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Abstract

Background: Patients who are readmitted to an intensive care unit (ICU) usually have a high 

risk of mortality and an increased length of stay. ICU readmission risk prediction may help 

physicians to re-evaluate the patient’s physical conditions before patients are discharged and avoid 

preventable readmissions. ICU readmission prediction models are often built based on 

physiological variables. Intuitively, snapshot measurements, especially the last measurements, are 

effective predictors that are widely used by researchers. However, methods that only use snapshot 

measurements neglect predictive information contained in the trends of physiological and 

medication variables. Mean, maximum or minimum values take multiple time points into account 

and capture their summary statistics, however, these statistics are not able to catch the detailed 

picture of temporal trends. In this study, we find strong predictors with ability of capturing 

detailed temporal trends of variables for 30day readmission risk and build prediction models with 

high accuracy.

Methods: We study physiological measurements and medications from the Multiparameter 

Intelligent Monitoring in Intensive Care II (MIMIC-II) clinical dataset. Time series of each 

variable are converted into trend graphs with nodes being discretized measurements of each 

variable. Then we extract important temporal trends by applying frequent subgraph mining on the 

trend graphs. The frequency of a subgraph is a good cue to find important temporal trends since 

similar patients often share similar trends regarding their pathophysiological evolution under 

medical interventions. Important temporal trends are then grouped automatically by non-negative 

matrix factorization. The grouped trends could be considered as an approximate representation of 
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patients’ pathophysiological states and medication profiles. We train a logistic regression model to 

predict 30-day ICU readmission risk based on snapshot measurements, grouped physiological 

trends and medication trends.

Results: Our dataset consists of 1,170 patients who are alive 30 days after discharge from ICU 

and have at least 12 hours of data. In the dataset, 860 patients were not readmitted and 310 were 

readmitted, within 30 days after discharge. Our model outperforms all comparison models, and 

shows an improvement in the area under the receiver operating characteristic curve (AUC) of 

almost 4% from the best comparison model.

Conclusions: Grouped physiological and medication trends carry predictive information for 

ICU readmission risk. In order to build predictive models with higher accuracy, we should add 

grouped physiological and medication trends as complementary features to snapshot 

measurements.
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1. Introduction

The cost of critical care is increasing annually. From 2000 to 2005, the annual cost of critical 

care in the US increased from $56.6 to $81.7 billion (by 44.2%) and in 2005, the critical care 

cost accounted for 13.4% of hospital costs [1]. While discharging patients from an Intensive 

Care Unit (ICU) at an early time may have a significantly impact on reducing hospital costs, 

premature discharges may lead to deterioration of patient health or adverse outcomes, and in 

turn, readmission. Previous studies have shown that almost a third of readmissions are due to 

premature discharge [2, 3]. Reducing the rate of premature discharge has become an 

important concern of hospitals and it has been used as one of the top indicators for ICU 

quality [4].

From a clinical perspective, patients who are readmitted to an ICU usually have a high risk 

of mortality and an increased length of stay, compared with the first admission [3]. Some 

readmissions might be avoided if physicians could re-evaluate patients who have high 

readmission risk before discharging them. On the other hand, physicians may discharge 

patients with low readmission risk from ICUs at the earliest appropriate time to reduce 

critical care costs and make room for more severely sick patients. Furthermore, eliminating 

unnecessary ICU stays may also help to reduce the rate of specific ICU-related 

complications [5]. Therefore, estimating the readmission risk of ICU patients is of critical 

importance for the consideration of both the health of patients and the critical care costs for 

hospitals. ICU readmission prediction is an effective way to determine the risk of a patient’s 

readmission and can be used to help physicians to make appropriate decisions of discharge.

In this work, we hypothesize that information hidden in temporal trends of physiological and 

medication variables is predictive for ICU readmission risk, as it could be considered as a 

representation of a patient’s health trend. We adapt the Subgraph Augmented Non-negative 

Matrix Factorization (SANMF) algorithm [6] and apply it for 30-day ICU readmission risk 
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prediction. In addition, we perform comparisons between using temporal trends and using 

only snapshot measurements, and between using grouped temporal trends and using 

temporal trends directly. Our model, using a comprehensive feature set, including the 

snapshot measurements and the grouped temporal trends, outperforms other comparison 

models by demonstrating an improvement in AUC.

The contributions of this work are summarized as follows. To the best of our knowledge, 

grouped physiological and medication trends have not yet been used in ICU readmission risk 

prediction. Additionally, we perform a comprehensive comparison between models using 

different types of features including snapshot measurements, temporal trends and grouped 

temporal trends. As a result, we show that grouped temporal trends of physiological 

measurements and medications carry predictive information for ICU readmission risk and 

can be used as complementary features to improve performance of predictive models. Along 

the way, we study the impact of different imputation techniques and develop a tailored 

methodology that outperforms all other state-of-the-art approaches.

The remainder of this paper is structured as follows. Section 2 discusses related work while 

in Section 3, the proposed method is described, as well as the cohort selection and the 

strategy of model evaluation. The computational results and the underlying analyses are 

discussed in Section 4. Section 5 addresses the limitations of this study and future work, and 

the conclusions are drawn in Section 6.

2. Related Work

Research in building accurate ICU readmission prediction models has attracted growing 

interest in recent decades. Some early efforts in ICU readmission risk prediction consider a 

specific population, such as elderly patients (over 65 years old) or patients with cardiac or 

respiratory problems [7–19]. These specific populations may have limited the 

generalizability of the above methods. Several other studies predict ICU readmission mainly 

based on non-physiological variables [20–25]. These methods used patient characteristic 

variables, including race, income and social status (e.g., living alone). Most of the works 

above used their own institutional data [7–9, 11, 12, 14, 16, 18, 19, 23–25]. The rest of them 

used different public data sources, such as American Hospital Association Annual Survey 

Database and Statewide Planning and Research Cooperative System (SPARCS) database 

[10, 13, 15, 17, 20–22]. In recent years, research in seeking predictive physiological 

variables for readmission risk has drawn more interest and the MIMIC-II (The 

Multiparameter Intelligent Monitoring in Intensive Care) database [26, 27] has become a 

common choice for such studies. The MIMIC-II clinical database is a publicly available 

database containing physiological signals and comprehensive clinical data for a cohort of 

ICU patients. We use the MIMIC-II dataset in our study.

Previous studies in predicting ICU readmission risk using the MIMIC database build models 

mainly based on physiological measurements. Fialho et al [28] applied fuzzy modeling with 

tree search feature selection to the MIMIC-II clinical dataset for 24–72 hours ICU 

readmission risk prediction. The most predictive variables found by Fialho et al include: the 

mean heart rate, mean temperature, mean spO2, mean non-invasive arterial blood pressure, 
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mean platelets and mean lactic acid. The mean values of these variables are calculated 

within the last 24 hours before discharge. Missing data of a variable are imputed with the 

last valid measurement. In the following few years, several methods were proposed to 

develop the application of fuzzy modeling on ICU readmission prediction. Fernandes et al 

[29] developed a multi-model approach using the 6 most predictive physiological variables 

found by Fialho et al [28]. Vieira et al [30] proposed a test-driven model where they used the 

medical text reports in the MIMIC-II dataset that presented some particular characteristics. 

They used a refined data selection process where patients with any variable missing from a 

predefined feature set were excluded. This predefined feature set consists of 23 manually 

selected physiological variables that are easily assessed in the 24 hours before discharge. 

They performed the tree search feature selection and found 6 best variables, which were the 

same as those found by Fialho et al in [28]. Curto et al [31] used another text resource -- 

bedside medical text notes written by physicians or nurses, to explore complementary 

features for a set of 7 physiological variables (heart rate, temperature, platelets, noninvasive 

blood pressure mean, oxygen saturation in the blood, lactic acid and creatinine), which were 

determined as important predictors for readmissions by Carvalho et al [32]. Curto et al also 

used the mean values of physiological measurements. These methods use manually selected 

physiological variables, related medical text reports or bedside medical text notes. Despite 

the improvement of AUCs, these methods suffer from neglecting predictive information 

within trends of physiological variables since they use the snapshot measurements or 

summary statistics such as mean values. Additionally, in the data preprocessing step of these 

methods, the elimination of patients with missing values and outliers might have biased their 

study. To address these problems, we study temporal trends of physiological measurements 

and medications, and use them to improve the performance of ICU readmission risk 

prediction models.

Recently, the PhysioNet/Computing in Cardiology Challenge 2012 developed methods for 

the prediction of in-hospital mortality on the MIMIC-II dataset [33–44]. The data consists of 

36 physiologic time series. McMillan et al [33] used temporal pattern mining to explore the 

approach of discovering short characteristic patterns (i.e. time series motifs). Temporal 

pattern mining has been used in several ICU mortality prediction studies to discover time 

series patterns [45, 46]. Hug et al [45] manually selected a set of temporal patterns 

considering a comprehensive set of variables. Cohen [46] et al used pattern recognition to 

identify physiologic patient states with hierarchical clustering. Luo et al [6] proposed an 

unsupervised feature learning algorithm to predict 30-day ICU mortality risk. Instead of 

using temporal pattern mining, they adapted frequent subgraph mining to extract common 

temporal trends. A time series abstraction is used to capture the temporal trends of variables 

[47–51]. They represent the time series of each variable as a graph, where each node is the 

measurement of a variable at each time point. The same representation of time series is used 

in this work to capture the temporal trends. However, instead of predicting 30-day mortality 

risk, the goal of our study is to predict ICU readmission risk within 30 days after discharge. 

To this end, we additionally use the medication trends to complement the physiological 

trends. Furthermore, Luo et al used linear imputation to address missing values. In this work, 

we perform a comprehensive comparison between several widely-used imputation methods 
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on their impact to our predictive models and develop a customized linear interpolation that is 

designed for the MIMIC-II dataset.

3. Methods

3.1. Patient Cohort

We use the MIMIC-II dataset [26] collected from a variety of ICUs between 2000 and 2008. 

The dataset consists of detailed information about ICU patients’ stays including time series 

of physiological measurements and medication variables. We select 53 physiological 

variables, 21 medication variables and age of patients. A detailed description of variables is 

given in Appendix A. We only include patients who have recorded readmission time after 

being discharged from their first admission. Each patient must have at least 12 hours of data 

since we use data from the last 12 hours before discharge to train our models. We select 

1,170 patients that satisfy our criteria. In our cohort, 860 patients were not readmitted within 

30 days and 310 were readmitted within 30 days.

3.2. Design

Intuitively, values from the last valid measurements of variables reflect patients’ health 

effectively and have been commonly used by researchers. Therefore, we build a baseline 

model that used the last measurements as predictors. This model serves as a baseline to 

evaluate the performance of other models in predicting 30-day ICU readmission. In this 

work, we study physiological and medication trends, and use a comprehensive feature set 

that combines snapshot measurements and temporal trends, in order to build more accurate 

machine learning models. The methodology of converting time series data into temporal 

trends follows the SANMF algorithm [6] and is detailed later, see Fig. 1(a). We convert 

patients’ time series into graphs, where each node represents a discretized measurement at a 

single point in time. Among these graphs, we discover the most important subgraphs and 

identify them as common temporal trends. In this representation, temporal trends are 

encoded by subgraphs and we use the terms “subgraph” and “temporal trend” 

interchangeably in later discussions. We study the correlation between the important 

subgraphs, group them and use the groupings as an augmentation to snapshot features in 

building predictive models.

3.3. Data Preprocessing and Imputation

Measurements in the collection of time series are often sparse. In total, about 23.6% of 

values in our dataset are missing. Eliminating patients with incomplete data may bias our 

study. Therefore, imputation becomes an essential step of the data preprocessing. We try 

several different imputation techniques, including mean value imputation and a more 

sophisticated imputation method called Multivariate Imputation by Chained Equations 

(MICE) [52]. The effectiveness of each imputation method is evaluated by the performance 

of our prediction models. In this work, we introduce an imputation method that is designed 

for temporal data, called customized linear interpolation.

Let Xp be the set of measurements of variable X for patient p and let m be the last valid 

measurement of Xp. Assuming m is the measurement at time t, we replace the missing 
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values of Xp after time 𝑡 with measurement m; we use standard linear interpolation to 

replace the missing values of Xp that are before time t. For variables of patient p that have no 

valid measurement, we replace missing values with mean values. After imputation, we 

extract the last 12 hours of data before discharge for each patient.

3.4. Converting Time Series into Graphs

The basic idea of converting time series into graphs is to represent measurements with 

labeled nodes and connect them in order of time by labeled edges. Five different discrete 

levels (0, ±1 and ±2) are used to label the nodes and are discretized using the z-score [53] of 

the corresponding measurements of the nodes. The z-score Zj of measurement Xj is 

calculated by:

Z j = x j − μx /σx

where μx and σx are the mean and deviation of measurements of variable x across all 

patients and time points. If Xj is within the one σx range (−1 < Zj < 1), we choose label of 0; 

if Xj is beyond the one σx range but within the two σx range (−2 < Zj ≤ −1 or −2 < Zj ≤ −1), 

we choose label ±1; otherwise we choose label ±2, which means Xj is beyond the two σx 

range. Three edge labels are used to indicate changes between two adjacent nodes: up, down 

and same. Considering the fact that the time series of physiological variables in the MIMIC-

II dataset are often sparse and sampled irregularly, before converting them into graphs, we 

discretize the time axis by interpolating time series linearly and resampling them at equally 

spaced intervals. The length of intervals is determined by performing 5fold cross-validation 

over choices of 1,2,3,4,6 or 12 hour intervals, which yields the 2-hour interval as the best. As 

a result, the graphs are sequences of 6 time intervals, since we use 12 hours of data. An 

example of the graph for a patient is shown in Fig. 1(b).

3.5. Frequent Subgraph Mining

After representing time series (trends) with graphs, we explore important common trends 

across patients for each variable. Intuitively, similar patients tend to experience similar 

physiological trajectories during their ICU stays. Thus, common trends are helpful to 

characterize similar patients. The frequency of a subgraph is a good cue for seeking 

important common trends. The purpose of Frequent Subgraph Mining (FSM) is to discover 

subgraph structures that occur a significant number of times across a set of graphs. One 

essential concept in FSM is subgraph isomorphism. Assuming two graphs G and H are 

given, if G contains a subgraph that is isomorphic to, then H is subisomorphic to G. In our 

work, we use Molecular Substructure miner (MoSS) [54] to discover frequent subgraphs. 

The threshold of frequency is a parameter of MoSS and only the subgraph whose occurrence 

is above the threshold is selected. The threshold is determined by performing 5-fold cross-

validation over choices from 1 to 12 for each model. It turns out that subgraphs that occur at 

least 11 times are the most suggestive for important common trends in our best model.
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3.6. Subgraph Filtering

Next, we count the number of frequent subgraphs for each patient and create a patient-

subgraph matrix, where each entry specifies the number of times that a certain temporal 

trend (subgraph) occurs during that patient’s stay, see Fig. 1(b). Note that the subgraphs of a 

frequent subgraph are also frequent. Since a larger frequent subgraph already contains the 

information in its own subgraphs, we only count maximal frequent subgraph that are not a 

subgraph of others. Another reason for using this counting strategy is that if we count both 

the larger subgraph and its own smaller subgraphs, the signal of the larger one might be 

overwhelmed by the signal from the smaller subgraphs thus yielding less predictive models.

3.7. Subgraph NMF (Non-Negative Matrix Factorization) and Groups

We may use temporal trends (columns of the patient-subgraph matrix in Fig. 1(b)) directly 

as features to train statistical models, however, using temporal trends directly has two 

drawbacks: 1) the huge number of temporal trends usually causes overfitting problems; 2) 

treating trends independently cannot effectively reflect a patient’s pathophysiological 

trajectory. The latter is because a patient often experiences an underlying pathophysiological 

condition involving multiple variables and even multiple organs. On the other hand, one 

abnormal physiological variable may have various implications. For example, a low 

hematocrit may be linked to blood loss, bone marrow problems, kidney problems, and a 

variety of other problems. Thus, it is more consistent with medical practice to establish a 

panel of pathophysiological trends as a feature for predictive modeling.

Inspired by the observation that a group of physiological trends usually shows a patient’s 

underlying pathophysiological evolution, we apply Non-Negative Matrix Factorization 

(NMF) on our patient-subgraph count matrix to group temporal trends. Another motivation 

of using NMF is that we aim at counting data which are non-negative numbers. Additionally, 

Hofree et al. [55] have shown that NMF is an effective method to cluster similar patients. 

Let V be our patient-subgraph count matrix, which has M patients and N subgraphs. NMF 

approximates V using two matrices W and H (V ≈ W ∙ H) by minimizing the error function: 

minW,H||V − WH||F, subject to W ≥ 0, H ≥ 0. Matrix W is an M × S matrix and H is an S × N 
matrix, where S is the number of subgraph groups. Parameter S is determined by performing 

5-fold cross-validation over choices from 10 to 120 (in increments of 10) with the value of 

110 being best for our best model. Each row of H can be interpreted as the composition of 

each subgraph group. Each column of W can be viewed as a mixture of subgraph groups for 

each patient.

The mixture of subgraph groups specified in weight matrix W are used as features in 

machine learning models. We split V into a training and validation part and calculate the 

weight matrix Wtr and Wva separately. Then our model is trained on the training set Wtr and 

evaluated on the validation set Wva. We tried several machine learning models, such as 

logistic regression, SVM (Support Vector Machine), random forest and an artificial neural 

network, with default parameters on our dataset. The logistic regression works best no 

matter what snapshot measurements or temporal trends are used as features. We decided to 

only focus on logistic regression as experiments on all these models involve too many 

parameters to tune.
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3.8. Model Evaluation

3.8.1. Cross-validation—To evaluate the performance of our model, we perform 5-fold 

cross-validation. Our dataset with 1,170 patients is spilt into 5 folds. In one round of cross-

validation, one of the five folds is treated as the validation set and the other four folds serve 

as the training set. The logistic regression model is built on the training set and evaluated on 

the validation set. Five rounds of cross-validation are performed, each time with one of the 

five different validation datasets, and the validation results are combined over rounds. 

Additionally, in order to make sure that our model does not gain any knowledge from the 

validation set in the subgraph mining procedure, we perform FSM on training and validation 

sets separately. To achieve this, we find frequent subgraphs from the training set first and 

treat them as a fixed subgraph set. Then we perform FSM on the validation set and only 

select those existing in the fixed subgraph set. Furthermore, the imputation is also done 

separately on training and validation sets.

3.8.2. Comparison Models—We evaluate our model by comparing its performance 

with the following comparison models: (1) the “baseline model,” a logistic regression model 

using only snapshot features, specifically the last measurements; (2) the “subgraph model,” 

using subgraphs directly as features; (3) the “subgraph + snapshot model,” combining 

features from the baseline and subgraph models; (4) the “grouping model,” using only 

grouped subgraphs as features. Our model uses both snapshot features and grouped 

subgraphs and thus it is labeled as “grouping + snapshot.” We do not use summary statistics 

(e.g. mean, max and min) as features because subgraphs capture detailed temporal trends. In 

other words, our model considers summary statistics implicitly.

4. Results

4.1. Model Evaluation

The receiver operating characteristic (ROC) curve of our model and comparison models are 

shown in Fig. 2(a). The baseline model achieves an AUC of 0.636 which is only 

outperformed by the “grouping” and “grouping + snapshot” models. The grouping model 

achieves an AUC of 0.637. Our model referred to as the “grouping + snapshot” model gives 

the best performance with an AUC of 0.661, significantly better (and statistically significant 

with p < 0.001 by the random permutation test [56]) than the second-best model with an 

AUC of 0.637. The AUC percentage deviation of all 5 models over the baseline model are 

shown in Fig. 2(b).

All the experiments were done on a 32GB RAM Linux server with 4 2.8GHz cores with the 

code written in Python. NMF with 110 groups takes 607.7 seconds and FSM with the 

frequency of 11 takes 94.9 seconds in total for 5-fold cross-validation.

4.2. Important Groups

The important groups of temporal trends discovered by our model could not only be used as 

strong features to build predictive models, but also help physicians to determine the patients’ 

current health condition and make better discharge decisions. In Table 1, we list top ranked 

temporal trend groups based on the value of the coefficient of a group in the NMF matrix. 
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Group 1 is the first ranked group relating to patients that were not readmitted within 30 days. 

Group 2 is the first ranked group relating to patients readmitted within 30 days. Variables in 

group 1 tend to have a trend to a better state, such as Saturation of arterial oxygen (SaO2) (0 

1 1 0), Respiratory rate (−1 0) and Anticoagulant (1 1 1 1 1 0). There is no variable that 

indicates a severe health state as well, such as a sequence containing several nodes with label 

2 or −2. Therefore, group 1 could be an effective predictor for non-readmission patients. 

Intuitively, a predictive trend group for patients with high readmission risk should contain 

trends toward a worse health state. For example, in Group 2, patient’s Lactate shows a severe 

trend (2 2 2 2 2 2), which likely reflects the buildup of lactate in the body. Although two 

trends going toward a better state are included in this group, the probable lactic acidosis 

condition together with continuously abnormal hemoglobin, red blood count etc. do not 

bode well for the patient. This analysis attests that discharging patients with deteriorating 

trends is an indicator for readmission.

4.3. Subgraph Analysis

In our early models, we count all frequent subgraphs and our grouping model only achieves 

an AUC of 0.602. This motivates us to perform an analysis on subgraphs and develop 

methods to enhance the strength of subgraphs.

The numbers of frequent subgraphs of different sizes are shown in Fig. 3. The size of a 

subgraph is the number of nodes in the subgraph. Intuitively, it is much harder for larger 

subgraphs to become frequent than smaller subgraphs. However, the number of subgraphs 

decreases slower than we expect as the size increases, especially in medication subgraphs. 

To explain the unexpected trends, in Fig. 3, we perform an analysis on the frequent 

medication subgraphs. We observe that the frequent medication subgraphs could either 

indicate stable trends (e.g. “Insulin 0 0” and “BUN 1 1 1 1”) or unstable trends with one 

change (e.g. “Insulin 0 1” and “BUN 1 1 1 0”). None of the temporal trends that have more 

than one change are frequent. Overall, only about one fifth of the frequent medication 

subgraphs indicate unstable trends.

For medication subgraphs that have more than 3 nodes, almost all of them indicate stable 

trends. Having the knowledge that if a subgraph indicating a stable trend is frequent, its 

subisomorphic graphs are frequent as well, we should have a large number of subisomorphic 

subgraphs, due to the fact that most of the frequent subgraphs indicate stable trends. 

Therefore, one explanation for the unexpected trend of the number of frequent subgraphs 

shown in Fig. 3 is that most of the small subgraphs are subisomorphic to some larger 

frequent subgraphs. In this scenario, the large amount of smaller subisomorphic subgraphs 

could have a significant influence on the performance of our model, since the signals from 

the larger frequent subgraphs might be overwhelmed by those from smaller ones. Therefore, 

we only count the maximal frequent subgraph that are not a subgraph of others. As a result, 

the patients’ average count of subgraphs drops from 143 to 20. In our experiment, the AUC 

of our grouping model is improved from 0.602 to 0.637 by filtering out smaller 

subisomorphic subgraphs.

Xue et al. Page 9

Artif Intell Med. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



5. Discussion

5.1. Error Analysis

Our best model demonstrates a sensitivity of 57.1%, specificity of 65.7%, positive predictive 

value (PPV) of 37.5% and negative predictive value (NPV) of 80.9%. The confusion matrix 

from 5-fold crossvalidation is show in Table 2.

To have a better understanding of why our model sometimes fails in making correct 

predictions, we select 17 patients who have been wrongly classified by our best model, from 

all validation sets. Of these 17 patients 3 patients were readmitted and 14 were not 

readmitted (ground truth). Our best model predicted those, who were actually readmitted, as 

having a very low readmission risk (predictive score lower than 0.2) and predicted those, 

who were not readmitted, as having a very high readmission risk (predictive score higher 

than 0.8). We observe that the average length of stay of these 17 patients is 104 hours, while 

the average length of stay of all patients is 73 hours. The poor performance of our model on 

these 17 patients, whose average length of stay is above the average level of all patients, 

motivates us to analyze the impact of the length of stay on our model.

Fig. 4 shows the relationship between length of stay and the ratio of patients that are 

correctly classified. Despite an increment from 3- to 4-day stay, the overall trend of the ratio 

is decreasing. The ratio drops from 0.683 for patients who stayed in an ICU less than 1 day 

to 0.566 for patients whose length of stay were 7 days or more. Since our model only 

considers trends during the last 12 hours, the trends captured by our model might be less 

representative of the trends throughout the entire ICU stays, especially for patients having a 

longer length of stay.

5.2. Impact of Imputation on Model Performance

The dataset contains a large portion of missing values. Among the 53 physiological 

variables, only one of them has no missing values, 15 of them have less than 10% missing 

values and 29 (53.7%) of them have over 30% missing values. There are 16 variables that 

have even more than 50% missing values. The percentage of missing values for each 

physiological variable is shown in Fig. 5.

Using different imputation techniques could lead to different prediction results. To reduce 

variability of different imputation, we tried several widely-used imputation methods. The 

effectiveness of each imputation method is evaluated by the performance of our prediction 

models. We test the performance of imputation methods on both the grouping and “grouping 

+ snapshot” models. The grouping model could work with missing values by discarding 

graphs that contain nodes without a value. Without imputation, the grouping model only 

achieves an AUC of 0.592, which motivates us to look for a proper imputation method. 

MICE (Multivariate Imputation by Chained Equations [52]) is a multivariate imputation 

model based on chained equations. Using MICE to replace missing values improves the 

performance of the grouping model to the AUC score of 0.619.

By manually checking the imputed values, we found that MICE failed to impute temporal 

data in many cases. As an example (see Fig. 6), the imputed values by MICE cause sharp 
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changes in the trends, which might suggest that these imputed values are unreasonable, 

because the observed values show that the alanine aminotransferase in blood (ALT) of this 

patient is in a stable status. The observed measurements of a few variables, including the 

rapid shallow breathing index rate change (RSBI Rate), the prothrombin time international 

normalized ratio (INR) and the fraction of inspired oxygen set on ventilator (FiO2set), of 

this patient show sharp changes at the very beginning and end of the trends. We also noticed 

that a group of other patients experienced some sharp changes, which might be captured by 

MICE and used as a pattern to replace missing values in ALT. However, sharp changes 

seldom occur at the very beginning or end of the ALT trends in our dataset. The imputed 

values for another 10 variables of this patient show similar patterns as ALT. These sharp 

changes caused by the imputed values could be an explanation of the poor performance of 

the model using MICE imputation.

To address this problem, we have tried several strategies of imputing missing values. One 

strategy is breaking up the time axis into intervals before performing MICE imputation. The 

value of an interval is the average of all measurements within this interval. By breaking the 

time axis into intervals, variable trends become smoother. We could expect less sharp 

changes caused by the imputed values if the patterns of time series captured by MICE are 

smoother. As shown in Table 3, by using this strategy, referred to as MICE-interval, the 

grouping model achieves an AUC of 0.612, which is worse than performing MICE directly. 

However, the “grouping + snapshot” model is improved to an AUC of 0.627 by using this 

strategy, compared to the AUC of 0.625 from the model where we perform MICE directly. 

We have also tried to perform MICE on standardized data. As a result, the performance of 

the “grouping + snapshot” model is slightly improved (0.630 of MICE-interval-norm vs. 

0.627 MICE-interval and 0.639 of MICE-norm vs. 0.625 of MICE). Another strategy is to 

use the customized linear interpolation, so that we could maintain the current trends in the 

imputed values. In our experiment, the customized linear interpolation works better than 

MICE by showing an improvement in the AUC score of both the grouping model (0.637 vs. 

0.619) and the “grouping + snapshot” model (0.661 vs. 0.639). A list of performances of the 

grouping and “grouping + snapshot” models based on different strategies of imputation are 

shown in Table 3.

5.3. Summary, Limitation and Future Work

In this study, we use the MIMIC-II dataset and build logistic regression models to predict the 

risk of 30-day ICU readmission. We discover risk-predictive features in time series for 

readmission and provide a grouping method to enhance temporal trend features. Our model 

outperforms other comparison models by using augmented temporal features.

Our model can be considered as a pilot study that focuses extensively on physiologic 

variables’ predictive power on the long standing difficult readmission management problem. 

Besides physiologic variables, other features including procedures, medications, and length 

of stay (LOS) may also add to readmission prediction. On the other hand, our methodology 

is very general and if additional features are available, the same model and methodology 

would apply with necessary adaptation.
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This study adds to the current knowledge in several ways. First, we build a logistic 

regression model that takes advantage of physiological and medication time series to predict 

30-day ICU readmission risk. The state-of-the-art ICU readmission prediction methods use 

the last valid measurements or the summary statistics (e.g., mean, max, min) of 

physiological variables during a patient’s ICU stay. In this work, we provide a method to 

utilize the temporal trends in time series of physiological variables to build a more accurate 

predictive model. Our model outperforms the baseline model that only uses the snapshot 

features, suggesting that the temporal trends carry predictive information for ICU 

readmission risk.

Second, our model can discover important groups of temporal trends that could help 

physicians to determine the patients’ current health condition and make better discharge 

decisions. Physicians may re-evaluate patients who are predicted by our model as having a 

high risk of readmission before discharging them. In addition to simply relying on the 

predictions, physicians can also check the temporal trends in the important groups 

discovered by our model (e.g., continuous lactic acidosis). Discharging patients with 

deteriorating trends more likely leads to readmissions, even for patients that show some 

improvements at the time of discharge. Our model encourages physicians to take a closer 

look at those patients who have some physiological variables deteriorating, to make further 

inspections and to reconsider the decision of discharge.

Third, we perform extensive analyses on the impact of subgraph filtering on the predictive 

models. Subgraph filtering solves two major problems in predictive models that use 

subgraphs as features: model overfitting and signal overwhelming. Here, signal 

overwhelming is the problem that signals from important subgraphs are overwhelmed by 

redundant subgraphs and then hard to be captured by predictive models. Our experiments 

show that subgraph filtering is an essential step and has a significant impact on our 

predictive models.

Furthermore, we introduce an imputation method called customized linear interpolation that 

is designed for temporal data. Our experiments show that some imputation methods work 

well on replacing missing values in snapshot measurements but not on temporal data, 

suggesting that the temporal pattern needs to be taken into consideration in imputation. We 

also perform comparisons between several widely-used imputation methods and perform 

extensive analysis on the impact of imputation on predictive models.

Our study has some limitations, which could be the focus for future studies. We focus on 

physiological and medication variables, and our goal is to explore predictive trends in time 

series of these variables for ICU readmission risk. In particular, we do not consider other 

readmission risk factors including socioeconomic status, clinical notes [30, 31] and 

comorbidities [57, 58]. In this study, we focus on predicting 30-day readmission using last 

12 hour measurements of a multivariate panel of physiologic variables, in order to elucidate 

subclinical deterioration of patient’s physiologic baselines that are predictive of readmission.

In addition, we want to strengthen our model with the ability to capture the trend-trend 

relative changes, rather than changes in single trends, considering that changes in one trend 
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may affect others. This may require interconnecting sequences, which could be effectively 

represented by graphs. To make our model more extensible to such cases in the future, 

instead of just sequence mining, we used subgraph mining in the first place.

The dataset used in this study contains a large portion of missing values and the quality of 

imputation has a significant influence on our model’s performance. Either eliminating all 

patients with incomplete data or imputing too many missing values might bias our study. We 

could have misclassified patients whose missing measurements have been replaced by 

unreasonable values. There is an opportunity to develop a better imputation method for 

temporal data that is stronger than the customized linear interpolation in catching the 

patterns of time series and making more reasonable imputation. Besides the missing values 

issue, another problem that may limit our model’s performance is the false alarms and noise 

in some variables of our dataset. The physiological variables captured from the monitors and 

the ventilators may come with noise due to the potential failure or malfunction of these 

devices, or reading errors. Developing strategies to account for the innate noise of the data, 

such as adding a latent variable of noise to the predictors, may help to further improve our 

model.

The imbalance of our data could be another problem to address, where only 26.5% of 

patients were readmitted within 30 days. We should expect our model to discover stronger 

trend groups for the high readmission risk population, if our model is trained on a dataset 

with more readmitted patients. Although a patient cohort with a higher readmission ratio is 

probably difficult to obtain (most physicians are doing their best to effectively treat patients), 

recent development in Generative Adversarial Networks (GANs) [59] may offer ways to 

artificially generate readmitted patient cases to counter the data imbalance problem.

6. Conclusions

To predict 30-day ICU readmission risk, we present a “grouping + snapshot” model, where a 

subgraph mining based method is used to analyze temporal patterns in time series and to 

extract multivariate temporal trends. We use Nonnegative Matrix Factorization to group 

correlated temporal trends. Our experiments show that the groupings are informative 

features for ICU readmission risk and could be used as complementary features to snapshot 

measurements to improve the accuracy of predictive models and to provide clinical insights. 

Our model outperforms all the comparison models and in particular it demonstrates an AUC 

improvement from 0.636 to 0.661, compared to the snapshot only model. The extensive 

analysis on the impact of imputation and subgraph filtering to predictive models also shed 

light on how to improve the performance of models using temporal trends.
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Appendix A.

Variable Description Missing
percentage

Age Age of the patient 0.034

Albumin Albumin in blood 0.823

ALT Alanine aminotransferase in blood 0.803

Arterial Base Excess Excess in the amount of base present in arterial blood 0.385

Arterial CO2 Arterial carbon dioxide 0.349

Arterial PaCO2 Arterial carbon dioxide tension 0.350

Arterial PaO2 Arterial oxygen tension 0.351

Arterial pH The pH level in arterial blood 0.336

AST Aspartate aminotransferase in blood 0.794

AST/ALT Aspartate aminotransferase / alanine aminotransferase 0.806

BUN Blood urea nitrogen 0.125

BUN/Creatinine Blood urea nitrogen / Creatinine 0.126

Ca Calcium level 0.351

Cardiac Index Relates the cardiac output from left ventricle in one minute to body 
surface area

0.027

Central Venous Pressure Blood pressure in the thoracic vena cava 0.022

Cl Chloride level 0.405

Creatinine Level of creatinine in blood 0.124

Heart Rate Heart Rate per minute 0.023

Delivered Tidal Volume Air volume of lung without extra effort 0.513

Diastolic Blood Pressure Minimum blood pressure during heartbeat 0.026

Direct Bilirubin Level of bilirubin conjugated with glucuronic acid 0.972

GFR Estimated glomerular filtration rate 0.124

FiO2Set Fraction of inspired oxygen set on ventilator 0.422

GCS Glasgow coma scale 0.044

Glucose Glucose level 0.081

Hematocrit Hematocrit level 0.077

Hemoglobin Hemoglobin level 0.139

INR Prothrombin time international normalized ratio 0

Ion Calcium Ion Calcium level 0.538

K Potassium level 0.347

Lactate Lactate level 0.766

MAP Mean arterial pressure 0.028

Mg Magnesium level 0.173

Minute Ventilation Volume of gas exchanged from lung per minute 0.526

Na Sodium level 0.360

PaO2/FiO2 Partial pressure arterial oxygen / Fraction of inspired oxygen 0.087

PEEPSet Positive end-expiratory pressure set on ventilator 0.430

Xue et al. Page 14

Artif Intell Med. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Variable Description Missing
percentage

PIP Peak inspiratory pressure 0.525

Plateau Pressure Pressure applied (in positive pressure ventilation) to the small airways 
and alveoli

0.557

Platelets Platelets count 0.111

Prothrombin Time Time for plasma to clot 0.354

PTT Partial Thromboplastin Time 0.350

RAW Airway Resistance 0.557

RBC Red blood count 0.150

Respiratory Rate (RESP) Respiratory rate per minute 0.049

RSBI Rapid shallow breathing index 0.526

RSBI Rate Rapid shallow breathing index rate change 0.523

SaO2 Saturation of arterial oxygen 0.035

Systolic Blood Pressure Maximum blood pressure during heartbeat 0.025

Temperature Body temperature 0.033

Total Bilirubin Level of bilirubin 0.794

Protein Total protein in blood plasma 0.990

Urine/Hour/Weight Urine per hour per kg body weight 0.065

WBC White blood count 0.148

Antiarrhythmic Antiarrhythmic agents 0

Anticoagulant Blood thinner 0

Antiplatelet A class of drugs that decrease platelet aggregation and inhibit thrombus 
formation

0

Benzodiazepine Used for sedation, inducing sleep, and muscle relaxation. 0

Beta Blocking Beta blockers, used to slow the heart rate and lower blood pressure, by 
blocking adrenaline

0

Calcium Channel Blocking Used to decrease blood pressure for hypertensive patients, also have the 
secondary effect of slowing heart rate in addition to relaxing blood 
vessels.

0

Diuretic Used to increase the production of urine 0

Hemostatic Drug that promotes hemostasis and stops bleeding 0

Inotropic Drug that alters the muscular contraction force 0

Insulin A hormone that helps manage blood sugar level 0

Nondepolarizing Neuromuscular nondepolarizing agent, used as muscle relaxant 0

Sedatives Sedative drugs 0

Somatostatin Preparation Somatostatin inhibits insulin and glucagon secretion. 0

Sympathomimetic Drugs that mimic the effects of neurotransmitters of the sympathetic 
nervous system

0

Thrombolytic Used to dissolve dangerous clots in blood vessels 0

Vasodilating Used to dilate blood vessels 0

AIDS acquired immunodeficiency syndrome 0

HemMalig Hematologic Malignancies 0

MetCarcinoma Metastatic Carcinoma 0
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Variable Description Missing
percentage

Medtype Clustered medication administration patterns 0

Location ICU types 0
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Fig. 1. 
(A) The flowchart of proposed approach, moving from selecting data to predicting 

readmission risk. (B) An example of creating matrix of common subgraphs. Only the Blood 

Urea Nitrogen (BUN) trend graph for patient 1 is shown (BUN 0 1 0 1 0 0). The frequent 

subgraph is (BUN 0-u-1-d-0), noted as S. Patient 1 has two frequent subgraphs S; patients 2 

and 4 have one; and patient 3 has no S. The edge labels, “u,” “d” and “s,” are short for “up,” 

“down” and “same,” respectively.
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Fig. 2. 
(A) ROC curves of different ICU readmission risk predictive models. (B) Percentage 

deviation of AUC over the baseline model.
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Fig. 3. 
Relation between subgraph size and number of distinct subgraphs.
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Fig. 4. 
Number of correctly and wrongly classified patients with different length of stay.
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Fig. 5. 
Percentage of missing values of each variable.
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Fig. 6. 
ALT measurements. X-axis is time and Y-axis is value. Triangles are imputed values. Circles 

are observed values.
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Table 1

Temporal trend groups with low and high readmission risk.

Group 1 - non-readmission group

0.0174 Location 1 1 1 1 1 1

0.0164 SaO2 0 1 1 0

0.0159 Respiratory rate −1 0

0.0141 Respiratory rate 0 −1 0 −1

0.0114 Glucose 1 1 1 1 1 1

0.0113 Anticoagulant 1 1 1 1 1 0

0.0085 MetCarcinoma 1 1 1 1 1 1

0.0080 Heart Rate −1 −1 0 −1 −1

0.0078 Systolic blood pressure 1 0

0.0078 SaO2 1 1 0 1

0.0068 Diastolic blood pressure −1 −1 0 −1 −1

Group 2 - readmission group

0.2407 Hemoglobin −1 −1 −1 −1 −1 −1

0.2043 Red blood count −1 −1 −1 −1 −1 −1

0.0146 Hematocrit −1 −1 −1 −1 −1 −1

0.0120 Mg 1 1 1 1 1 1

0.0099 Lactate 2 2 2 2 2 2

0.0092 Minute Ventilation 1 1 1 1 1 1

0.0069 Central Venous Pressure 0 1 0

0.0068 K 1 0

0.0066 SaO2 0 −1 −1

0.0064 Central Venous Pressure −1 −1

0.0062 Heart Rate 1 1 1 1 1 1

Each trend is represented by a sequence, e.g. “0.2407 Hemoglobin −1 −1 −1 −1 −1 −1,” where 0.2407 is the membership coefficient (the 
component weight in NMF model), Hemoglobin is the name of measurement and “−1 −1 −1 −1 −1 −1” is the trend. Abbreviations used in the table 
include: SaO2 -- Saturation of arterial oxygen; MetCarcinoma -- Metastatic Carcinoma; Mg – Magnesium level; K – Potassium level.
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Table 2

Confusion matrix of our best model.

Predicted:
Non-readmitted

Predicted:
Readmitted

Actual: Non-readmitted 565 295

    Actual: Readmitted 133 177
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Table 3

Performance of the grouping and “grouping + snapshot” models based on different imputation methods.

Imputation Methods AUC of Grouping Model AUC of Grouping + Snapshot Model

No Imputation 0.592 NA

Mean 0.620 0.637

MICE-interval 0.612 0.627

MICE-interval-norm 0.610 0.630

MICE 0.619 0.625

MICE-norm 0.611 0.639

Customized Linear Interpolation 0.637 0.661
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