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Abstract

Introduction

18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET) is now a standard

diagnostic imaging test performed in patients with head and neck cancer for staging, re-

staging, radiotherapy planning, and outcome assessment. Currently, quantitative analysis

of FDG PET scans is limited to simple metrics like maximum standardized uptake value,

metabolic tumor volume, or total lesion glycolysis, which have limited predictive value. The

goal of this work was to assess the predictive potential of new (i.e., nonstandard) quantita-

tive imaging features on head and neck cancer outcome.

Methods

This retrospective study analyzed fifty-eight pre- and post-treatment FDG PET scans of

patients with head and neck squamous cell cancer to calculate five standard and seventeen

new features at baseline and post-treatment. Cox survival regression was used to assess

the predictive potential of each quantitative imaging feature on disease-free survival.

Results

Analysis showed that the post-treatment change of the average tracer uptake in the rim

background region immediately adjacent to the tumor normalized by uptake in the liver rep-

resents a novel PET feature that is associated with disease-free survival (HR 1.95; 95% CI

1.27, 2.99) and has good discriminative performance (c index 0.791).

Conclusion

The reported findings define a promising new direction for quantitative imaging biomarker

research in head and neck squamous cell cancer and highlight the potential role of new

radiomics features in oncology decision making as part of precision medicine.
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Introduction

Quantitative imaging with 18 F-fluorodeoxyglucose (FDG) PET is routinely performed for

head and neck squamous cell cancer (HNSCC) patients, yet the information used from these

scans is often limited to qualitative analysis determining the presence or absence of disease in

an anatomically defined area along with a report of the maximum standardized uptake value

(SUVmax). While visual analysis is sufficient for diagnosis and staging, a more quantitative

approach to FDG PET/CT analysis holds promise as a predictive tool. For example, a recent

review paper by Castelli et al. [1] summarized the results of 45 studies (overall 2928 patients)

regarding the predictive value of FDG PET with respect to clinical outcome in head and neck

cancer treatment with chemoradiotherapy (CRT). The vast majority of the investigated studies

were focused on simple, standard quantitative indices like SUVmax, peak uptake value (SUVpeak)

[2], metabolic tumor volume (MTV), and Total Lesion Glycolysis (TLG); only three studies per-

formed texture or shape analysis. The study concluded that MTV and TLG in pre-treatment

PET scans showed good correlation with disease free survival (DFS) or overall survival (OS),

while simple indices like SUVmax and SUVpeak showed less promise [1].

Quantitative imaging biomarkers (QIBs) represent an underutilized component of preci-

sion medicine. Radiomic feature analysis may define useful characteristics of tumors before,

during, and after treatment, not revealed by conventional (quantitative) assessment. The

importance of QIBs is also underlined by the Radiological Society of North America’s Quanti-

tative Imaging Biomarkers Alliance (QIBA) [3] initiative, which seeks to improve and define

validation methods whereby the value and practicality of quantitative imaging biomarkers can

be realized by reducing variability across devices, patients, analysis methods, and time.

In this paper, we investigate the association of 17 new (i.e., nonstandard) quantitative imag-

ing features in HNSCC with DFS and compare them against 5 standard features (i.e., Max,

Peak, Mean, MTV, and TLG), resulting in a total of 22 features analyzed. Our work is moti-

vated by the emergence of efficient tools for semi-automated segmentation of lesions in FDG

PET scans (e.g., Beichel et al. [4]), which help facilitate the process of quantitative image fea-

ture calculation in a clinical setting. The goal of this work is to identify promising features that

can be calculated from semi-automated lesion segmentations so that they can be further evalu-

ated in subsequent large (multi-site) studies, and eventually, will result in novel biomarkers

that are approved for clinical use.

Methods

Data

For this study, which was approved by the Institutional Review Board, FDG PET/CT scans

from 58 subjects diagnosed with HNSCC from 2004–2008 were available for retrospective data

analysis. This population was selected because of the availability of both imaging and long-

term clinical follow-up data, which enables assessing the prognostic characteristics of features.

Descriptive statistics of the data are presented in Table 1. We note that while standard clinical

features like age, gender, smoking status were available for the studied subjects, they did not

appear to add predictive power to the radiomics features presented. Furthermore, image data

as well as corresponding clinical metadata (sex, age, smoking status, drinking history, stage,

primary site location, etc.) are part of a head and neck cancer data collection available on

NCI’s The Cancer Imaging Archive in DICOM format [5, 6]. In addition, it is noteworthy that

the patients were largely accrued prior to the recognition of HPV as an important prognostic

variable and hence this laboratory value was not available for the vast majority of the cohort.

Furthermore, the majority of cancers were treated with primary chemo-radiotherapy.
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Chemotherapy was platinum based and given either weekly or on an every three week con-

comitant schedule. Primary cancers included the following anatomical regions: base of tongue,

oropharynx, pyriform sinus, tonsil, hypopharynx, and nasopharynx. The cases had varying T

and N stage, but no distant metastases. Two FDG PET/CT scans were analyzed for each sub-

ject—a pre-treatment and a post-treatment scan. Patients were treated after full evaluation at

an interdisciplinary tumor board, with most receiving definitive chemoradiotherapy. A PET/

CT for response assessment was obtained at 8–12 weeks after completion of radiation therapy

[7, 8]. For imaging, the clinical standard protocol was used and performed on Siemens Bio-

graph 40, Siemens Biograph Duo, or GE Medical Systems Discovery LS PET/CT scanners. All

subjects were injected with 370 MBq ± 10% of [F-18]FDG with an uptake time of 90 min-

utes ± 10%. In all cases subjects were fasted for >4 hours and had blood glucose<200 mg/dL.

Because of the interest in the H&N region, patients were imaged with arms down, and CT-

based attenuation correction was performed. All reconstructions were performed with itera-

tive 2D OSEM algorithms. The voxel size ranged from 3.4×3.4×2.0 to 4.3×4.3×5.0 mm, with

the majority at 3.5×3.5×3.4 mm.

Calculation of quantitative imaging features

First, all FDG PET volumes were SUV normalized by utilizing the PET DICOM Extension [9]

for 3D Slicer, a multi-platform free and open software package for visualization and medical

Table 1. Demographic and clinical characteristics.

Patient Characteristics N (%)

Median Age at Diagnosis (range) 55 (21–80)

Sex

Males 47 (81.0)

Females 11 (19.0)

Primary Site

Tonsil 24 (41.4)

Base of Tongue 22 (37.9)

Oropharynx 5 (8.6)

Nasopharynx 3 (5.2)

Hypopharynx 2 (3.4)

Pyriform Sinus 2 (3.4)

T Stage

2 29 (50.0)

3 11 (19.0)

4 2 (3.4)

4a 12 (20.7)

4b 4 (6.9)

N Stage

0 5 (8.6)

1 9 (15.5)

2a 3 (5.2)

2b 20 (34.5)

2c 17 (29.3)

3 4 (6.9)

Median Follow-up Months (range) 48.8 (5.4–124.3)

Recurrence or Death 25 (43.1)

https://doi.org/10.1371/journal.pone.0215465.t001
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image computing [10]. Second, an experienced radiation oncologist inspected all scans and

identified primary tumors, which were segmented by utilizing the semi-automated segmenta-

tion approach described by Beichel et al [4]. The approach utilizes a graph-based optimization

algorithm for segmentation, requires little user interaction, and is available for 3D Slicer in the

form of an editor effect extension [11]. All segmentations were performed following standard

clinical practice in radiation oncology. Note that out of 58 cases, 25 showed residual uptake in

the primary lesion on the 8–12 week follow-up PET scan. These lesions were also segmented

using the same segmentation tool. Consequently, no segmentation was performed for 33 fol-

low-up PET scans due to complete response after treatment. Third, the five most commonly

utilized basic and 17 new features were calculated utilizing the PET-IndiC extension for 3D

Slicer [12]. An overview and detailed description of all calculated features is given in Table 2.

The majority of new features were designed to characterize the SUV uptake pattern within the

segmented lesion by utilizing descriptive statistics. One exception is the feature SAM (stan-

dardized added metabolic activity), which was proposed by Mertens et al. [13] with the goal to

develop a partial volume independent marker of total lesion glycolysis. SAM utilizes a small

rim region around the segmented lesion for partial volume correction. Note that Mertens et al.

[13] proposes two versions: SAM and normSAM. In this work we utilize SAM, and similarly as

Table 2. Overview of image-derived features utilized.

Feature Type Description Liver uptake

normalization

Max S Maximum value in region of interest (-) Y

Peak S Maximum average gray value that is calculated from a 1 cubic centimeter sphere placed within the region of

interest [2] (-)

Y

Mean S Mean value in region of interest (-) Y

MTV S Volume of region of interest (ml) N

TLG S Total lesion glycolysis (ml) Y

Min A Minimum value in region of interest (-) Y

Std A Standard deviation in region of interest (-) Y

RMS A Root-mean-square value in region of interest (-) Y

First Quartile A 25th percentile value in region of interest (-) Y

Median A 50th percentile value in region of interest (-) Y

Third Quartile A 75th percentile value in region of interest (-) Y

Upper

Adjacent

A First value in region of interest not greater than 1.5 times the interquartile range (-) Y

Q1

Distribution

A Percent of gray values that fall within the first quarter of the grayscale range within the region of interest (%) N

Q2

Distribution

A Percent of gray values that fall within the second quarter of the grayscale range within the region of interest (%) N

Q3

Distribution

A Percent of gray values that fall within the third quarter of the grayscale range within the region of interest (%) N

Q4

Distribution

A Percent of gray values that fall within the fourth quarter of the grayscale range within the region of interest (%) N

Glycolysis Q1 A Lesion glycolysis calculated from the first quarter of the grayscale range within the region of interest (ml) Y

Glycolysis Q2 A Lesion glycolysis calculated from the second quarter of the grayscale range within the region of interest (ml) Y

Glycolysis Q3 A Lesion glycolysis calculated from the third quarter of the grayscale range within the region of interest (ml) Y

Glycolysis Q4 A Lesion glycolysis calculated from the fourth quarter of the grayscale range within the region of interest (ml) Y

SAM A Standardized added metabolic activity [13] (ml) Y

RA A Rim average; mean of uptake in a 2 voxel wide rim region around region of interest (-) Y

Feature type: S. . . standard and A. . . new.

https://doi.org/10.1371/journal.pone.0215465.t002
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most of the other features listed in Table 2, we have normalized this feature by the uptake in

the liver as described below in more detail. Furthermore, we have included the average SUV of

this rim region as a separate feature, which was dubbed RA. An example for the rim around a

lesion is given in Fig 1. Fourth, to account for different metabolic base-line activity, we further

normalized SUV measurements to the metabolic activity of the liver at the time of imaging,

similarly as proposed by Wahl et al.[2]. Such an approach is especially important for change

assessment using pre- and post-treatment PET scans. For normalization to metabolic baseline

activity, a spherical liver measurement region was automatically defined by utilizing the

approach described by Bauer et al.[14], which is also available in 3D Slicer in the form of an

extension [15]. From this liver measurement region, the average SUV is calculated, and all

SUV-based features were normalized by dividing them by this uptake value. For cases with

pre-treatment (t0) and post-treatment (t1) segmentations, the change of the quantitative image

features was calculated as DQIF ¼ QIFt0
� QIFt1

.

Statistical analysis

Survival data analysis methods were used to assess the effect of each feature on DFS. DFS was

defined as time from initial treatment to disease recurrence or death. Patients for whom events

were not observed during their follow-up were treated as censored observations at the date of

last follow-up in the analysis. Descriptive survival probabilities were estimated and plotted

with the method of Kaplan-Meier for patients grouped into high, intermediate, and low imag-

ing feature categories according to tertiles. Quantitative imaging feature effects on survival

were modeled individually with Cox regression. Regression estimates are reported as hazard

ratios (HRs) for one standard deviation increases in the imaging feature along with 95% confi-

dence intervals (CIs). Rank-order agreement (concordance) between prognostic scores from

the regression models and observed survival times was estimated with the c index [16]. This

Fig 1. Example of a rim region (green mask) used for calculating feature RA relative to the lesion segmentation (red mask).

https://doi.org/10.1371/journal.pone.0215465.g001
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index can be interpreted as the probability that, of two randomly selected patients, the one

with a better prognostic score will survive longer. Values of 0 or 1 indicate perfect concordance

and 0.5 no concordance. Two-sided p-values for tests of the significance of features in the

regression models are reported, unadjusted for the number of tests performed. To account for

multiple statistical testing, false-discovery rate (FDR) was also computed with the method of

Benjamini and Hochberg [17]. FDR can be used to select among the full set of features tested

so as to control the expected proportion of false positive statistical findings. Features were

identified as significant in this study at a FDR of 10%. Statistical analysis was performed with

the survival [18] and survminer [19] packages in version 3.4.1 of the R statistical software [20].

Results

Patients were followed for a median of 48.8 months (range 5.4–124.3 months). DFS events

(recurrence or death) were observed for 25 of the 58 patients with baseline features and 13 of

the 25 with post-treatment change features. Hence, 13 of 25 positive scans at 8–12 week fol-

low-up had a true recurrence or died and 12 of 25 had false positive initial follow-up scans and

did not have evidence of recurrence with follow-up.

Tables 3 and 4 provide a summary of hazard ratios with corresponding CIs, univariate Cox

regression p-values, false-discovery rates, as well as c index values for features at baseline and

post-treatment change, respectively. Based on the results, imaging features with unadjusted p-

values less than 5% include baseline MTV, Glycolysis Q2, and RA (rim average); and post-

treatment change in RA, Min, and 1st Quartile features. After p-value adjustments for the mul-

tiple statistical tests performed, post-treatment change in RA stands out as being significant at

a 10% FDR. Its estimated hazard ratio indicates a 95% increase in the rate of recurrence or

Table 3. Univariate analysis at baseline. Features are sorted by p-values.

Feature HR (95% CI) p-value FDR c Index

MTV 1.49 (1.05, 2.12) 0.027 0.316 0.647

Glycolysis Q2 1.41 (1.03, 1.94) 0.034 0.316 0.645

RA 1.41 (1.01, 1.97) 0.043 0.316 0.634

TLG 1.37 (0.98, 1.92) 0.065 0.321 0.639

Glycolysis Q1 1.37 (0.97, 1.93) 0.077 0.321 0.637

Glycolysis Q3 1.33 (0.96, 1.86) 0.087 0.321 0.638

1st Quartile 1.33 (0.92, 1.92) 0.133 0.346 0.609

SAM 1.30 (0.92, 1.82) 0.134 0.346 0.637

Min 1.29 (0.91, 1.84) 0.151 0.346 0.631

Q4 Distribution 1.32 (0.89, 1.95) 0.165 0.346 0.543

Glycolysis Q4 1.27 (0.90, 1.78) 0.173 0.346 0.634

Median 1.28 (0.87, 1.88) 0.211 0.368 0.588

Q1 Distribution 0.78 (0.53, 1.16) 0.217 0.368 0.564

Q3 Distribution 1.25 (0.84, 1.85) 0.273 0.429 0.535

Mean 1.22 (0.83, 1.78) 0.311 0.455 0.573

3rd Quartile 1.20 (0.82, 1.76) 0.356 0.489 0.566

RMS 1.18 (0.81, 1.72) 0.385 0.498 0.560

Peak 1.14 (0.79, 1.66) 0.481 0.588 0.566

Upper Adjacent 1.11 (0.76, 1.62) 0.591 0.662 0.558

Max 1.10 (0.76, 1.60) 0.602 0.662 0.565

Std 1.06 (0.72, 1.55) 0.769 0.793 0.547

Q2 Distribution 1.05 (0.71, 1.55) 0.793 0.793 0.503

https://doi.org/10.1371/journal.pone.0215465.t003
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death for a one standard deviation increase in this imaging feature. The c index value of 0.791

signifies moderately high concordance between the feature’s estimated survival effect and

observed survival. Compared to the available clinical features, only T Stage was found to be sig-

nificantly associated with DFS, but with a smaller c index of 0.69 in the post-treatment change

cohort. Fig 2 provides a comparison of Kaplan-Meier curves for features RA, Max, MTV, and

TLG in which RA stands out as having a consistent increasing trend in survival across its

categories.

Discussion

Development of image-based biomarkers is a multi-step process that begins at discovery and

migrates to validation and ultimately to regulatory approval with many steps in between [21].

While offering great potential for clinical use, the development of biomarkers is resource

intensive and requires development of practical tools for consistent definitions of regions of

interest, normalization, and feature calculation, similar to the requirement for development of

rapid sequencing technologies for molecularly-based precision techniques. Thus, the goal of

this work was to identify new FDG PET based features that are promising for outcome predic-

tion in HNSCC, and therefore, should be further investigated by the community.

Survival associations and impact

Results of pre-treatment FDG PET scans confirm the findings reported by Castelli et al.[1];

MTV and TLG perform better than max and peak markers. In this context, note that the num-

ber of papers utilizing the peak marker included in the review performed by Castelli et al. [1] is

limited. In our study, we opted to normalize tracer uptake by the average liver uptake.

Table 4. Univariate analysis of post-treatment change in features. Features are sorted by p-values.

Feature HR (95% CI) p-value FDR c Index

RA 1.95 (1.27, 2.99) 0.002 0.048 0.791

Min 1.81 (1.07, 3.05) 0.027 0.206 0.730

1st Quartile 1.58 (1.02, 2.46) 0.041 0.206 0.707

Q4 Distribution 2.10 (1.00, 4.42) 0.050 0.206 0.667

Median 1.55 (0.98, 2.46) 0.059 0.206 0.689

Mean 1.54 (0.97, 2.46) 0.068 0.206 0.667

RMS 1.53 (0.96, 2.45) 0.076 0.206 0.658

3rd Quartile 1.53 (0.95, 2.47) 0.079 0.206 0.644

Peak 1.50 (0.93, 2.42) 0.093 0.206 0.644

MTV 1.45 (0.90, 2.31) 0.124 0.206 0.653

Max 1.46 (0.90, 2.37) 0.125 0.206 0.622

Glycolysis Q4 1.43 (0.90, 2.28) 0.130 0.206 0.671

Glycolysis Q1 1.39 (0.90, 2.16) 0.138 0.206 0.685

Upper Adjacent 1.41 (0.88, 2.26) 0.149 0.206 0.622

Q1 Distribution 0.63 (0.34, 1.18) 0.150 0.206 0.626

TLG 1.37 (0.89, 2.10) 0.153 0.206 0.671

Std 1.44 (0.87, 2.38) 0.159 0.206 0.617

Glycolysis Q2 1.32 (0.88, 1.96) 0.174 0.213 0.653

SAM 1.31 (0.85, 2.01) 0.215 0.239 0.671

Glycolysis Q3 1.30 (0.86, 1.98) 0.217 0.239 0.662

Q3 Distribution 1.20 (0.66, 2.19) 0.550 0.577 0.509

Q2 Distribution 1.09 (0.63, 1.88) 0.747 0.747 0.590

https://doi.org/10.1371/journal.pone.0215465.t004
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Omitting this step would lead to a similar ranking (MTV: p = 0.0283, TLG: p = 0.1464, Peak:

p = 0.8292, and Max: p = 0.9764). A potential reason for the better relative performance of

MTV and TLG could be that MTV and TLG are spatially more “inclusive” than max and peak

measurements, accounting for the full volumetric and metabolic extent of the tumor, rather

than a simple assessment of the highest level of metabolic activity. The new features RA and

Glycolysis Q2 showed similar performance to MTV and TLG on pre-treatment scans. Because

multiple statistical testing is employed, we report p-values adjusted to control the false-discov-

ery rate (FDR), and a FDR of 10% was specified in this study for the determination of statistical

significance. Based on this criterion, none of the features at baseline is deemed to be significant

due to the number of features investigated combined with the limited dataset size.

When looking at the survival effect of post-treatment feature value change in those selected

cases where primary lesions were still visible in the follow-up FDG PET scan, it is important to
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Fig 2. Kaplan-Meier plot of disease-free survival for patients stratified into low, intermediate, and high groups of post-treatment
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seek potential imaging based biomarkers that might distinguish the high proportion of false

positive scans from those indicating true recurrence. In our analysis, RA is ranked highest

(FDR: 0.048) and found to be significant at a 10% FDR. This is a particularly challenging

group since those with residual uptake have approximately a 50% chance of having residual

disease (true positive) versus 50% with no true recurrence that are false positives. In this set-

ting, MTV and TLG were not found to statistically distinguish between true and false

positives.

We speculate that this finding can be explained as follows. The region of interest for RA is

defined as the two voxels wide rim surrounding the segmented tumor volume. Hence, RA cap-

tures the metabolic activity in the primary tumor’s periphery (Fig 1). Typically, cases with

recurrence had higher RA-values in the pre-treatment scan compared to the post-treatment

scans (positive DRA ¼ RAt0
� RAt1

), indicating a loss of activity in this rim region potentially

due to low or reduced immunogenicity in the tumor. Patients with false positive scans tended

to have a lower RA to start and tended to see an increase in RA with treatment, which appeared

to portend a better outcome (negative DRA ¼ RAt0
� RAt1

) perhaps due to enhanced inflam-

mation or immunogenicity in this region. The suggestion of less inflammation with recurrence

highlights the complex interplay between radiation, chemotherapy and tumor. A summary of

RA pre- and post- treatment trend patterns is provided in Fig 3. This suggests that an increase

in activity in this peripheral region is predictive for improved outcome and we hypothesize

this is consistent with recently supported data showing that increased immune response to

tumors portends better outcomes [22–25]. Furthermore, it may help differentiate between true

positive recurrences from false positive results that have been a common issue in post-treat-

ment PET-imaging [7, 26–31]. Similarly, closely nearby-ranked features Minimum and 1st

Quartile uptake, also capture aspects of the tracer uptake in the region of transition from hot

lesion core to background, especially in the case of non-necrotic lesions, which represents the

vast majority of cases investigated in this work (Fig 1). This is also reflected in the correlation

of features Minimum and 1st Quartile with RA (0.8022 and 0.8496, respectively). In this con-

text, there are several issues to consider. First, out of these three features, only RA has a FDR

below 10%. Second, the feature Minimum is quite sensitive to image noise when compared to

RA, and thus, using Minimum is not recommended. Third, while there is room for optimiza-

tion of features like RA and 1st Quartile their results point in the same direction. Furthermore,

standard features (e.g., max, peak, MTV, or TLG) were not significantly associated with sur-

vival when looking at post-treatment feature change.

When considering both pre-treatment and change at post-treatment, RA is the only feature

that has a p-value<0.05 before FDR correction. In addition, when correcting for FDR, it stays

significant as a post-treatment change based feature. Therefore, we conclude that RA represents

a good candidate for further investigations. Clearly, RA is functionally the reverse of what is cur-

rently broadly utilized by the community (e.g., SUVmax, MTV, TLG) as it does not focus on the

core region of the lesion, but instead on the periphery. In this context, one exception is the fea-

ture SAM, which corrects for partial volume effects by utilizing the tumor rim region [13].

Based on our findings, we conducted a literature search to see whether similar features were

investigated for the purpose of outcome prediction. We found one recent publication that

describes a tumor shell-based radiomics approach, which analyzes the tumor periphery [32].

The shell feature captures a sequence of morphologic patterns across the primary tumor

boundary, such as shape, size, SUV values, and heterogeneities in a simple 2D map, which is

vectorized to form a feature vector and is subsequently used as the input for a support vector

machine (SVM) classifier. In [32], the authors demonstrated the ability of this approach in pre-

dicting treatment response based on pre-treatment PET scans for patients receiving
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stereotactic body radiation therapy (SBRT) for early stage non-small cell lung cancer and for

patients receiving external beam radiation therapy (EBRT) and concurrent chemotherapy fol-

lowed by high-dose-rate intracavitary brachytherapy (ICBT) in stage IB-IVA cervix cancer.

While the work reported in [32] uses a different approach for deriving tumor periphery fea-

tures and assesses them in two different applications, we conclude that the lesion rim is prom-

ising for future investigations. Furthermore, the increased activity in the periphery of lesions

could represent enhanced immune response, which could have potential utility in determining

activity of immune therapy interventions. So far, assessing therapy response from these agents

has been difficult and hence the impact could be substantial, but requires significant investiga-

tion. In addition, future histologic evaluation of these rim regions is needed to confirm or

refute this potential explanation.

Future work

The goal of this work was to identify potentially promising quantitative imaging features. As

such, the presented work is part of an ongoing evaluation process, following the consensus
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Fig 3. Summary of RA values at time points t0 (pre-treatment) and t1 (post-treatment). (a) Boxplots. (b) False positive cases

and (c) true positive cases. The dashed line indicates the average trend.
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approach outlined in [21]. In our future work, we will assess the impact of imaging equipment,

reconstructions, as well as the acquisition settings on feature performance. Also, some features

might be more sensitive to variability in lesion segmentation than others, and the impact of

rim thickness on predictive performance will be investigated. In this work, only the primary

lesion was considered. However, efficient PET image segmentation tools like the one presented

in Beichel et al. [4] make it feasible to individually segment involved lymph nodes. At this

stage, it is unclear how to best utilize this additional information and if this could potentially

add predictive value. Furthermore, in future work we plan on increasing our evaluation data-

base considerably and studying the impact of different uptake reference regions (aortic arch,

cerebellum, etc.) for normalization on prediction performance of features.

Conclusion

The promise of precision medicine is more than the potential to use genetic information, but

also includes identification of image-based biomarkers that define useful characteristics of

tumors before, during, and after treatment. The presented work compares standard and new

features and assesses their suitability for FDG PET based prediction of response in head and

neck cancer treatment. The reported findings should help define potential new directions for

biomarker research in HNSCC.
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