, and SMARCA4. KEAP1 is
a negative regulator of NRF2. Mutations in KEAP1 are as-
sociated with chemotherapy resistance and poor survival.
Some studies have suggested that targeting NRF2 may en-
hance chemotherapy sensitization.19,20 mTOR is a kinase
downstream of LKB1 (STK11), and mTOR inhibitors have
been proposed as a potential therapeutic approach in
STK11-mutant tumors.21 SMARCA4 was also identified as
a major driver of a poor prognosis factor in metastatic lung
adenocarcinoma in our study. It is a core factor in switch/
sucrose nonfermentable (SWI/SNF) chromatin remodeling
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the two TR patient subsets (TR1 and TR2). (C) Gene importance plot for the OncoCast-TR model.
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complexes that regulate genomic instability and DNA repair.
SMARCA4wasmutated in 9.4%of lung adenocarcinomas in
the MSK-IMPACT cohort, with 42% of the mutations being
truncating and residing in regions of LOH. It has recently
been shown that SMARCA4-inactivating mutations increase
sensitivity to Aurora kinase A inhibitor in NSCLCs.22

In a multivariable analysis (Data Supplement) that included
treatment covariables, the OncoCast readout remained
highly significant, which suggests that the genomic profile
provides more than simple readout of genotype-matched
therapies. In addition, this model can be dynamically
updated over time. With increasing sample sizes, we will be
poised to identify outcome associations with rare alter-
ations, and we will be better able to explain the hetero-
geneity in clinical outcomes for patients with advanced lung
adenocarcinoma.

The OncoCast risk score described here provides a valu-
able tool for more accurately determining the prognosis of
patients enrolled in clinical trials or included in real-world
data sets. A key component of any analysis of clinical re-
search data is a clear description of the patient population

being explored. Although conventional clinical factors such
as age, sex, and performance status have long been used,
our data indicate that we can significantly improve the
description of patient populations by incorporating the
genomic risk scores in our understanding to allow better
comparisons of groups of patients enrolled in clinical trials
or included in real-world data sets.

With the growth of precision medicine programs driven by
genomic testing as well as recent US Food and Drug Ad-
ministration clearance of NGS platforms for clinical use,
there will be a rapid growth in the availability of broad
sequencing data for patients with a variety of cancers and
growing integration with clinical data through institutional
databases and electronic health records. OncoCast, the
computational tool discussed here, will facilitate the in-
corporation of mutational data as a stratification factor in
both prospective clinical trials and retrospective/real-world
data collections to more precisely describe patient pop-
ulations, which will allow better generalization of the results
from such research efforts.
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