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Abstract

Objective: Error-processing and inhibitory control enable the adjustment of behaviors to meet 

task demands. Functional magnetic resonance imaging (fMRI) studies report brain activation 

abnormalities in patients with obsessive-compulsive disorder (OCD) during both processes. 

However, conclusions are limited by inconsistencies in the literature and small sample sizes. 

Therefore, the aim here was to perform a meta-analysis of the existing literature using 

unthresholded statistical maps from previous studies.
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Method: A voxel-wise Seed-based d Mapping meta-analysis was performed using t-maps from 

studies comparing patients with OCD and healthy controls (HC) during error-processing and 

inhibitory control. For the error-processing analysis, 239 patients with OCD (120 males; 79 

medicated) and 229 HC (129 males) were included, while the inhibitory control analysis included 

245 patients with OCD (120 males; 91 medicated) and 239 HC (135 males).

Results: Patients with OCD, relative to HC, showed longer inhibitory control RT (SMD=0.2, 

p=0.03, 95% CI=(0.016, 0.393)) and more inhibitory control errors (SMD=0.22, p=0.02, 95% 

CI=(0.039, 0.399)). In the brain, patients showed hyperactivation in bilateral dorsal anterior 

cingulate cortex (dACC), supplementary motor area (SMA), pre-SMA, as well as right anterior 

insula/frontal operculum (aI/fO) and anterior lateral prefrontal cortex (aLPFC) during error-

processing, but hypoactivation during inhibitory control in rostral and ventral anterior cingulate 

cortex (rACC/vACC) and bilateral thalamus/caudate, as well as in right aI/fO, supramarginal gyrus 

and medial orbitofrontal cortex (all SDM-Z value >2, p<0.001).

Conclusions: An intact or hyperactive error-processing mechanism in conjunction with 

impairments in implementing inhibitory control may underlie deficits in stopping unwanted 

compulsive behaviors in the disorder.
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Introduction

Obsessive-compulsive disorder (OCD) has a lifetime prevalence of 2–3% (1). The disorder 

is characterized by recurrent and intrusive obsessive thoughts, as well as by time consuming, 

ego-dystonic behavioral and mental compulsions (2).

Patients with OCD often show altered brain activation during erroneous and correct 

responses on inhibitory control tasks (3, 4). Relevant tasks include go/no-go and stop tasks, 

which measure the ability to inhibit responses to no-go stimuli among prepotent go stimuli, 

or to withdraw already triggered motor responses following stop-signals, respectively, as 

well as during tasks of interference inhibition such as anti-saccade, flanker, Simon, Stroop 

and multisource interference (MSIT) tasks which require participants to ignore interfering 

stimulus features and override prepotent responses in order to process relevant information 

and perform goal-directed actions (3, 5, 6). Impairments in the functioning of error-

processing and inhibitory control brain networks may, in part, underlie poor control over 

obsessions and compulsions in OCD, with many patients showing good insight into their 

symptoms, but nonetheless continuing to carry out compulsive behaviors (3, 6–8).

Successful task performance involves the capacity to monitor for errors and to adjust 

behavioral responding accordingly (9). Error-processing is widely held to depend on the 

posterior medial frontal cortex (pMFC), incorporating dorsal anterior cingulate cortex 

(dACC), supplementary motor area (SMA) and posterior portions of pre-supplementary 

motor area (pre-SMA) (10). The pMFC, together with the anterior insula/frontal operculum 

(aI/fO), and rostral anterior cingulate (rACC), forms the cingulo-opercular network (4, 10, 
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11). During error-processing and inhibitory control, this cingulo-opercular network detects 

the demand for behavioral or attentional control and initiates recruitment of lateral fronto-

parietal and fronto-striatal networks responsible for enacting top-down executive control (9, 

10, 12–14).

Heightened error-processing, as indicated by an increased amplitude of a midline frontal 

electrophysiological potential, the error-related negativity (ERN), is arguably the most 

reliable neurocognitive biomarker of OCD (15–17). Consistent with this, several fMRI 

studies of OCD report cingulo-opercular hyperactivation during error-processing (4, 18–24). 

In contrast, during correct inhibitory control, patients with OCD often show decreased 

pMFC/rACC activation (21, 25–37) and altered striatal functioning (18, 19, 25, 28–31, 33–

36, 38), as confirmed in recent meta-analyses (3, 5), although some studies report increased 

pMFC activation in patients relative to healthy controls (HC) (19, 20, 26, 35).

Given the reliability of heightened ERN findings in OCD, numerous theoretical accounts 

emphasize a role for cingulo-opercular hyperactivation as a key mechanism underlying OCD 

symptoms (11, 16, 39). However, most studies of error-processing in OCD have employed 

small samples, or focused on cingulo-opercular regions of interests, thereby limiting 

knowledge of potential group differences in other brain networks (4, 19–21). Moreover, 

some previous work has reported decreased activation or no differences in these regions in 

patients with OCD relative to HC during error-processing (28, 40, 41). Existing meta-

analyses of inhibitory control in OCD did not consider error-processing and used 

coordinates from significant clusters, rather than unthresholded group maps, meaning that 

true group differences may have been lost (3, 5).

Therefore, the primary aim was to provide the first fMRI meta-analysis of error-processing 

in patients with OCD relative to HC based, where possible, on whole-brain unthresholded 

statistical maps (42). A second aim was to examine group differences in the same set of 

studies during inhibitory control. We anticipated heightened cingulo-opercular activation 

during error-processing, but decreased cingulo-opercular and altered striatal activation 

during inhibitory control, in patients with OCD relative to HC.

Methods and Materials

Search and Inclusion of Studies

The meta-analysis was conducted in line with meta-analysis of observational studies in 

epidemiology (MOOSE) guidelines (43). The study protocol was registered with 

PROSPERO (CRD42017062495) and is accessible from http://www.crd.york.ac.uk/

PROSPERO/display_record.php?ID=CRD42017062495.

A comprehensive literature search was performed using the PubMed, ScienceDirect, Web of 

Knowledge, and Scopus research databases through August 1, 2017. Reference lists of 

retrieved studies and recent meta-analyses (3, 5) were also hand-searched. Search syntax is 

provided in the Supplement. Included studies provided whole-brain pairwise voxel-based 

comparisons of OCD patient groups against HC using fMRI during errors on inhibitory 

control tasks (e.g., stop, go/no-go, Stroop, Simon, flanker, anti-saccade, MSIT tasks). 
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Studies were excluded if they provided no case-control comparisons, were unable to provide 

findings from whole-brain analyses, had very high accuracy rates that precluded fMRI 

analysis of error-processing (See Supplement), or if they used subject data which overlapped 

with another, already included study. If the same patient group was used in multiple studies/

tasks, then the study/task with the largest sample was included. For studies that used 

longitudinal/treatment designs, only baseline data were included. The meta-analysis 

examined both pediatric and adult patients with OCD diagnoses, regardless of medication 

status, gender, symptom subtype, or comorbidities. Details of current comorbid diagnoses 

were extracted for each included dataset, and are provided in Supplementary Table 1.

Authors of relevant papers were contacted and asked to provide whole-brain unthresholded 

t-maps for the pairwise group comparison OCD vs HC for the error contrast included in the 

original paper, as well as t-maps for the within-group error contrast separately for HC and 

OCD groups. Authors who did not report error contrasts in the original publication were 

contacted to ask for unpublished whole-brain data in the form of unthresholded t-maps, or 

else in the form of coordinates from a whole-brain analysis. For studies providing error 

contrast maps/coordinates, data were also requested for the inhibitory control contrast.

Meta-analyses

A random-effects meta-analysis of the standardized mean differences (SMD; Hedges’ g) 

between OCD and HC in task performance (reaction time (RT) measures of inhibitory 

control; inhibitory control errors; congruent/go errors) was performed in the Esc (44) and 

metafor packages (45) for R (http://www.r-project.org/). Details on the included measures 

and studies are provided in the Supplement.

Voxel-wise meta-analyses of regional brain differences were conducted using the anisotropic 

effect-size version of the Seed-based d Mapping (AES-SDM) software package (http://

www.sdmproject.com). This method has been described in detail elsewhere (42, 46, 47), as 

well as in the Supplement. In brief, AES-SDM allows for a combination of peak coordinates 

and t-maps to create whole-brain effect size and variance maps, which are then used in 

voxel-wise random-effects meta-analyses (42, 46, 47). The SDM method has been 

empirically validated by comparing its results with a mega-analysis (47). While the control 

over the false positive rate is not formal but based on an empirical validation, this validation 

showed AES-SDM to have a good overlap with the mega-analysis, with an adequate 

sensitivity and an excellent control of false positives.

Assessment of statistical significance was performed using standard permutation testing, 

against the null hypothesis that BOLD response/group differences are the same throughout 

the brain (47). We used the default voxel p-value threshold of p<0.005 (uncorrected), which 

was shown to be equivalent to p<.05 FWE (47). In addition, a cluster extent threshold of 80 

voxels and a peak SDM-Z value threshold of >2 were used to reduce the false positive rate. 

We first examined the brain regions showing activation or deactivation in the errors and 

inhibitory control contrasts separately within each group using the within-group maps 

(Supplementary Tables 2-5). We then performed a separate analysis using the between-group 

maps to examine regions showing reliable differences between groups. Voxelwise meta-

regressions were used to examine the effects of age, gender, symptom severity, comorbid 
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diagnosed anxiety and mood disorders, medication status, and error rates on brain activation 

differences between groups as well as on activation within the OCD and HC groups (46). 

Mood disorders were combined into a single category for this analysis, due to the limited 

details available from the original studies on the specific disorder sub-types. The relationship 

between group differences in task performance (as SMD) and group differences in brain 

activation was also examined.

Jackknife sensitivity analyses were performed to assess robustness of between-group 

findings (Supplementary Tables 6-9) (47). To illustrate the influence of each dataset on 

significant between-group clusters, cluster effect sizes for each dataset were extracted using 

the ‘extract’ function in AES-SDM and plotted in forest plots (see Supplement). Sensitivity 

analyses examined whether between-group differences remained when including only the 

adult datasets (See Supplement) (3). There were too few datasets for a pediatric sensitivity 

analysis to be performed.

The Egger test was used to examine potential publication bias in between-group findings 

(48), corrected for multiple comparisons using the Benjamini-Hochberg method (49). 

Heterogeneity was assessed using the Q statistic (47, 50).

Results

Included studies and characteristics

Nine datasets were available to be included as whole-brain t-maps in the current meta-

analysis (4, 18, 23, 26, 35, 37, 41, 51, 52). Peak coordinate data from a whole-brain analysis 

were available for a tenth dataset for the between-group error contrast (40). Yücel and 

colleagues provided a new unpublished dataset, which partially overlapped with data 

included in their published study (35), and for the error contrast included only participants 

that made at least five errors. Details of each dataset are given in Table 1. See Supplement 

for details on excluded studies. Details on comorbidities are given in Supplementary Table 1.

Data from 239 patients with OCD (120 males; 79 medicated) and 229 HC (129 males) were 

included for the error contrast. Patient and control datasets did not differ on sample-size 

weighted mean age (t(1,18)=0.06, p=0.95) or percentage of males and females (t(1,18)=0.68, 

p=0.51) (3). Seven datasets included adult patients and controls (n=286), while 3 focused on 

adolescent/child samples (n=182).

For the inhibitory control contrast, data from 245 patients with OCD (120 males; 91 

medicated) and 239 HC (135 males) were included. This included 6 adult datasets (n=263) 

and 3 adolescent/child datasets (n=221). Groups did not differ on age (t(1,16)=0.06, p=0.95) 

or gender (t(1, 16)=1.04, p=0.31).

All studies reported event-related designs, except for the study by Yucel and colleagues that 

used a block design. However, for inclusion in the error contrast in the current meta-analysis, 

this dataset was re-analyzed as an event-related design with separate regressors for correct 

incongruent, erroneous incongruent, correct congruent and erroneous congruent trials.
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Task Performance

Patients showed impaired inhibitory control relative to HC, as determined by RT measures 

(SMD=0.2, p=0.03, 95% CI=(0.016, 0.393)) (Supplementary Figure 2). Tests for 

heterogeneity (Q(7)=4.64, p= 0.7, I2=0%) and publication bias (z=0.52, p=0.6) were non-

significant.

Patients also made significantly more inhibitory control errors (SMD=0.22, p=0.02, 95% 

CI=(0.039, 0.399)), but groups did not differ on the number of congruent/go errors 

(SMD=0.02, p=0.9, 95% CI=(−0.21, 0.24)) (Supplementary Figures 3 & 4). Tests for 

heterogeneity (incongruent: Q(8)=6, p= 0.65, 12=0%; congruent: Q(5)=2.36, p=0.8, I2=0%) 

and publication bias (incongruent: z=0.38, p=0.7; congruent: z=0.71, p=0.48) were also non-

significant.

Within-group brain findings

A summary of within-group findings can be found in the Supplement and Figures 1 and 2.

Between-group brain findings

OCD versus HC errors—Patients with OCD showed greater activation than HC during 

error-processing in bilateral dACC/SMA, pre-SMA, as well as right aI/fO and anterior 

lateral prefrontal cortex (aLPFC).

Patients with OCD showed decreased activation relative to HC in bilateral occipital lobe and 

right middle temporal lobe (MTL) (Table 2., Figure 1a., Supplementary Figures 5-10).

OCD versus HC inhibitory control—Patients with OCD showed greater activation than 

HC during inhibitory control in bilateral premotor cortex and right inferior temporal lobe 

(ITL)/occipital lobe and superior parietal lobule (SPL). Patients with OCD showed 

decreased activation relative to HC in bilateral rostral/ventral anterior cingulate cortex 

(rACC/vACC) and thalamus/caudate and right supramarginal gyrus (SMG)/angular gyrus, 

aI/fO/superior temporal lobe (STL), medial orbitofrontal cortex (mOFC), and occipital lobe/

cerebellum (Table 2., Figure 1b., Supplementary Figures 10-22).

Adult subgroup analysis—See Supplement.

Meta-regressions—There were no significant effects of age, gender, symptom severity, 

comorbid diagnosed anxiety and mood disorders, medication status and error-rates or group 

performance differences on brain activation during errors or inhibitory control except that 

comorbid specific phobia was associated with greater occipital lobe activation (left: MNI 

x,y,z =; −16,−66,−24, p<0.001, voxels=681; right: MNI x,y,z = 18,−64,4, p<0.001, 

voxels=88) within patients with OCD during errors.

Publication bias and heterogeneity tests—The results of the Egger tests were non-

significant (p>.05, corrected), suggesting that there was no publication bias. No regions from 

the between-group analysis showed significant heterogeneity in the voxel-wise analysis.
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Discussion

Error-processing and inhibitory control enable adaptive behavioral regulation, and are 

hypothesized to be abnormal in OCD (3, 53). In this meta-analysis, patients with OCD 

showed impaired task performance relative to HC during tasks of inhibitory control. In 

addition, patients showed hyperactivation relative to HC during error-processing in cingulo-

opercular regions including dACC/SMA, pre-SMA, and right aI/fO as well as in right 

aLPFC. In contrast, patients primarily showed hypoactivation relative to HC both within the 

cingulo-opercular network (in rACC/vACC and right aI/fO), and outside this network in 

caudate, thalamus, SMG, mOFC and cerebellum, during inhibitory control.

Some smaller studies have reported cingulo-opercular hyperactivation in patients with OCD 

during error-processing (4, 18–23, 51). We confirm here in a meta-analytic sample that 

patients with OCD showed increased activation in key dACC, SMA, pre-SMA and aI/fO 

cingulo-opercular regions relative to HC during error-processing. Such findings are in line 

with previously reported robust differences in ERN in OCD (16, 17), as well as theoretical 

accounts proposing important roles for error-related hyperactivation in driving OCD 

symptoms (11, 16, 39).

Outside of cingulo-opercular regions we also found that a cluster in aLPFC was more 

activated in patients with OCD relative to HC. To investigate this unexpected cluster, we 

extracted the SDM-Z values for the cluster peak from the within-group error contrast maps, 

finding that while HC deactivated aLPFC in response to errors (SDM-Z=−2.33), patients 

with OCD had a positive SDM-Z value (SDM-Z=1.68), suggesting relatively greater 

activation during errors compared with during correct trials. While not typically emphasized 

in OCD, previous research has found altered activity in anterior prefrontal regions during 

resting-state (54), decision-making (55) and symptom provocation studies (56). Moreover, 

treatment with cognitive behavioral therapy (57), antidepressants (58) and repetitive 

transcranial magnetic stimulation (59) modulates aLPFC cortex activity in OCD, and 

targeting this region with neurofeedback training decreases OCD symptoms (60, 61). In 

patients with OCD, activation to errors might represent additional neural resources that are 

assigned to error-processing outside of the cingulo-opercular network due to compensatory 

efforts at engaging corrective behavioral adjustments.

In addition to finding cingulo-opercular hyperactivation during errors relative to HC, we 

found cingulo-opercular hypoactivation in patients with OCD during inhibitory control 

within rACC/vACC and right aI/fO. Hypoactivation was also observed in patients during 

inhibitory control within the thalamus, caudate, SMG, mOFC, and cerebellum, while 

hyperactivation was found in bilateral premotor cortex, and right ITL/occipital lobe and 

SPL. Hypoactivation within rACC/vACC and caudate and hyperactivation in premotor 

cortex replicates our previous meta analyses in OCD (3, 5). Novel findings may result from 

the inclusion of t-maps in the current analysis (47).

It is interesting to note that the rACC/vACC cluster overlaps with an area of deactivation in 

the OCD group during inhibitory control, indicating that group differences in this region are 

driven by greater deactivation in patients with OCD, as reported elsewhere (29, 35). 
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Importantly, this shows that the previous findings of reduced rACC/vACC deactivation in 

patients with OCD during tasks of “hot” executive functions, such as emotional Stroop, 

emotion regulation and decision-making tasks (62–64), do not extend to “cool” executive 

function tasks such as those measuring inhibitory control. Nonetheless, the current findings 

are consistent with the notion that patients with OCD show perturbations in the pattern of 

rACC activations/deactivations.

During inhibitory control, patients with OCD also showed bilateral dorsal premotor cortex 

hyperactivation relative to HC. Findings of decreased right aI/fO, but increased premotor 

cortex activation, in patients with OCD during inhibitory control is in line with a previous 

report using a stop task (included in the meta-analysis), which reported that premotor cortex 

hyperactivation was shared with unaffected siblings and predicted better task performance 

(26). Similar findings were also reported during an n-back task in the same sample, where 

premotor cortex was also more activated in unaffected siblings than in patients (65). 

Together, this evidence suggests that increased dorsal premotor cortex activation may be 

compensatory in OCD, and also may be protective in unaffected siblings (26, 65).

Overall, activation abnormalities within cingulo-opercular and orbito-striato-thalamic 

regions are consistent with previous findings of alterations in these regions at rest (54, 66, 

67), in gray matter structure (3, 5, 68–70), during symptom provocation (64, 71, 72), and 

across multiple cognitive and decision-making tasks in OCD (3–5, 73, 74). Moreover, many 

resting-state, structural and functional abnormalities within these regions are shared with 

unaffected relatives of patients with OCD (26, 65, 66, 69, 72, 75, 76), and are OCD-specific 

relative to disorders such as attention deficit/hyperactivity disorder, autism spectrum 

disorders and anxiety disorders (3, 42, 55, 73, 74, 77). The current findings provide further 

evidence for cross-modal abnormalities in cingulo-opercular and orbito-striato-thalamic 

brain networks in OCD (3, 5), which may be endophenotypes for the disorder (69, 78).

The current results are also interesting when considering that existing neurosurgical 

treatments for severe refractory OCD target cingulo-opercular and orbito-striato-thalamic 

networks (79–81). For instance, dorsal anterior cingulotomy involves making small 

stereotactic lesions to a region of pMFC similar to the one found to be hyperactive to errors 

in the current metaanalysis, and treatment response following this surgery is predicted by 

pMFC gray matter volume and pMFC-striatal structural connectivity (80). In subcortical 

regions, anterior capsulotomy (stereotactic lesioning of the white matter between caudate 

and putamen, targeting thalamo-cortical projections) normalizes heightened resting-state 

pMFC-striatal connectivity (81), while deep-brain stimulation of the ventral striatum or sub-

thalamic nucleus normalizes heightened rACC-striatal connectivity and pMFC, rACC, 

mOFC and striatum hyperactivation at rest (54, 82, 83), as well as normalizing 

hypoactivation in right AI/fO and striatum during inhibitory control (79). The current meta-

analytic findings provide further support for these network regions as potential targets for 

surgical treatments in the disorder. However, findings of cingulo-opercular hyperactivation 

during error-processing but cingulo-opercular and orbito-striato-thalamic hypoactivation 

during inhibitory control demonstrate that future developments of such treatments must be 

guided by theoretical accounts which recognize the context-specificity of neurofunctional 

abnormalities in OCD.
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Historically, heightened error-processing in OCD has been interpreted as generating context 

inappropriate feelings that “something is wrong”, which trigger hypercorrective OCD 

behaviors (39), although this account does not explain the hypoactivation observed in aI/fO, 

caudate, thalamus and SMG during inhibitory control. In healthy participants, error-

processing is hypothesized to be an adaptive process associated with subsequent changes in 

behavioral strategies and neural functioning that improve ongoing task performance (9, 10, 

13, 84), and the magnitude of cingulo-opercular activation during error-processing has been 

found to predict the degree of post-error adjustment (14, 85). These post-error adjustments 

include behavioral adjustments such as correcting the original incorrect response, 

recalibrating speed-accuracy tradeoffs (e.g., post-error slowing), and enhancing task-focused 

attention and interference resolution, as well as neural adaptations including the up-

regulation of task-relevant brain activation on subsequent trials (9, 14, 85, 86). However, 

patients with OCD typically show either no performance differences relative to controls or 

poorer performance and impaired post-error adjustments (41, 87, 88), perhaps suggesting 

that the mechanism linking cingulo-opercular activation during errors and subsequent 

corrective recruitment of inhibitory control brain networks may be inefficient in OCD, or 

else suggesting that cingulo-opercular hyperactivation to errors during error-processing is 

unable to correct pre-existing deficits in inhibitory control related brain activation in the 

disorder.

As with inhibitory control errors, OCD compulsions likely result, in part, from impaired top-

down control over bottom-up stimulus driven actions (3, 6, 8, 89). We propose that 

impairments in implementing corrective inhibitory control following the detection of goal-

incongruent behaviors is a key mechanism in OCD, which leads to patients becoming stuck 

in compulsive “loops”. While existing research in OCD has concentrated on inhibitory 

control tasks, the wider literature shows that cingulo-opercular regions respond strongly 

when participants detect or regulate behaviors resulting from “urges” (90), supporting a 

broader role outside of standard cognitive tasks. Moreover, error-processing is aversive and 

anxiety-provoking (91, 92), and is potentially heightened and continuously reactivated in 

patients with OCD as compulsive behaviors persist. Detecting that performed actions do not 

align with beliefs and goals leads to the aversive state of “cognitive dissonance”, which 

others have proposed to drive or worsen some instances of obsessions (89, 93) (although see 

(94) for an excellent critique), and found to be associated with cingulo-opercular activation 

(95, 96). In other words, the unease caused by prolonged and heightened error-processing 

during compulsions may motivate rationalizations of OCD behaviors (“e.g., I continue to 

check the stove, therefore it must be important that the stove is checked and re-checked”). In 

addition, the resultant anxiety may further bias behavior towards bottom-up stimulus 

generated responses (e.g., compulsions). An overview of our proposed model is given in 

Figure 3. In order to test aspects of this model, future studies should use paradigms specially 

designed to examine trial-to-trial modulations in task-related activation following error-

processing (14, 97), with the hypothesis that cingulo-opercular activation to errors is less 

efficient in OCD than in HC at bringing about post-error adjustments in brain activation.

It is also important to note that the effect sizes for between group differences in performance 

and brain activation were small, indicating substantial overlap between patients and HC on 

these measures. Crucially, even large, reliable differences between groups would not have 
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necessarily indicated a causal mechanistic relationship. For instance, it is also plausible that 

observed neurocognitive abnormalities in OCD are secondary to the OCD-specific 

symptoms of the disorder, and it has been proposed that obsessive or worrying thoughts in 

OCD patients may occur at the expense of task engagement/attention, resulting in non-

optimal performance and altered brain activation during cognitive tasks (the ‘overload’ 

model of neuropsychological impairment in OCD) (98). Alternatively, observed 

neurocognitive abnormalities may be driven by trans-diagnostic phenotypes that are closely 

associated with OCD such as heightened anxiety, which has also been associated with 

heightened error-processing and impaired inhibitory control (17). Finally, heightened error-

processing and impaired inhibitory control may share genetic risk and co-occur with OCD 

without there being a direct causal relationship between these phenotypes. With a few 

exceptions (23, 26), most fMRI studies on the topic have focused on simple case-control 

comparisons. Now that reliable differences between OCD and HC have been determined, 

future work should utilize sophisticated imaging genetics, longitudinal and treatment designs 

to further elucidate whether heightened error-processing and impaired inhibitory control do 

indeed have mechanistic roles in the etiology and treatment of OCD, or whether they are 

instead secondary to OCD symptoms or otherwise linked in a noncausal way to the disorder.

Limitations of the meta-analysis include a reliance on meta-regressions to test for 

relationships between brain activation and age, gender, symptom severity, comorbid anxiety 

and mood disorders, medication status and error-rates. In particular, many patients were 

medicated with antidepressants and this may have exacerbated between-group findings (24, 

99). A more sensitive approach would be to test for relationships between these variables 

using large samples and subject-level individual differences. In addition, we combined data 

from different inhibitory control tasks with varying levels of difficulty and error rates. 

Degree of error-related brain activation varies according to task error rates, and these rates 

varied widely in the current meta-analysis (100, 101). Moreover, while there is substantial 

overlap in the neural underpinnings observed across different inhibitory control tasks (102), 

the specific cognitive demands and underlying neural bases of each task also vary between 

tasks (103). The aim here was to investigate the most consistent abnormalities in OCD 

regardless of task type. As the field grows, future meta-analyses will be better placed to test 

for task-specific effects. Finally, we combined data from both pediatric and adult samples, 

and although the primary between-group findings were also present in the adult sensitivity 

analysis, there are likely developmental changes in brain activation that we were unable to 

investigate here (24, 97).

To summarize, in a large meta-analytic sample, patients with OCD relative to HC showed 

impaired task performance as well as hyperactivation in dACC/SMA, pre-SMA, right aI/fO 

and right aLPFC during error-processing, and hypoactivation in rACC/vACC and right 

aI/fO, striatum, SMG, mOFC and cerebellum during inhibitory control. These findings may 

support a model wherein patients become stuck in compulsive “loops”, because detected 

erroneous OCD behaviors remain uncorrected by hypoactive inhibitory control networks. 

However, more work is needed to further our understanding of how these performance and 

brain function abnormalities relate to OCD symptoms.
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Figure 1. Findings from a meta-analysis of differences in brain activation during error-
processing in patients with OCD and HC.
(a) Error-processing in HC. Red indicates regions showing activation. Blue indicates regions 

showing deactivation. (b) Error-processing in OCD. Red indicates regions showing 

activation. Blue indicates regions showing deactivation. (c) Group differences during error 

processing. Red indicates regions OCD>HC. Blue indicates regions HC>OCD. Thresholded 

at p<0.005, SDM z-value >2, >80 voxels.
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Figure 2. Findings from a meta-analysis of differences in brain activation during inhibitory 
control in patients with OCD and HC.
(a) Inhibitory control in HC. Red indicates regions showing activation. Blue indicates 

regions showing deactivation. (b) Inhibitory control in OCD. Red indicates regions showing 

activation. Blue indicates regions showing deactivation. (c) Group differences during error 

processing. Red indicates regions OCD>HC. Blue indicates regions HC>OCD. Thresholded 

at p<0.005, SDM z-value >2, >80 voxels.
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Figure 3: Error-processing and inhibitory control in OCD.
(a) During errors on inhibitory control tasks, error responses in the cingulo-opercular 

network signal a need for behavioral correction. In patients with OCD, this error signal does 

not efficiently increase activation within underactive brain networks responsible for 

inhibitory control. Due to continued under recruitment of these brain networks, error-

processing signals are increased as a compensatory attempt at correction. Heightened and 

repeated error signaling increases anxiety in the disorder, which further interferes with top-

down behavioral control, biases behavior towards bottom-up stimulus driven responses 
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(errors), and feeds back to further increase error signaling. (b) During obsessions and 

compulsions, error responses are generated to signal the need to stop goal-incongruent or 

goal-irrelevant behaviors. This error signal does not appropriately recruit activation in brain 

networks responsible for behavioral control in OCD. This means that patients with OCD 

continue to experience obsessive and compulsive symptoms, with these generating repeated 

error signals, and these signals are increased in the disorder as a compensatory attempt at 

generating behavioral control. Heightened, repeated and aversive error signaling increases 

anxiety, which further interferes with top-down behavioral control in the disorder and biases 

behavior towards bottom-up stimulus driven responses (compulsions). Anxiety caused by 

continued performance and poor perceived control over of interfering OCD compulsions 

also further increases cingulo-opercular activation, and creates a feeling of cognitive 

dissonance that is resolved through rationalization of compulsive behaviors (e.g., through 

reinforcement of obsessions).
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Table 2.

Meta-analysis results for fMRI studies of error-processing and inhibitory control in OCD and HC.

Contrast MNI x, y, z 
Coordinates

Peak SDM-Z Peak SMD Mean SMD P Value No. of Voxels Brodmann areas

Errors OCD > HC

R aI/fO 44,42,18 2.80 0.27 0.22 0.0005 302 45,44

R aLPFC 24,50,12 3.714 0.35 0.24 0.000005 123 10,46

L & R pre-SMA, R 
premotor cortex 20,12,48 2.797 0.26 0.21 0.0005 126 8

L & R dACC/SMA 4,10,46 2.527 0.25 0.21 0.001 111 32,24,6

Errors HC > OCD

L & R occipital lobe 10,−82,16 −2.630 −0.25 −0.17 0.00005 545 18,17,19

R MTL 50,−4,−20 −2.224 −0.21 −0.17 0.0005 97 21

Inhibitory control OCD > HC

L premotor cortex −26,0,60 2.5 0.23 0.16 0.00005 283 6

R premotor cortex 30,−6,52 2.349 0.22 0.15 0.00005 134 6

R ITL/occipital lobe 48,−54,−10 2.237 0.21 0.15 0.0001 102 37,19,20

R SPL 28,−52,56 2.096 0.19 0.14 0.0005 100 7

Inhibitory control HC > OCD

L & R thalamus, L caudate −16,6,22 −3.68 −0.34 −0.27 0.00005 437

L & R dACC/rACC/vACC 14,42,12 −3.789 −0.35 −0.27 0.00005 410 32,24,11,25

R occipital lobe 26,−54,2 −4.205 −0.4 −0.31 0.000005 310 19,17

R SMG/angular gyrus 56,−44,30 −3.483 −0.32 −0.25 0.0001 347 40,39

L occipital lobe/cerebellum −28,−46,−8 −2.813 −0.26 −0.24 0.005 135 37,18,19

R mOFC 20,36,−18 −3.514 −0.33 −0.26 0.0001 101 11

R caudate 18,−12,22 −3.399 −0.32 −0.27 0.0005 90

R aI/fO/STL 48,18,4 −3.131 −0.29 −0.25 0.0005 88 45,44,38

Abbreviations: ai, anterior insula; aLPFC, anterior lateral prefrontal cortex; dACC, dorsal anterior cingulate cortex; fO, frontal operculum; HC, 
healthy controls; ITL, inferior temporal lobe; IPL, inferior parietal lobe; mOFC, medial orbitofrontal cortex; MNI, Montreal Neurological Institute; 
MTL, middle temporal lobe; pre-SMA, pre-supplementary motor area; OCD, obsessive-compulsive disorder; rACC, rostral anterior cingulate 
cortex; SDM, a Seed-based d Mapping; SMD, standardized mean difference (Hedges’ g); SMA, supplementary motor area; SMG, supramarginal 
gyrus; SPL, superior parietal lobe; STL, superior temporal lobe; vACC, ventral anterior cingulate cortex.
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