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Abstract

Meta-analysis of neuroimaging results has proven to be a popular and valuable method to study 

human brain functions. A number of studies have used meta-analysis to parcellate distinct brain 

regions. A popular way to perform meta-analysis is typically based on the reported activation 

coordinates from a number of published papers. However, in addition to the coordinates associated 

with the different brain regions, the text itself contains considerably amount of additional 

information. This textual information has been largely ignored in meta-analyses where it may be 

useful for simultaneously parcellating brain regions and studying their characteristics. By 

leveraging recent advances in document clustering techniques, we introduce an approach to 

parcellate the brain into meaningful regions primarily based on the text features present in a 

document from a large number of studies. This new method is called MAPBOT (Meta-Analytic 

Parcellation Based On Text). Here, we first describe how the method works and then the 

application case of understanding the sub-divisions of the thalamus. The thalamus was chosen 

because of the substantial body of research that has been reported studying this functional and 

structural structure for both healthy and clinical populations. However, MAPBOT is a general-

purpose method that is applicable to parcellating any region(s) of the brain. The present study 

demonstrates the powerful utility of using text information from neuroimaging studies to 

parcellate brain regions.
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Introduction

In the last two decades, neuroimaging researchers have produced an exponentially 

increasing number of studies localizing activation in specific brain regions in both healthy 

and diseased populations. Several imaging modalities, such as structural MRI, functional 

MRI (fMRI) and positron emission tomography, have revealed various perspectives of brain 

structures and functions while implementing a variety of different experimental designs, 

group sizes, inclusion criteria, etc. One of the major challenges for neuroimaging researchers 

has been to synthesize the results from these diverse publications. An initial approach was 

made by manually grouping studies with a similar topic together and then summarizing the 

reported activation locations into a table or figure (Buckner and Petersen, 1996; Poeppel et 

al., 1996; Owen et al., 1997). However, these criteria and techniques were not subject to 

statistical validation.

In recent years, due to the wide use of standard spatial normalization in group studies, 

activation locations across different subjects or studies could be reported on the same 

common template with the corresponding coordinates of interest. Simultaneously, 

researchers have tried to develop probabilistic approaches for quantifying the uncertainty of 

the different spatial locations obtained from various studies. This has allowed results to be 

integrated across studies in a quantitative way using algorithms such as activation likelihood 

estimation (ALE; Turkeltaub et al., 2012) and multilevel kernel density analysis (MKDA; 

Wager et al., 2009). Additionally, the Brainmap (Fox and Lancaster, 2002; Laird, 2005) and 

Neurosynth (Yarkoni,2011) projects provide convenient tools to automatically perform this 

coordinate based meta-analysis across the neuroimaging literature. Based on a well-studied 

background of existing standard coordinate systems and mature cluster techniques, meta-

analytic connectivity modeling based parcellation (MACM-CBP) has been developed to 

group voxels into clusters based on the similarity between each voxel’s co-activation maps 

(Barron et al., 2015Robinson et al., 2015; Chang et al., 2013). This technique has been 

successfully applied to subdividing brain regions, such as the insula (Chang et al., 2013 

Cauda et al., 2012), pulvinar (Barron et al., 2015), temporo-parietal junction (Bzdok et al., 

2013) and orbitofrontal cortex (Kahnt et al., 2012).

However, presently available meta-analysis-based parcellation algorithms, such as those 

listed above, are limited to only using the coordinate data in tables reporting statistically 

significant locations and clusters. These approaches ignore the remaining text content of the 

papers, which one could argue comprises the majority of the information of the published 

work. Indeed, the reader of a paper typically acquires several types of information from the 

written text about brain regions such as but not limited to the following information: 

functionality, roles, interregional connectivity, and behavioral associations. This rich 

information is in addition to the simple reported spatial coordinates found within the tables 

of papers. It is true that extracting contextualized information among publication text is 

known to be challenging, recent advances in text mining and nature language processing 

have provided some effective ways to address these problems. For instance, by utilizing the 

co-occurrence of individual text terms to produce maps of semantic structures and to provide 

insights into how knowledge is organized within the large corpus of literature (Beam et al., 

2014; Carley et al., 1997; Diesner and Carley, 2005). Moreover, the bag-of-word model can 
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be used to represent the summation of a document as a group of key words regardless 

grammar or word order. Therefore, a document can be represented as a frequency vector of 

feature words. Based on this simplified model, document partition, agglomerative 

(hierarchical) clustering, and topic mapping can be efficiently performed on massive 

collection of text data. This conceptual model has been proven to be useful at many 

situations.

Thus, combining both the existing concepts in standard metaanalysis and the recently 

available methods from text mining, here we introduce a new meta-analysis-based method to 

parcellate brain into meaningful regions, called MAPBOT (Meta-Analytic Parcellation 

Based On Text).. As opposed to several existing methods described above, which are 

primarily built on the spatial similarity of co-activation maps, our proposed approach is 

instead driven by contextual similarity (i.e., the relation of co-occurrence of terms) across 

papers.

In this study, we applied our technique to the literature describing the human thalamus. The 

thalamus was chosen because it has a widely distributed set of connections among cortical 

and subcortical regions and appears to be involved with most cognitive functions (Sherman 

et al., 2006; Sherman and Guillery et al., 2013; Jones, 1998, 2001, 2009). Neuroimaging 

studies have made significant progress toward advancing our understanding of the human 

thalamus in vivo by using the diffusion tensor imaging (DTI) (Behrens et al., 2003; 

Draganski et al., 2008; Traynor et al., 2010; O’Muircheartaigh et al., 2011) and fMRI 

(Zhang et al., 2008, 2010; Kim et al., 2013; Yuan et al., 2016). These previous studies have 

investigated the topography of thalamocortical system among distinct thalamic sub-regions 

with large cortical regions (Zhang et al., 2008, 2010; Behrens et al., 2003) or with networks 

(Yuan et al., 2016). The dysfunction of the thalamus has been associated with several 

psychotic disorders, including major depression (Greicius et al., 2007), Parkinson’s disease 

(Fasano et al., 2012), and schizophrenia (Andreasen et al., 1994; Corradi Dell’Acqua et al. 

2012; Popken et al., 2000), and a cross modality parcellation map of the thalamus may be 

useful in understanding thalamic functions and the underlying potential mechanism(s) of 

these associated diseases.

Despite many research advances to understand thalamic function, several questions about the 

role of the thalamus in a broad sense of cognitive function remain unclear. Most previous 

studies have focused separately on either functional connectivity (in particular, using resting 

state fMRI paradigms) or structural connections. However, no single imaging study can 

conduct all the possible tasks needed to completely explore all the thalamic functions. 

Moreover, larger nuclei such as the medial dorsal nucleus and the pulvinar are known to 

have involved within multiple functions (Barron et al., 2015; Shipp et al., 2003; Yuan et al., 

2016). Therefore, the homogeneity of functional distinctions of thalamic subdivisions 

remains unclear.

This research is organized into the following sections. First, we introduce the text-based 

parcellation method MAPBOT. The second section applies our method to the existing 

literature that studies the human thalamus. This allows us to describe the groups of topics 

that are related specifically to each thalamic sub-division. Last, we summarize results that 
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demonstrate the usefulness of using MAPBOT within meta-analyses of text features to study 

brain regions. The future direction of our research is to further enhance the understanding of 

functional topography of the human thalamus and potentially other brain regions as 

described in the published literature.

Methods

Materials

To implement the MAPBOT method (Fig. 1), we made use of Neurosynth (Yarkoni et al., 

2011), which is an open access dataset which contains a large number of studies that 

provides raw metadata as well as particular extracted text features. The Neurosynth database 

was downloaded from (https://github.com/neurosynth/neurosynth-data; the latest update was 

on July 2015). This database contains over 10,000 papers. Nearly 3109 feature terms have 

been automatically extracted from their abstracts, including both single words and two 

grams.

There are two types of data sets contained within the Neurosynth database (Fig. 1). The first 

data set can be described as the “document by coordinates” (DC) matrix, whose CDC = 8 

columns are: pmid, title, year, doi, authors, study index, (x, y, z) spatial coordinates of 

voxels and the template types (MNI, Talairach, “unknown,”). The number of rows RDC in 

the matrix is the sum of voxel locations recorded per document (li) throughout full corpus of 

Nd documents:

RDC = ∑i = 1
Nd li,

which is typically a large number (in current dataset, RDC= 386,455).

Traditional MACM is based on this form of data.

The second type of data set in Neurosynth is the “document by terms” (DT) matrix. The 

number of rows in the matrix is determined by the size of the corpus, such that RDT = Nd (= 

11,406). Each row represents a single study. Each column represents the weights for a 

different text feature. There are total 3109 text terms, which are automatically extracted the 

abstract of all documents. Names of all the text terms are in the first row. The term weights 

are normalized using the term-frequency and inverse document frequency (tf-idf) values. For 

a given term tj in document di, the term-frequency tfij is defined as the number of 

occurrences of tj in document di. The inverse document frequency is defined as

id f j = ln
Nd
n j

id f j = ln
Nd
n j

,

where nj is the number of documents in which term tj appears. We note that here, the “entire 

corpus” refers to the full set of “all documents that have been selected”; which means this 

could be a specific subset from the full NeuroSynth database according to some systematic 

Yuan et al. Page 4

Neuroimage. Author manuscript; available in PMC 2019 April 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/neurosynth/neurosynth-data


criterion, such as a year range, a certain brain region, a specific journal. Finally, the ij-th 

matrix element of the DT matrix M is constructed as follows:

Mi j = t f i j * id f j ,

such that each element is effectively the count of terms per document, weighted 

(logarithmically) by the number of documents in the corpus containing that term.

In this study, we propose a method for combining the information contained in both the DC 

and DT matrices, with particular interest in the large amount of information represented by 

the latter. However, the DT matrix cannot be directly used for parcellation in the form given 

above, but it must instead be transformed, as described below, to construct the voxel by term 

(VT) matrix. First, based on a user-defined region of interest (ROI) with Nv voxels, all 

documents that reported a voxel of that region from the DC matrix will be listed. From this 

set of documents, corresponding rows in the DT matrix are identified and their weights 

extracted. Thus, for each voxel there are several reported documents, each having a vector of 

term-weights. The VT matrix is constructed by averaging weights across the documents for 

each voxel, so that the matrix dimensions are RVT = Nv rows by CVT = CDT = NT columns.

Clustering method: nonnegative matrix factorization

In practice, a given VT matrix X is typically sparse, since most documents only contain a 

small subset of archived terms. Therefore, traditional clustering methods such as k-means, 

hierarchical and spectral clustering may fail to provide robust and accurate performance (Xu 

et al., 2003; Gills et al., 2014). A popular method widely used in text mining, called the 

nonnegative matrix factorization (NMF), which was introduced by Lee and Seung (1999), 

has been shown to overcome problems with sparsity. It has been applied to the analysis of 

highdimensional data such as high resolution images, text mining, and gene expression (Lee 

and Seung et al., 1999; Xu et al., 2003; Shahnaz et al., 2006; Pauca et al., 2004; Kim et al., 

2003; Brunet et al., 2004). In contrast to other common dimension reduction methods (e.g, 

independent or principal components analysis), the non-negative constraints of the method 

enables NMF to allow only additive, not subtractive, combinations of parts-based 

representations (Lee and Seung et al., 1999). Moreover, NMF can simultaneously parcellate 

the VT matrix X along two dimensions. This is a benefit for MRI applications because 

clustering can be simultaneously based on both voxels and text terms. The clustering on 

voxels can provide a parcellation of a region, and the later one on text terms basically 

performed a topic modeling. As suggested in previous studies (Xu et al., 2003; Gillis et al., 

2014), using a normalized weight vector on the data has a positive effect on the NMF 

performance, such as improving cluster accuracy based on comparing the clustering results 

with the manually classified data. Thus, a weighting matrix D = diag XTXe , e = [1, 1, …, 1]T,

where the length of e and D is CVT, is calculated, resulting in the more practically useful 

X′ = XD−1/2 .

Next, the weight-normalized matrix X’ is entered into NMF, which we describe briefly here 

using a given factorization rank k, the number of clusters to parcel (i.e., the dimensionality 
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reduction of the Nv voxels). Given such a matrix X’ and k, NMF finds non-negative matrices 

U and VT, such that

X′ = UVT ,

where U is a Nv x k matrix whose columns will define parcellation weights for each voxel; 

and V is a k x NT matrix whose rows will define term weights for each parcel.

A common way to solve for U and VT (Lee and Seung et al., 1999) is to minimize the 

following (scalar) objective function:

O = X′ − UVT 2 .

The objective matrix function O can be re-written as:

O = tr X′X′T − 2tr X′VUT + tr UVTVUT ,

where tr() is the trace of the matrix. Since this a typical constrained optimization problem, 

we used the Lagrange multiplier α and β method to solve the equation. The Lagrangian was 

defined as:

L = O + tr αUT + tr βVT ,

and we then calculate the derivatives of L with respect to Uij and Vij. By

using the Kuhn-Tucker condition (derivatives 

∂L
∂U ∧ ∂L

∂V  are equal to zeros; αUij = 0 and 

βV ij
T = 0), the updating formulas are:

U i j Ui j
(XV)i j

UVTVi j
,

and

Vi j Ui j
(XU)i j

VUTUi j

Several ways to estimate the optimal solution have been proposed, such as multiplicative 

updates (MU; Daube-Witherspoon and Muehllehner et al., 1986; Lee and Seung et al., 2001) 

and alternating nonnegative least squares (Berry et al., 2007). The MU is perhaps the most 

popular one and was used in this study, because it is easy to implement and well scaled. 

However, it should be noted that it does tend to converge relative slowly. A possible 
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alternative strategy would be to update the weight matrix U several times ahead of updating 

V (Xu et al., 2003; Gills et al., 2014).

Since the NMF is NP-hard in general (Vavasis et al., 2009), for most methods of solving it, 

the initialization has considerable effect on the results. We utilized nonnegative double 

single vector decomposition (nndSVD) on the X’ matrix to estimate the initial 

approximation of U (Boutsidis et al., 2008). The nndSVD is better fit for a sparse matrix. If 

the X’ is rather dense, then random numbers (nonnegative, in the interval 0 to mean of X’ 
divided by 100) were used to replace zeros in the nndSVD (Boutsidis et al., 2008; Gillis et 

al., 2014). Although a simple way to initialize U or V matrix is using random initial values, 

SVD-based initialization is preferable due to its faster convergence and typically lower error 

rate once converged (Boutsidis et al., 2008).

When the process reached a specified lambda-tolerance (or a predefined maximum number 

of iterations), the output solution was obtained by normalizing the latest U and V. Based on 

the U matrix, each voxel was assigned to a cluster (labeled with a number from 1 to k), 

which has the largest weight in the corresponding row of U.

As a final step, although this method does not require merging segments or labels, the 

common technique to eliminate “isolated” voxels was also applied. The cluster label of an 

isolated voxel was switched to that of the majority of its neighbors (out of 27 nearest 

neighbors).

Dimensionality reduction specification

Similar to other decomposition schemes such as independent component analysis, the 

number of components (here, parcellated sub-regions) k must be chosen. The following 

scheme for determining the final number of regions in a data-driven manner was 

implemented, utilizing two criteria.

First, the (normalized) variance of information (VI; Meila et al., 2003) was used to measure 

the similarity between the neighboring cluster counts (i.e., between final numbers of k and 

k-1 clusters). This is measured as:

VI Ck, Ck − 1 k
= H Ck + H Ck − 1 − 2MI Ck, Ck − 1 ,

where H represents the entropy of the cluster solution C, and MI represents the mutual 

information shared by the two cluster solutions. A “good” solution k* shows a decrease in 

VI from k-1 to k or an increase from k to k+1 (called a gap pattern). Such “good” 

factorization ranks were selected candidates for the final decomposition.

The second criterion for evaluating decompositions was the Hartigan index (HI; Hartigan, 

1985). The optimal solution would minimize |HI(k) − HI(k − 1) | . We consider any cluster K 

whose |HI(k) − HI(k − 1)| shows decrease from k-1 and increase from k+1 could be the 

potential optimal solution. The HI index is defined as:
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HIk =
tr Wk

tr Wk + 1
− 1 (n − k − 1)

where Wk is the within cluster distance of the cluster k; tr() is the trace of the matrix; and n 
equals the total number of voxels in the region.

To evaluate the symmetry of the parcellation results, the symmetric index was also estimated 

by calculating VI values between the left (CL) and right (CR) clustering:

symm−VI CLk, CRk k
= VI CLk, CRk k

= H CLk + H CRk − 2MI CLk, CRk ,

where a smaller value indicates more symmetric clustering results. All metrics were 

calculated separately for the left and right with different factorization rank k. The “good” k 
candidates from the left and right were determined respectively by voting from its VI and 

HI. Then, the candidate with the lowest symmetric VI is to determine the best k* solution 

(Fig. 2).

In practice, the user must select minimal and maximal bounds for k within which to search, 

such that the interval kmin < = k < = kmax is investigated. These should be chosen within a 

reasonable, wide interval; if, after iterating through this range, k* = kmin or kmax, then likely a 

wider interval should be selected.

All programs to do the above, comprising MAPBOT, were written in MATLAB (MathWorks 

Inc.), making use of DC and DT matrices obtained from Neurosynth. AFNI (Cox et al., 

1996) functions were used for visualizing the volumetric results as slices, as well as for 

exporting data via its AFNI_MATLAB package. SUMA (Saad and Reynolds, 2012) was 

used to visualize the parcellation results as surfaces in 3D space.

Applying MAPBOT: Thalamus parcellation and evaluation metrics

The full thalamus volume was defined using the Morel template (Krauth et al., 2010; Morel 

et al., 1997), which was down-sampled to 2 mm isotropic voxels to match the MNI space 

used here. Then, this mask was split along the midline into the left (L-) and right (R-) 

regions. In order to reduce bias from selecting a specific voxel radius for association, five 

sets of documents were created based on the thalamus mask, selecting those documents that 

reported coordinates within 4, 6, 8, 10, and then 12 mm of any thalamic voxel were retrieved 

from Neurosynth. For each radius-based collection, a DT (tf-idf) matrix was first constructed 

with idf based on its cache of documents, and then the VT matrix was obtained through the 

transform mentioned above. The final VT matrix, used in subsequent analysis, is estimated 

by averaging the five initial VT matrices. The range of possible number of clusters in the 

thalamus (each hemisphere) was set to 2 < = k < = 20, so that there were 19 different 

parcellation results in total from which an optimal solution from the combined VI and HI 

criteria was obtained.
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Sub-division corresponded terms and dual-view topic mapping

As mentioned above, an interesting property of the NMF is a dual view of decomposition 

X UVT . The NMF does not only perform clustering on the rows of VT matrix, defining 

spatial parcels, but also on its columns, which groups the terms into different sets, 

commonly known as topic mapping (Fig. 1).

We obtained the V matrix from NMF with each assigned factorization rank k. Each ith 

thalamic sub-division (described by the ith column of U) has its own set of corresponding 

terms (described by the ith row of VT). Similar to the way that a voxel is assigned to a 

cluster, each term was assigned to a cluster that had the largest weight at the corresponding 

column of VT. To further explore the relation with existing topics of neuroimaging interest, a 

hypergeometric analysis was used to address the possibility of observing the overlaps 

between the set of terms from each thalamic sub-division, and the set of terms from existing 

topics described by Poldrack et al. (2012). Based on the number of topics inside each set, we 

named the sets the topics-50, topics-100, topics-200, and topics-400. For each topic set, the 

top 5 topics from each thalamic cluster on either hemisphere were presented.

Post-hoc topic mapping of thalamic subdivisions

To better illustrate the specific topics of each thalamic subdivision, the forward inference 

approach was used to quantitatively characterize the neurofunctional profiles with respect to 

topics and behavior domains. First, the binomial test of whether P(activation | term) > 

P(activation) was performed on each term of each topic to test whether the term was “over-

represented” by given activation within the cluster (Robinson et al., 2015; Riedel et al., 

2015). Second, the modified Fisher’s method (Brown et al., 1975; Kost et al., 2002) was 

used to estimate the probability that each topic was over-represented, by combining the 

previous term-based tests.

The original Fisher’s method assumes the combined term-based tests are independent of 

each other, but that is not necessarily required to be the case for terms here. Therefore, the 

modified Fisher’s method, which considers the covariance between terms, was used (Brown 

et al., 1975; Kost et al., 2002). Therefore, significance was assessed using a chi-square 

measure of corrected combined tests and corrected degree of freedom, and a result was 

termed “significant” when it passed a Bonferroni corrected P < 0.05 threshold.

In addition, a reverse inference approach was conducted in a Bayesian manner. This analysis 

aimed to determine whether the terms or topics were over-represented for each cluster 

compared to the terms that were observed in the Neurosynth database. The likelihood of 

P(term | activation) can be derived from P(activation | term) as well as P(term) and 

P(activation) through Bayes’ rule:

P(term activation) = P(activation term) * P(term)
P(activation) .

Then, the Bayesian factor was used to address the substantial overrepresentation by 

estimating the ratio between posterior probability P(Term | Activation) and a priori 
probability P(Activation| term). The top 5 topics from each thalamic cluster were listed.
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Resting state functional connectivity

Finally, in order to investigate the thalamocortical connectivity associated with the present 

parcellation scheme, we utilized the Cambridge data set from the publicly available 1000 

Functional Connectomes Project (FCP) database (Biswal et al., 2010). The resting state 

FMRI data sets were processed according to (Yuan et al., 2016), which we briefly 

summarize here. Resting-state fMRI and anatomical images were downloaded from the FCP 

website ((http://fcon_1000.projects.nitrc.org/), consisting of 198 subjects (75 males, 123 

females), with ages between 18 and 30 years. The fMRI images were collected using a 3T 

scanner, with TR of 3 s, 47 slices, 3 mm isotropic voxel size and 119 time points. The first 5 

time points were removed, leaving 114 time points for each subject. Each subject’s T1-

weighted anatomical scan had been acquired using a magnetization-prepared rapid-

acquisition gradient echo (MPRAGE) sequence (192 slices with a 144*192 matrix; voxel 

size = 1.20×1.00×1.33 mm3). The fMRI datasets were realigned to the first image to correct 

for head motion and linearly co-registered to each subject’s T1-weighted image. The 6 

motion parameters obtained from the rigid body registration and the Euclidean norm of all 

motion derivatives were regressed out from time series of all the voxels. Each structural 

image was segmented into grey matter (GM), white matter (WM) and cerebrospinal fluid 

(CSF). The functional images were then transformed to the standard Montreal Neurological 

Institute (MNI) template in 3×3×3 mm3 by using the Diffeomorphic Anatomical 

Registration Through Exponentiated Lie algebra (DARTEL, Ashburner, 2007) toolbox. The 

CSF and WM masks were defined by thresholding individual tissue probability maps at 

0.95. The first 5 principal components from each of the CSF and WM masks were regressed 

out from time series of every voxel. Finally, a bandpass filter ranging between 0.01 and 0.1 

Hz was applied to each time series. No spatial smoothing was performed. After the above 

preprocessing, in order to match the voxel size of the thalamic parcellation result, we 

resampled the voxel size of functional images into isotropic 2 mm. Each cluster identified by 

MAPBOT was used as a “seed”, and then averaged time series from each cluster (L and L 

and R considered together considered together) was extracted. The, partial correlation was 

performed between each cluster time series and the every voxel time series from the whole 

brain, eliminating the shared variance among all the thalamic clusters. Then one-sample t-
tests were performed on each set of functional connectivity map across all subjects. The 

results were thresholded at FWE-corrected p < 0.05 at the voxel level (Fig. 5).

Results

We demonstrate the use of the text features to segment the human thalamus, as well as the 

criteria to determine the “optimal” cluster. Due to the dual-view property of NMF, we also 

derive the topic mapping of each thalamic cluster.

Thalamic sub-divisions

From the calculated HI and VI values, as well as the symmetric VI, the thalamus was 

divided into 10 different sub-regions on both the left and right sides. Considering the 

location and overlaps with the Morel template, the left and right clusters were matched 

accordingly (Fig. 2).
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Clusters 1 and 2 were located in the anterior part of the thalamus, while Clusters 8 were in 

the dorsal part. Cluster 4 is just alone the midline which is the major medial section of the 

thalamus. Clusters 3, 5 were in the ventral and lateral parts of thalamus, and Clusters 6, 7 

and 9 were in the posterior part (Fig. 3). We examined the overlaps between the MAPBOT 

parcellation masks and the 11 major nuclei (38 subnuclei) of the (downsampled) Morel 

template. The complete list of overlaps between our parcellation masks and the Morel 

template are given in the Tables S1–2.

Cluster 1 includes the anterior ventral nucleus (AV), ventral anterior nucleus (VA), central 

medial nucleus (CeM),. Cluster 2 encompasses the lateral dorsal nucleus (LD), the ventral 

lateral posterior nucleus (VLp) and the dorsal division (VLpd). Cluster 3 encompasses the 

ventral medial nucleus (VM), ventral lateral anterior nucleus (VLa), ventral lateral posterior 

nucleus, paralamellar division (VLpv), ventral posterior nucleus. Cluster 4 is overlapped 

with the major part of mediodorsal nucleus, habenular nucleus (Hb). Cluster 5 overlaps the 

anterior pulvinar (PuA), ventral posterior nucleus (VP), posterior nucleus of hypothalamus 

(PO), suprageniculate nucleus(SG). Cluster 6 encompasses the lateral pulvinar (PuL). 

Cluster 7 is largely overlapped with the limitans nucleus (Li), medial pulvinar (PuM). 

Cluster 8 encompasses at the lateral posterior nucleus (LP), lateral dorsal nucleus (LD), and 

part of the ventral lateral posterior nucleus (paralamellar division; VLpl). Cluster 9 

encompasses the lateral pulvinar (PuL), lateral geniculate nucleus (LGN), and medial 

geniculate nucleus (MGN). Cluster 10 overlaps the red nucleus (RN) subparafascicular 

nucleus (sPf) (Fig. 4)

While we note that there were some slight differences between the left and right thalamus, 

the majority of the parcels derived here showed large overlaps with the Morel atlas. Overall, 

the bilateral thalamic subdivisions have shown a notable degree of similarity between the 

results and the organization of major nuclei from Morel’s template.

The topic mapping from the dual view of the NMF

The dual-view of decomposition of the NMF enables us to have a set of grouped terms 

associated with the spatial Clusters of the thalamic sub-division. The related topics are 

examined on the left (L) and right (R), respectively. In general, the L-R pairs of Clusters 

were related to similar topics across 4 topic sets (50, 100, 200, 400), which are shown in 

Tables 1, 2 (NB: as each topic includes around 30 terms, for brevity only the first three 

words are presented to represent each). As the tables shown, Cluster 1 is significantly related 

with social empathy, decision making (Tables 1, 2). The functional specificity of Cluster 2 

might be interpreted as related to language, memory and cognitive performance, such as 

“semantic words word”, “task performance cognitive”. Cluster 3 was found to be associated 

with the motor related topics, such as “motor movement movements”, “motor planning 

execution”, and “stimulation somatosensory tms”. Cluster 4 was found to be significantly 

associated with the default mode network. Cluster 5 is significantly associated with the 

“motor sensory areas”, “action actions observation” and “auditory visual sensory,” “speech 

auditory production.” Cluster 6 is found to be significantly associated with “eye spatial 

gaze,” “eye eyes movement” on left and “learning training performance” on the right. 

Cluster 7 on the left is significantly associated with Alzheimer’s disease, mild cognitive 
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impairment, while on the right, Cluster 7 is related to “emotional faces facial,” “faces face 

facial” and “volume grey structural.” Cluster 8 was found related to “Schizophrenia 

patients” and “age adults aging,” “training practice trained.” Cluster 9 was significantly 

associated with “memory encoding and retrieval,” “object recognition,” and “visual 

perception.” Cluster 3 had a higher tendency toward “reward monetary anticipation,” and 

similar topics such as “inhibition response inhibitory.” To further illustrate the general idea 

of the topic mapping, topic-mapping result from the topic set of 50 is used to demonstrate 

the relation between topics and clusters (Figs. 5 and 6).

Decoding of thalamic sub-divisions

The behavior topic for each cluster was examined through both forward and inverse 

inference. In general, the forward inference indicates, given a topic, which cluster is most 

strongly associated with it, while the inverse inference determines, given the cluster 

coordinates, what specific topic the cluster corresponds to.

First, we examined the most over-represented topics across all thalamic clusters, which 

exhibited such varied topics as motor, language, emotion, morals, and speech. To further 

look into the details of each cluster, we investigated the preferential associations of each 

thalamic sub-division toward particular topics (Table S3, S4). The posthoc topic mapping is 

highly overlapped the topic mapping results from dual-view, but more general and less 

specific than dual-view topic mapping. In a brief summary, Cluster 1 is associated with 

reward and social empathy related topics; Cluster 2 is involved with working memory and 

pain related topics. Cluster 3, 5, 8 are all associated with motor related function, though each 

of them are from different perspective, Cluster 4 consists of several different kinds of topics, 

such as, pain, emotion, reward, arousal, task preparatory. Cluster 6 is associated only with 

visual related topics, Cluster 7 is highly related with Alzheimer’s and mild cognitive 

dementia. Cluster 9 is related with memory dependent topics. Cluster 10 is related with 

inhibition, reward, and motor planning.

Resting state functional connectivity

The resting-state functional connectivity (RSFC) maps of the thalamic sub-divisions are 

shown in Fig. 7. All 10 RSFC maps revealed that most sub-divisions within the thalamus 

showed strongly positive correlations with distinct cortical regions (Table 3). Cluster 1 

appears to be functionally associated with the anterior cingulate cortex; Cluster 2 is largely 

associated with frontal lobe, including inferior, middle and superior frontal gyrus. Cluster 3 

demonstrates functional connectivity to the precentral gyrus and supplementary motor area, 

as well as the cerebellar structures; Cluster 4 is functional connected to anterior and middle 

cingulate cortex, precuneus, and middle frontal gyrus; Cluster 5 is highly related with motor 

function related areas, like precentral gyrus, SMA, and superior temporal gyrus, insula; 

Cluster 6 is connected with the cuneus, posterior cingulate, and lingual gyrus; Cluster 7 is 

associated with the middle temporal gyrus and posterior cingulate gyrus; Cluster 8 connects 

to the precuneus, inferior parietal lobule, insula, and postcentral gyrus; Cluster 9 shows 

connection with middle orbital gyrus, superior and middle temporal gyrus, inferior and 

middle frontal gyrus; Cluster 10 is related to the claustrum, hippocampus, amygdala, and 

fusiform gyrus.
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Discussion

We examined the thalamic organization based upon the textual terms and demonstrated an 

alternative meta-analysis approach called MAPBOT to characterize the sub-divisions of the 

thalamus (Fig. 3). The NMF method is the core of our method, which is widely used to 

cluster documents and here adapted to parcellate the thalamus based on voxel- to-term 

relations. The clustering results and evaluation of behavioral inference from parceled 

clusters showed differential thalamocortical relation among different thalamic sub-divisions 

(Tables 1, 2, S3–4, Figs. 5 and 6). The resting-state functional connectivity map was 

estimated for each cluster (Fig. 7, Table 3).

Thalamic sub-divisions: topic mapping and relations to preexisting templates

The thalamus is known to be related with several cognitive functions, such as motor, 

emotion, and memory processing (Jones et al., 2007). The sub-divisions of the thalamus 

have been found to be specifically connected to distinct cortical regions (Jones et al., 2007). 

Previous functional neuroimaging studies have provided examples of parcellating the 

thalamus into 7, 9, or 10 clusters, based on several different classifications (Behrens et al., 

2003; Ji et al., 2016; Kim et al., 2013; Fan et al., 2015). In addition, recent work suggests a 

more complicated organization of the thalamic nuclei and that higher order nuclei might be 

involved within multiple functions (Yuan et al., 2016). In the current study, we delineated the 

thalamus based upon a metaanalysis and expanded on the results of previous studies which 

were mainly based on resting-state functional connectivity or white matter connection.

In the present study, the final parcellation had 10 sub-regions in each hemisphere, as the best 

solution from a wide range of parcel numbers investigated (in the range of 2–20 sub-

regions).

Cluster 1 is at the anterior and dorsal region of the thalamus, encompasses the anterior 

nucleus (AN), ventral anterior nucleus (VA), and the central medial nucleus (CeM). The VA 

consists of two major portions, one is called the magnocellular (VAmc), and the other one is 

called the parvocellular (VApc). Interestingly, unlike other ventral nuclei, which project to 

specific cortical regions, the VA has a dense fiber network between itself and several 

thalamic nuclei (mostly VApc), and it widely projects to the frontal lobe cortex (mostly from 

the VAmc) as well as being orbitofrontal afferent to the VAmc nucleus (Carmel et al., 1970; 

Scheibel et al., 1966). Animal studies have indicated that the VAmc also plays an important 

role in executive function with cognitive context and emotional processing, since it is 

densely projection from anterior cingulate areas, dorsolateral prefrontal areas and the basal 

ganglia, especially the global pallidus and the substantia nigra reticutata (Xiao and Barbas et 

al., 2002, 2004; McFarland et al., 2002). Although it is not completely overlapped with the 

anatomical connections based on animal studies, the human-derived FC demonstrates the 

significant connection between Cluster 1 and the anterior cingulate gyrus, and basal ganglia. 

The topic mappings of the Cluster 1 are found to be strongly associated with reward and 

emotion related topics. Moreover, Cluster 1 also encompasses the major part of the anterior 

nuclei (AN), the medial portion of AN has reciprocal connections with the anterior cingulate 

and orbitomedial prefrontal cortices, and relays information to medial frontal lobe. It might 

be also involved in emotional and executive functions through the hippocampal-prefrontal 
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interactions (Child et al., 2013). Furthermore, previous studies have also suggested that the 

AN with emotional experience might modify and enhance hippocampal processes involved 

in memory (Child et al., 2013; Papez et al., 1937; Vertes et al., 2001). However, here the 

topic mapping itself has not directly shown any memory related function.

Cluster 2, dorsal-rostral to Cluster 1, which includes ventral lateral posterior nucleus dorsal 

division (Vlpd), the lateral dorsal nucleus (LD), and a small portion of the anterior ventral 

nucleus (AV). VLp is suggested as the principal cerebellar thalamic relay nucleus due to its 

afferent connection with cerebellum, and reciprocal connection with motor areas (Sakai et 

al., 2000). Functional connectivity studies have also shown Cluster 2 to be connected to 

several frontal and cerebellum structures, but not with any motor related areas. Moreover, 

VLp is regarded as an integral part of both the cerebello-thalamocortical and the basal 

ganglia-thalamocotical circuit (Danos et al., 2002; McFarland and Haber et al., 2002). On 

the other hand, previous animal studies have shown that the LD is connected with the 

posterior cingulate and parietal cortices reciprocally, as well as the hippocampal complex 

(Van Groen and Wyss et al., 1992; Mizumori et al., 1993; Thompson and Robertson et al., 

1987). Moreover, it has also been indicated that LD integrates motivation and/or attention 

with sensory processes (Taber et al., 2004). The topic mapping results indicate Cluster 2 is 

related with the following: sematic words, working memory and task performance. Although 

several studies (Van Groen et al., 2002; Mizumori et al., 1994) have indicated LD’s 

involvement in spatial memory, it is possible that Cluster 2 might have a much broader 

spectrum of functions due to its wide-spread anatomical and functional connections.

Cluster 3 has the largest volume in the thalamic parcellation within this present study. It 

encompasses the ventral medial nucleus (VM), ventral lateral anterior nucleus (VLa), ventral 

lateral posterior nucleus, and the paralamellar division (VLpv). The VM lies between the VL 

and VP as a transition zone, and it has not always been considered to be an independent 

nucleus. It has been suggested to be related to motor function and the gustatory relay (Buee 

et al., 1986; Craig et al., 2014). The VL has long been considered as the “motor thalamus”, 

which consisted of 3 distinct clusters. VLa generally projects to the premotor cortex and 

SMA, while VLp connects to the primary motor cortex, globus pallidus and cerebellum 

(Asanuma et al., 1983; Jones et al., 1979; Stepniewska et al., 1994). Cluster 3 is also shown 

to be functionally connected with precentral gyrus and SMA. The topic mapping results here 

are also strongly aligned with these anatomical and functional connections, specifically the 

topic of “motor movement movements”.

Cluster 4, located at the medial part of the thalamus, encompasses the major part of 

mediodorsal nucleus (MD), central laberal (CL) and habenular nucleus (Hb). The MD might 

be the most well studied thalamic nuclei. It has major reciprocal connections with the 

prefrontal, anterior cingulate cortex, temporal lobe and supplementary motor cortex in 

primates (Goldman-Rakic et al., 1985; Russchen et al., 1987; Ray and Price, 1993; Siwek 

and Pandya, 1991; Vogt, 1979). It also receives afferent information from subcortical 

regions, such as the amygdala, the basal forebrain, and the cerebellum (Hreib et al., 1988; 

Aggleton et al., 1980; Aggleton and Mishkin et al., 1984; Price et al., 1986). The MD is a 

key to multiple brain functions, such as cognition, emotion, pain, memory, sleep/waking 

circuits, and motivation (Haber and McFarland et al., 2001; Sherman and Guillery, 2013). 
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Furthermore, left and right dual-view topic mapping have shown its relation with the default 

mode network (DMN), which is supported by the association of MD with DMN by large 

groups of functional studies (Zhang et al., 2010), though it might be more closely related 

with posterior DMN (Yuan et al., 2016). In the current study the estimated RSFC of Cluster 

4 did not reflect a standard DMN pattern, nor did any other clusters. It is possible that the 

DMN does not merely connect to one single thalamic nucleus but several. However, the 

post-hoc decoding is highly related to topics such as pain, autonomic arousal, emotion, and 

reward. Since the meta-analysis underlying the parcellation has originated from published 

studies, certain function related studies might be published significantly more than other 

studies (Yarkoni et al., 2011), for structures like MD, which has substantially related 

function (Golden et al., 2016; Mitchell et al., 2015; Metzger et al., 2010). It might be 

impossible for topic mapping to list all possible functions, but only to certain highly 

represented research topics.

Cluster 5 consisted of the PuA, the anterior and medial and inferior VP, posterior nuclus 

(PO), suprageniculate nucleus (SG) as well as the MGN. Previous animal studies on 

macaques suggested that both the anterior pulvinar and ventral posterior superior nuclei are 

connected to the area 2 of somatosensory cortex (Cusick et al., 1990; Pons et al., 1985; 

Sherman and Guillery, 2013). The ventral posterior inferior nucleus (VPI) is essentially 

related to the sensory motor system, having been shown in primate studies to have afferent 

connection from the spinothalamic system and efferent connections to the second 

somatosensory area (Friedman and Murray, 1986; Stevens et al., 1993) and to a lesser extent 

S1 (Stevens et al., 1993). The resting-state functional connectivity map of Cluster 5 also 

indicate its connection with motor related areas, such as precentral gyrus, postcentral gyrus, 

Moreover, Cluster 5 is functionally connected with the auditory cortex, such as the superior 

temporal gyrus, which might be due to its small portion of MGN and the major part of SG. 

The MGN is known to be the major auditory functional relay (Winer et al., 1992). The SG 

has been found to be involved with auditory pathways, and response with auditory, somatic, 

and noxious stimulations (Kobler et al., 1987; Benedek et al., 1997). Thus, topic mapping 

from left and right of Cluster 5 in general are aligned as related with motor and auditory 

functions.

In most cases, the human pulvinar can be parceled into four parts (Morel et al., 1997), 

anterior (PuA), lateral (PuL), medial (PuM), and inferior (PuI). Other than PuA (part of 

Cluster 5, Cluster 8) which is more functionally related to somatosensory (Benarroch et al., 

2015a, 2015b), Clusters 6, 7, and 9 parcels the rest of the pulvinar (PuI, PuL, PuM). Cluster 

6 overlaps with the lateral portion of PuM and PuL. Cluster 7 is mainly associated with the 

medial portion of PuM. Cluster 9 overlaps with the inferior portion of PuL and PuM, and the 

whole PuI.

The dorsal PuL, as a part of Cluster 6, is known to connect with the visual cortex, 

dorsolateral prefrontal cortex, inferior parietal lobule, and superior temporal gyrus, where 

both those cortical regions and dorsal PuL have been long implicated as playing roles in 

spatial or visual attention (Mesulam et al., 1990; LaBerge et al., 1990; Robinson et al., 

1993). However, RSFC of Cluster 6 is matched with the majority of the anatomical 

connections that described above, such as the visual cortex, parietal and posterior cingulate 
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areas, but not the frontal areas. On the other hand, the left and right topic mappings of 

Cluster 6 are mainly about “eye spatial gaze”, “object category”, “learning training 

performance”. The reason why the function of learning is also related to the Cluster 6 might 

be because that learning is highly associated with the attention mechanism. Our post-

decoding of the Cluster 6 is related with topics which are well aligned with previous studies, 

such as “mental rotation spatial”, “space spatial location”, and “eye spatial gaze”.

Cluster 9 consisted of the inferior and lateral pulvinar, LGN. These regions project to main 

visual cortex regions (V1, V2, and V4), and have always been considered as the key role in 

the ventral stream of vision which is involved in the identification of objects, such as faces. 

The resting-state functional connectivity map also shows that Cluster 9 is correlated with 

ventral portion of visual cortex, middle orbital gyrus and cerebellum. Previous functional 

studies suggested that the lateral pulvinar is related with both memory and visual selection 

(Rotshtein et al., 2011; Johnson and Ojemann et al., 2000). For example, by electrically 

stimulating the lateral pulvinar, patients might develop anomia, by which they are unable to 

recall the names of daily objects (Ojemann et al., 1975). Our results from both the dual-

view-derived and post-hoc topic mapping correspond well to these previous studies, which 

indicate the association with memory retrieval and object recognition. Noticeably, as the 

RSFC has shown, both Cluster 6 (Fig. 7F) and Cluster 9 (Fig. 7I) are connected to the visual 

cortex. But Cluster 6 is strongly connected to the upper visual field, and Cluster 9 connects 

to the lower visual field. This result might indicate two visual field maps within the pulvinar.

Cluster 7 encompasses the PuM. Previous histochemical studies on primates have provided 

insight into the cortical topography of efferent PuM projections. The central/lateral portion 

of PuM has quite widespread connection with the dorsal-lateral and orbital prefrontal cortex, 

as well as insula, posterior parietal areas, and posterior cingulate cortex, and the medial part 

of PuM has much sparser connection with prefrontal cortex, with a higher density of 

connections to the temporal pole, superior temporal gyrus, anterior cingulate and amygdala 

(Romanski et al., 1997; Jones and Burton, 1976; Aggleton et al., 1980; Benarroch, 2015a, 

2015b). The functional connectivity of Cluster 7 hasshown limited connections with cortical 

areas, such as the middle temporal gyrus, posterior cingulate cortex. Both the left and right 

topic mapping and post-hoc decoding indicated that the right Cluster 7 is highly associated 

with Alzheimer’s disease and mild cognitive impairment. But the pulvinar is not the only 

thalamic nuclei that are related to Alzheimer’s disease (Braak et al., 1991; De Jong et al., 

2008). It is possible that Cluster 7 is more highly associated with those related diseases than 

other Clusters in the collected studies, which might be due to a systematic bias.

Cluster 8 is comprised of the lateral posterior nucleus (LP), and a part of lateral dorsal 

nucleus (LD), ventral posterior lateral nucleus (paralamellar division; VPlp), as well as small 

portion of PuA. In rats, the LP is traditionally considered to be a part of the LP-pulvinar 

complex, which transfers visual information to the superior colliculus and striatum, and 

plays an important role in selecting salient visual targets and directing eye movements 

towards these targets (Berson et al., 1978; Kelly et al., 2003). However, recent studies on the 

projections from three subdivisions of the LP suggested that LP neurons have relatively 

widespread cortical projections to the temporal area, the dorsal perirhinal, primary 

somatosensory, and posterior parietal cortices, where the LP might be involved within 
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visuospatial processing, learning and memory (Kamishina et al., 2009; Nakamura et al., 

2015). As mentioned above, PuA also connects to the somatosensory cortex. The RSFC of 

Cluster 8 is aligned with these anatomical studies that Cluster 8 is connected with wide 

spread of regions, such as postcentral gyrus, cingulate cortex, insula, inferior temporal 

lobule, occipital gyrus. Consistent with much of these studies, the post-hoc decoding of 

Cluster 8 here indicates that it is strongly associated with the motor functions. But the left 

and right topic mapping indicates it is related with training and practice, aging, 

schizophrenia. Considering LP is involved in function as selecting salient visual targets, it 

might be reasonable to associate topic of training with Cluster 8. Actually, there are several 

studies found reduced grey matter volume at pulvinar, ventral posterior nucleus in 

schizophrenia patients (Danos et al., 2002; Dorph-Petersen et al., 2017). Although it is 

highly possible that thalmocortical disfunction might contribute toschizophrenia, more 

studies are needed to narrow down the bio-marker to a specific thalamic sub-division.

Cluster 10 is mostly comprised of the red nucleus (RN), parafascicular nucleus (Pf), sub-

parafascicular nucleus (sPf) and subthalamic nucleus (STh). The RN is believed to be 

connected to the motor cortex and may be involved in motor activity, though some 

researchers have postulated that it might be integrated with other higher-level functions, such 

as sensory processing (Massion et la, 1988; Gruber et al., 2010). The Pf projects massively 

to the basal ganglia, and efferent to the caudate nucleus, the rostral putamen the nucleus 

accumbens and the olfactory tubercle. Pf and sPf are closely related. In addition, the Pf- sPf 

complex projects to the hypothalamus, the substantia innominata, the peripeduncular 

nucleus, the amygdala as well as several brain stem structures (Sadikot et al., 1992). sPF also 

receives direct and indirect inputs of the spinal cord, as well as acoustic, somatosensory, and 

nociceptive inputs, which may target sub-divisions of the sPF accordingly (Ju et al., 1987; 

LeDoux et al., 1987; Nahin et al., 1988; Yasui et al., 1990). Moreover, the STh has been 

traditionally considered as a part of motor control processing (along with the basal ganglia), 

as well as a therapeutic target in the Parkinson’s disease (Fasano et al., 2012). But increasing 

evidence from recent studies have indicated that a direct dopaminergic connection between 

the STh and substantia nigra strongly supports the STh’s role of encoding reward-related 

information, or preference for reward (Darbaky et al., 2005; Lardeux et al., 2009; Espinosa-

Parrilla et al., 2013). According to current parcellation method, these three structures were 

grouped together purely based on their functional similarity. Although no spatial information 

contributed to the clustering method, the close geographic distances between these nuclei 

might be a latent factor that led to this result. As agreed with anatomical studies, functional 

connectivity results of Cluster 10 shows its connection with amygdala, hippocampus. Given 

the functional and anatomical connection of Cluster 10, its topic mapping indicates most 

related functions, which in general pointed to reward and emotion topics, such as “reward 

anticipation monetary”, “emotion regulation emotional”, or “anxiety threat disorders”.

In summary, the parcellation results group thalamic sub-divisions with similar function or 

cortical connections together, and follow similar nucleus distribution and “geography” to the 

well-known Morel thalamus template. Mismatches between these two are inevitable due to 

the intrinsic methods and different perspectives. Some failed predication might be due to 

insufficient data or limitations of this method, which will be discussed in the next section.
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MAPBOT methodology: advantages and limitations

In general, the MACM based parcellation may require considerable numbers of experiments 

that report certain voxels or ROIs. However, this present text-based parcellation approach is 

much less affected by lower numbers of reports. In addition, the NMF is also relatively easy 

to implement, and well suited for sparse matrix applications, which is generally the case for 

the text feature matrix. Therefore, MAPBOT can be a complementary method to the existing 

MACM method. Future studies could also combine both spatial and text information 

together to conduct a comprehensive clustering.

Nevertheless, the NMF methodology does contain limitations. First, there does not exist an 

optimal means for selecting an initial matrix. Although the normalized weight- and SVD-

derived initial matrix was used to define the “best” initial matrix here, the time it takes to 

converge is still longer than for any clustering method. Here, the approach utilized for 

convergence was the most popular method in the field, multiplicate updates (MU), which 

was proposed by Lee and Seung (1999, 2001). To enhance its rate of convergence, we also 

reinitialized the zero of matrix U when partial derivatives turn negative. Finally, for any 

clustering analysis, the stability of the method is an important measure. For example, 

Thirion et al. (2014) reviewed four of the most widely used clustering methods, including k-

means, ward, spectral, and geometric, and each only demonstrated moderate reliability. 

Several studies (Xu et al., 2003; Gillis et al., 2014) suggested NMF could have a better 

reliability and robustness than other clustering method, such as spectral clustering. Here, we 

note that results did not seem highly sensitive to individual parameters during the testing and 

development of the method. Moreover, by combing VT matrix across different research 

radius ranging from 4 mm to 12 mm, current method eliminates the bias derived from 

certain the search range. Although several successive implementations of NMF on text 

mining have been reported, future improvements to the method may include using an 

ensemble clustering method to further improve reliability.

The post-hoc topic mapping is a similar procedure to what previous studies have done for 

making inverse inferences. In the present study, however, due to unknown the intrinsic 

frequency or prior possibility of each term, inverse inference loses some of its power to 

address the functional or behavioral inferences within given activation regions (Wager et al., 

2016). Even so, it does bolster the functional and behavioral relation with given brain 

regions.

Another limitation of the method of this study is that it does not take into account effect 

sizes or study sizes when combining data. In large part, this is due to the fact that many 

studies do not often report such information (Chen et al., 2016). At present, most meta-

analysis methods combine data from studies with vastly different group sizes, and ignore the 

physical size (where applicable) of effects. Future work should consider including such 

information as additional weights in the VT matrices once it is available within the database.

Conclusions

MAPBOT (Meta-Analytic Parcellation Based On Text) was introduced and implemented. 

This data-driven method provided a tool to understand and synthesize meta-data, providing 
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insights using the text mining of documents referred to as topic mapping within the 

neuroscience field. Here, we presented a parcellation of the thalamus based on text features 

of a large number of scientific papers, as well as topic mappings associated with each 

cluster. Our results suggest that this text oriented parcellation can be a very useful approach 

to parcellate sub-regions within the brain. Our algorithm has the potential to lead to a more 

robust and ubiquitous understanding of any brain region by pooling vast amount of 

information published within the scientific literature and performing MAPBOT on those 

papers.
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Fig. 1. 
The flow chart to illustrate the steps of MAPBOT. DC is the “document to coordinate” 

matrix; DT is the “document to terms” matrix; tf is the term frequency and idf is the inverse 

document frequency (see main text). In this study, the mask of the example brain region, the 

thalamus, was defined by down-sampling the Morel template volume (Morel et al., 1997; 

Krauth et al., 2010).
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Fig. 2. 
Metrics of the parcellation: the Hartigan index (HI), variance of information index (VI) and 

symmetric VI. The red bar indicates a potential optimal cluster solution. Shown for the 

applied case of the thalamus over the range of investigated factor ranks, 2<= k< = 20.
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Fig. 3. 
The surface view of the thalamic parcellation in SUMA (MNI space; left=left). The top 

panel shows a coronal (anterior) view of the parcellation, with six cardinal views below.
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Fig. 4. 
Slice-wise volumetric view of the thalamic parcellation using AFNI. Cluster numbers and 

colors match with Fig. 3. The z-coordinate of the axial slice (left=left) is shown in each 

panel.
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Fig. 5. 
The topic mapping of Clusters 1–10 (left side) from topic set 50. This figure graphically 

shows relations detailed in the first column of Table 1. Each element of this map represents 

the significance of the relation between each topic (row) and cluster (column), shown as 

log10(P) (thus, the lower the value, the stronger relation is; see the colorbar on the right). A 

single asterisk (*) indicates P < 0.01 (uncorrected) and two asterisks (**) indicate P < 0.05 

(with Bonferroni correction).
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Fig. 6. 
The topic mapping of Clusters 1–10 (right side) from topic set 50. This figure graphically 

shows relations detailed in the first column of Table 2. Each element of this map represents 

the significance of the relation between each topic (row) and cluster (column), shown as 

log10(P) (thus, the lower the value, the stronger relation is; see the colorbar on the right). A 

single asterisk (*) indicates P < 0.01 (uncorrected) and two asterisks (**) indicate P < 0.05 

(with Bonferroni correction).
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Fig. 7. 
The resting-state functional connectivity of each thalamic cluster. Each panel starting from 

A to J corresponds to Cluster 1–10. The map is in MNI space. The x, y, z coordinates of 

each image is shown (left = left).
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Table 3

Resting state functional connectivity of each thalamic cluster.

Voxel size MNI coordinate Peak
voxel

side Identified brain
regions

x y z

Cluster_01 2997 8 −4 8 28.4 R thalamus (VA,
AN)

596 0 28 14 8.86 L Anterior cingulate

38 0 −16 −14 7.8 L Red nucleus

Cluster_02 2122 −8 −10 14 37.83 L thalamus(AN, VL)

460 2 28 50 9.72 R Surperior frontal
gyrus

294 −8 −80 −26 8.47 L Declive

279 32 −60 −28 7.79 R Declive

99 52 10 50 6.6 R Middle frontal
gyrus

62 −48 14 38 6.86 L Middle frontal gyrus

34 −40 32 34 6.07 L Middle frontal
gyrus

30 44 2 60 6.55 R Middle frontal
gyrus

23 −22 −82 −24 6.35 L Declive

23 −44 50 4 5.75 L Inferior Frontal
gyrus

Cluster_03 2180 14 −14 8 43.95 R thalamus(VL)

2042 −14 −16 8 39.71 L thalamus(VL,
VPL)

843 8 10 46 8.6 R cingulate gyrus

73 6 −70 16 6.7 R Precuneus

28 −16 −62 16 7.06 L culmen

25 62 4 20 6.46 R precentral gyrus

21 −8 −64 −16 6.04 L culmen

20 −8 −2 76 6.65 L SMA

Cluster_04 753 4 −20 8 39.21 R thalamus(MD)

87 2 −22 50 6.38 R medial frontal
gyrus

73 4 38 14 7.64 R Anterior cingulate

48 −2 0 54 6.88 L Medial frontal
gyrus

43 −6 −74 36 7.08 L Precuneus

32 4 25 32 6.2 R Anterior cingulate

30 −2 4 46 6.27 L middle cingulate

23 −10 −66 22 6.1 L Precuneus

Cluster_05 984 −52 −8 28 8.49 L precentral gyrus

687 14 −22 −2 37.47 R thalamus(VP)

629 24 −26 74 8.61 R precentral gyrus
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Voxel size MNI coordinate Peak
voxel

side Identified brain
regions

x y z

627 2 −22 58 9.54 R SMA

356 62 −8 22 8.5 R postcentral gyrus

260 50 −30 22 7.63 R Inferior Parietal
gyrus

85 −28 −18 −2 6.91 L Lentiform
Nucleus

47 −58 −22 16 6.46 L postcentral gyrus

46 34 −14 −4 8.04 R claustrum

40 −62 −32 20 6.66 L Superior temporal
gyrus

31 38 0 −4 6.66 R Insula

23 64 −22 20 6.46 R postcentral gyrus

22 −34 −22 50 6.18 L postcentral gyrus

Cluster_06 3414 −26 −86 22 10.75 L Cuneus

402 20 −30 8 48.53 R thalamus
(pulvinar)

340 −20 −28 8 49.17 L thalamus
(pulvinar)

85 −22 −66 −10 7.72 L Lingual gyrus

73 22 −70 −10 7.63 R Lingual gyrus

73 −32 −70 −16 7.23 L Fusiform gyrus

34 −4 −58 68 7.22 L precuneus

30 −28 −58 58 6.35 L Superior Parietal
lobele

20 28 −62 −4 6.3 R Lingual gyrus

20 10 −62 14 6.59 R Posterior
cingulate

Cluster_07 1179 −8 −32 4 49.28 L thalamus
(pulvinar)

26 6 −50 10 6.5 R Posterior
cingulate

20 −18 −22 4 8.37 L thalamus( VPL)

20 −48 −62 22 6.09 L Middle temporal
gyrus

Cluster_08 1288 −8 −56 70 8.71 L postcentral gyrus

1104 14 −22 14 44.84 R thalamus(LD)

201 20 −56 22 9.41 R cingulate gyrus

85 −12 −56 20 6.97 L precuneus

84 44 −76 32 7.41 R angular gyrus

70 −28 −44 −8 6.98 L Parahippocampal
gyrus

60 34 −14 10 7.5 R Insula

54 −12 −32 44 7.13 L cingulate gyrus

52 38 −38 46 7.83 R Inferior parietal
lobule
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Voxel size MNI coordinate Peak
voxel

side Identified brain
regions

x y z

49 30 −40 −10 8.32 R Parahippocampal
gyrus

46 50 −26 40 6.56 R Postcentral gyrus

42 52 −62 −6 6.71 R Inferior temporal
gyrus

41 40 −44 58 6.49 R Inferior parietal
lobule

38 44 −38 64 7.25 R Postcentral gyrus

32 52 −26 52 6.71 R Postcentral gyrus

30 4 −40 50 6.28 R precuneus

26 −52 −70 2 5.79 L middle occipital
gyrus

26 34 −78 40 6.6 R precuneus

24 −44 −38 64 6.36 L postcentral gyrus

22 −34 −20 14 8.01 L Insula

Cluster_09 13459 20 −28 −4 44.4 R thalamus(LGN)

707 8 44 −8 8.81 R Middle orbital
gyrus

125 −44 8 −14 9.11 L Superior temporal
gyrus

92 4 −34 38 6.96 R Middle cingulate
gyrus

87 2 −56 −28 7.34 R Culmen

81 2 −10 10 9.59 R thalamus(MD)

68 28 −80 32 3.89 R Cuneus

49 58 2 −18 6.71 R middle temporal
gyrus

40 −26 −80 32 6.2 L Cuneus

29 18 −40 −46 7.25 R Cerebellar Tonsil

28 −20 −36 −44 6.61 L Cerebellar Tonsil

26 32 32 −14 6.51 R Inferior Frontal
gyrus

25 −58 −4 −12 5.86 L middle temporal
gyrus

22 −56 −10 −10 7 L middle temporal
gyrus

21 −28 30 −16 6.51 L Inferior Frontal
gyrus

Cluster_10 1915 8 −16 −4 32.45 R thalamus(Red
nucleus)

643 −34 −2 −10 10.54 L Claustrum

250 40 14 −10 8.63 R insula

144 10 28 32 7.69 R Anterior cingulate
cortex

71 32 −8 −10 7.16 R Amygdala

49 −20 −4 −38 7.54 L Uncus
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Voxel size MNI coordinate Peak
voxel

side Identified brain
regions

x y z

49 24 −38 −2 8.36 R Hippocampus

32 34 −10 −32 6.46 R Fusiform gyrus
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