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Abstract

Cellular proteostasis is maintained by stress-responsive signaling pathways such as the heat shock 

response (HSR), the oxidative stress response (OSR), and the unfolded protein response (UPR). 

Activation of these pathways results in the transcriptional upregulation of select subsets of stress-

responsive genes that restore proteostasis and adapt cellular physiology to promote recovery 

following various types of acute insult. The capacity for these pathways to regulate cellular 

proteostasis makes them attractive therapeutic targets to correct proteostasis defects associated 

with diverse diseases. High-throughput screening (HTS) using cell-based reporter assays is highly 

effective for identifying putative activators of stress-responsive signaling pathways. However, the 

development of these compounds is hampered by the lack of medium-throughput assays to define 

compound potency and selectivity for a given pathway. Here, we describe a targeted RNA 

sequencing (RNAseq) assay that allows cost effective, medium-throughput screening of stress-

responsive signaling pathway activation. We demonstrate that this assay allows deconvolution of 

stress-responsive signaling activated by chemical genetic or pharmacologic agents. Furthermore, 

we use this assay to define the selectivity of putative OSR and HSR activating compounds 

previously identified by HTS. Our results demonstrate the potential for integrating this adaptable 

targeted RNAseq assay into screening programs focused on developing pharmacologic activators 

of stress-responsive signaling pathways.
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INTRODUCTION

Imbalances in cellular proteostasis can be induced by genetic, environmental, or aging-

related insults and are intricately involved in the pathology of multiple, etiologically diverse 

diseases1–3. These include diabetes, cardiovascular disorders, and neurodegenerative 

diseases such as Alzheimer’s and Parkinson’s disease1–5. In order to protect from these 

types of insults, cells have evolved an integrated network of stress-responsive signaling 

pathways including the heat shock response (HSR)6–8, the oxidative stress response 

(OSR)9–11, the unfolded protein response (UPR)12–15, and the integrated stress response 

(ISR)16 (Fig. 1A). These pathways are activated by both distinct and overlapping types of 

stress and initiate signal transduction pathways that ultimately activate transcription factors 

such as the HSR-associated Heat Shock Factor 1 (HSF1), the OSR-associated Nuclear 

Factor Erythroid 2 (NRF2), and the UPR-associated transcription factors X-box Binding 

Protein 1 (XBP1s), Activating Transcription Factor 6 (ATF6), and Activating Transcription 

Factor 4 (ATF4) (the latter also being implicated in the ISR)6–8, 12, 17–18. Importantly, 

cellular stresses can often elicit both direct and indirect activation of multiple stress-

responsive signaling pathways simultaneously19. As a result, downstream transcription 

factors integrate their signaling to induce select subsets of stress-responsive genes to 

alleviate specific types of proteostasis stress and promote cellular recovery following an 

acute insult.

The capacity for these signaling pathways to protect cells against different types of 

proteostasis-related stress makes them highly attractive therapeutic targets to ameliorate 

pathologic imbalances in proteostasis associated with diverse human diseases1, 20–25. 

Specifically, the activation of a single stress-responsive signaling pathway can be highly 

advantageous because it allows for the selective remodeling of cellular proteostasis without 

inducing apoptotic signaling pathways associated with global cellular stress. For example, 

stress-independent activation of the UPR-associated transcription factors XBP1s and ATF6 

can alleviate ER stress induced toxicity and promote secretory proteostasis of numerous 

disease-associated, aggregation-prone proteins, independent of pro-apoptotic signaling 

induced downstream of global ER stress-dependent UPR activation26–28. Due to the 

potential for stress-independent activation of these signaling pathways to influence disease, a 

significant effort has been directed to developing highly-selective pharmacologic activating 

compounds that target each of these pathways.

The development of these pharmacologic activators has primarily been pursued using high-

throughput screening (HTS) approaches that employ cellular transcriptional reporters of 

target genes activated downstream of specific stress pathways including the ATF6 signaling 

arm of the UPR and the HSF1-dependent HSR21, 26, 29–33. While this approach has 

effectively identified many putative activators of these pathways, the further development 
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and characterization of these HTS hits is often hampered by complications including 

reporter interference, lack of compound selectivity for a given pathway, or reporter 

constructs not reliably reporting on activation of the entire protective transcriptional 

program25, 31, 34–35. Without proper tools to assess selectivity across broad stress signaling 

pathways, it is difficult to determine whether previous HTS have identified effective 

compounds that selectively activate these pathways.

One strategy to increase the efficiency of identifying specific pathway activators from many 

screening hits is to incorporate upstream transcriptional profiling to first define the activation 

spectrum among stress responsive signaling pathways. The benefits of this approach have 

been demonstrated with the recent establishment of compounds that preferentially activate 

the ATF6 signaling arm of the UPR, where multiplex gene expression (MGE) profiling was 

integrated into a screening pipeline centered on cell-based transcriptional reporters26. 

However, despite the evidence highlighting the benefit of incorporating transcriptional 

profiling into screening platforms, cost effective strategies to profile stress-responsive 

signaling pathway activation in a medium-throughput format are currently lacking.

Defining the magnitude and repertoire of activation among stress-responsive signaling 

pathways for a given stimulus is complicated by multiple challenges. Stress-responsive 

genes can be regulated by multiple signaling pathways, making it difficult to discern 

pathway activation by tracking the expression of a single gene. For example, the OSR target 

gene HMOX1 can be regulated by multiple stress-responsive transcription factors including 

NRF2 (OSR), HSF1 (HSR), and NF-κB36. Furthermore, many stress-responsive signaling 

pathways have overlapping sets of target genes, challenging the ability to define selective 

activation of a certain pathway. For example, the majority of genes regulated by the UPR-

associated transcription factor ATF6 are also activated, albeit to lower extents, by the 

alternative UPR-associated transcription factor XBP1s, thus making it difficult to 

deconvolute specific activation of these pathways by monitoring expression of a single 

gene28. Additionally, different stress-responsive signaling pathways induce target genes to 

varying extents. For example, HSF1 (HSR) target genes can be induced >10-fold higher than 

UPR target genes17, 28. These properties of stress-responsive signaling challenge the ability 

to monitor activation of specific pathways using strategies such as geneset enrichment 

analysis (GSEA), which is biased towards pathways that elicit larger transcriptional 

responses and does not easily deconvolute overlapping stress-responsive transcriptional 

programs. Furthermore, GSEA requires whole transcriptome RNA sequencing (RNAseq) 

profiling to define pathway activation, limiting its application as a medium-throughput 

screening approach. One potential strategy to address the above challenges is to monitor 

activation of specified sets of stress-responsive genes regulated downstream of different 

stress-responsive signaling pathways, wherein pathway activation is defined by the grouped 

behavior for all relevant target genes. This strategy requires measuring multiple genes 

activated downstream of different stress-responsive signaling pathways in a cost-effective 

assay.

Recent advances in RNA sequencing have demonstrated the potential for this approach to be 

integrated into drug discovery pipelines. For example, the DRUG-seq platform established a 

cost-effective strategy to profile compounds in a high-throughput format, providing a 
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powerful approach to define compound mechanism of activation and selectivity37. However, 

this approach requires specialized equipment that would make it difficult to implement in 

most research laboratories. In contrast, the targeted RNAseq platform, described in the last 5 

years (previously described as Capture-seq38), provides a unique opportunity to screen 

expression of 100–1000 genes in a cost-effective, medium-throughput format. Since this 

approach uses target-specific generation of sequencing libraries, targeted RNAseq 

demonstrates improved sensitivity for low-copy transcripts, potentially providing a larger 

dynamic range to track changes in both low and highly-expressed genes. Furthermore, 

targeted RNAseq avoids background issues caused by non-specific probe binding or probe 

cross-hybridization found in such technologies as microarrays39. As such, this approach has 

been used in diverse contexts including measuring expression of alleles in plant 

populations40, detection of gene fusions in solid tumors41, and monitoring activation of cell 

death pathways42.

Here, we describe a targeted RNAseq assay designed to define activation of stress-

responsive proteostasis pathways in a medium-throughput format. We show that this 

approach allows accurate deconvolution of stress-responsive pathway activation induced by 

diverse chemical genetic and pharmacologic agents. Furthermore, we demonstrate the 

potential for this approach to define the selectivity of pharmacologic activators of stress-

responsive signaling pathways by profiling the selectivity of compounds identified by high-

throughput reporter screening to activate the OSR-associated transcription factor NRF2 or 

the HSR-associated transcription factor HSF121, 29. Ultimately, our results show that 

targeted RNAseq profiling is a highly adaptable strategy that can be efficiently incorporated 

into HTS pipelines and downstream compound development to improve the establishment of 

pharmacologic activators of specific stress-responsive signaling pathways.

RESULTS & DISCUSSION

A Targeted RNAseq Assay to Monitor Activation of Stress-Responsive Proteostasis 
Pathways

To establish a targeted RNAseq assay for monitoring activation of stress-responsive 

proteostasis pathways, we first defined genesets predicted to accurately report on the 

activation of the predominant proteostasis pathways: the HSR, OSR, the three signaling 

arms of the UPR, and the ISR (Fig. 1A). We examined published transcriptional profiles 

using chemical genetic or pharmacologic approaches that selectively activated these stress-

responsive signaling pathways in a stress-independent manner, to manually identify sets of 

proteostasis genes induced by each pathway. From this data, we selected 10–20 reporter 

genes activated downstream of the HSR17, OSR43, and the IRE1/XBP1s, ATF6, and PERK/

ATF4 signaling arms of the UPR28, 44–46 (Fig. 1A and Table 1). Genes included were 

efficiently expressed and robustly induced by these pathways, to ensure efficient reporting in 

our targeted RNAseq assay. To address issues such as pathway overlap for the IRE1/XBP1s 

and ATF6 genesets, we assigned genes to the pathway that elicited >75% gene activation 

when activated independently as compared to that observed during combined activation, as 

previously described28. Importantly, the geneset that reports on activation of the PERK/

ATF4 signaling arm of the UPR was also used to monitor activation of the ISR, as both are 
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activated through a process involving phosphorylation of the α subunit of eukaryotic 

initiation factor 2 (eIF2α) and the activity of the ATF4 transcription factor18, 46. Stress-

responsive genes activated downstream of other stress-responsive signaling pathways 

including the Hypoxic Stress Response47, NFκB signaling43, 48, and the poorly defined 

mitochondrial unfolded protein response (UPRmt)49–51, were additionally selected from 

published transcriptional profiles that used stress-dependent activation of these pathways to 

define target gene induction. The inclusion of these genes in our gene panel improves our 

ability to identify compounds selective for a given proteostasis pathway. Our final gene 

panel consists of 150 target genes shown in Table 1.

We used the established targeted RNAseq profiling approach with this custom gene panel to 

define the activation of stress-responsive signaling pathways in multiple HEK293-derived 

cell lines grown in 96-well plates subjected to conditions predicted to activate the different 

stress-responsive proteostasis pathways shown in Fig. 1A (see Table 2 and Table S1). 

Briefly, we isolated RNA from these cells and generated cDNA libraries using a standard 

reverse transcriptase reaction. We then amplified our genes of interest for sequencing using 

targeted primer sets directed to the 150 genes in the panel (Fig. 1B). Amplicons were then 

isolated and pooled for sequencing using the Illumina, Inc. MiSeq desktop sequencer at a 

target depth of 50 million paired-end reads for all pooled samples. Overall alignment of 

reads reflected the specific nature of this approach with over 93% of reads aligning to target 

regions, which is significantly greater than that observed in conventional whole 

transcriptome RNAseq experiments (Fig. S1A). Our desktop MiSeq sequencing run yielded 

a median of ~580,000 reads per sample (19 conditions in triplicate including vehicle controls 

for each cell line, 57 samples total), which is approximately 1% of the number of reads 

aligned per sample with whole transcriptome RNAseq on the same platform (approximated 

to 44–50×106 reads per sample). Additionally, per gene target, our targeted RNaseq assay 

yielded a median of 721.7 aligned reads (median total >41,000 reads) across all treatment 

conditions included in these analyses (Fig. S1B–C). All of the data from this targeted 

RNAseq assay is included in Table S2.

Across replicate samples, we observed high reproducibility with all treatments 

demonstrating an R2-value above 0.7 and most having an R2>0.85 (Fig. S1D–E). From 

aligned count data, we performed unbiased clustering across all treatment conditions to 

determine our ability to accurately define different stress-signaling pathways (Fig. 1C,D and 

Fig. S1F). This analysis shows that genes regulated by the HSR, OSR, and the three arms of 

the UPR (IRE1/XBP1s, ATF6 and PERK/ISR) generally cluster together, reflecting their 

similar regulation across the various stress conditions. However, despite this clustering, we 

observe significant overlap between genesets, reflecting their integrated activation in 

response to diverse types of stimuli. For example, the IRE1/XBP1s (red in Fig. 1D) and 

ATF6 (blue in Fig. 1D) genesets show significant overlap, reflecting the coordinated 

activation of these two pathways in response to ER stress. Furthermore, certain genes such 

as SOD1, activated downstream of the OSR-associated transcription factor NRF252, separate 

from the OSR cluster (purple in Fig. 1C–D), reflecting the ability for this gene to be 

regulated by multiple stress-responsive signaling pathways apart from the OSR53. The 

PERK/ISR target MTHFR is also regulated by other UPR signaling pathways, as well as the 

OSR54–55, and is similarly found to separate from the larger cluster of PERK/ISR targets 
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(green in Fig. 1C–D). The overlap of genesets and promiscuity for specific genes to report 

on multiple pathways highlights the importance of tracking sets of stress-responsive genes 

for defining overall pathway activation. However, the general clustering of our stress-

pathway genesets indicates that this targeted RNAseq assay is capable of tracking changes in 

stress responsive genes to accurately define activation of specific stress-responsive signaling 

pathways.

Defining stress-independent HSR and UPR signaling pathways through targeted RNAseq 
profiling.

We initially validated the ability for our targeted RNAseq assay to report on activation of 

specific stress-signaling proteostasis pathways using chemical genetic approaches that allow 

activation of specific pathways independent of stress. First, we defined activation of the 

HSR-regulated proteostasis genes in HEK293TREX cells following doxycycline (dox)-

dependent activation of a constitutively active HSF1 (cHSF1)17 – the primary transcription 

factor regulated by the HSR6–8. In order to define the induction of specific target 

proteostasis genes in our targeted RNAseq data, we first median-normalized aligned counts 

per target gene across all treatment conditions. We took average normalized count values 

across sample replicates and performed a Log2 transformation, yielding the “Log2 

normalized counts” used for relative expression analysis. To compare chemical genetic and 

pharmacologic activating conditions versus vehicle control samples, we conducted a 

correlation analysis of Log2 normalized counts to yield a line of best fit (Fig. 2A), reflecting 

baseline expression levels for the majority of genes not affected by a given treatment. We 

then calculated the deviation of each target gene for the experimental condition from the line 

of best fit, or “residual value”, which was used to quantify up/downregulation of that gene. 

(Fig. 2A). Finally, we define pathway activation by plotting the residual values of each gene 

from this analysis, grouped according to the assigned stress-responsive pathway, and 

monitoring the overall behavior of the geneset (Fig. 2B). This allows us to normalize 

variability in gene induction across different treatments and minimize challenges associated 

with lowly expressed genes that show high levels of induction. From this analysis, we 

demonstrate that dox-dependent cHSF1 activation robustly and selectively activates the 

entire target HSR-regulated proteostasis program, thus confirming the ability for our 

targeted RNAseq assay to define activation of this pathway (Fig. 2B and Table S3). 

Interestingly, the activation of this pathway is identical to that observed when we perform 

the same analysis using published RNAseq transcriptional profiles for dox-dependent cHSF1 

activation17, demonstrating that our RNAseq assay accurately quantifies the induction of 

HSR-regulated proteostasis target genes (Fig. S2A–C).

A significant challenge in monitoring activation of stress-responsive signaling pathways is 

the overlap between closely related pathways. For example, the IRE1/XBP1s UPR pathway 

induces expression of multiple genes also regulated by the ATF6 UPR signaling pathway, 

albeit to lower extents28. Furthermore, other XBP1s target genes are often induced to lower 

levels than that observed for ATF6-selective target genes28. To define the potential for 

targeted RNAseq to discern selective activation of these two UPR signaling pathways, we 

performed this assay in HEK293DAX cells subjected to stress-independent XBP1s and/or 

ATF6 activation. HEK293DAX cells express dox-inducible XBP1s and trimethoprim (TMP)-

Grandjean et al. Page 6

ACS Chem Biol. Author manuscript; available in PMC 2020 April 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



regulated DHFR.ATF6, allowing activation of these two transcription factors in the same cell 

independent of ER stress through administration of dox and/or TMP28. As a control, we also 

monitored gene expression in response to global ER stress induced by treating HEK293DAX 

cells with the SERCA pump inhibitor, thapsigargin (Tg). As expected, Tg treatment showed 

robust activation of all three UPR signaling pathways (IRE1/XBP1s, ATF6, and PERK/ISR), 

confirming global UPR activation (Fig. S3A–B). In contrast, TMP-dependent DHFR-ATF6 

activation showed significant increases in the ATF6 target geneset, consistent with selective 

ATF6 activation (Fig. 3A). However, dox-inducible XBP1s increased expression of both the 

IRE1/XBP1s and ATF6 target genesets, although ATF6 target genes were induced less than 

that observed following ATF6 activation (Fig. 3B), which is consistent with previous 

work28. Combined treatment with dox (activating XBP1s) and TMP (activating 

DHFR.ATF6) elicited a strong upregulation of both genesets (Fig. 3C).

Previous reports indicate that the overlap between XBP1s and ATF6 target gene expression 

observed following stress-independent activation could be deconvoluted by normalizing the 

expression of genes to that observed with Tg treatment, providing a way to sensitively define 

the extent of pathway activation26. Performing this normalization shows that TMP-

dependent DHFR.ATF6 activation selectively induces expression of ATF6 target genes to 

levels similar to those observed for Tg-dependent ER stress (Fig. 3D). Importantly, dox-

dependent XBP1s activation selectively induces expression of IRE1/XBP1s target genes to 

levels similar to that observed with Tg by this analysis, while only moderately affecting 

ATF6 target gene expression (Fig. 3E). This profile is distinct from that observed in cells 

where XBP1s and ATF6 are co-activated, which shows significantly higher induction of both 

genesets (Fig. 3F). Importantly, when residual values from our targeted RNAseq analysis are 

compared to transcriptional changes from whole-transcriptome RNAseq collected from 

HEK293DAX cells subjected to XBP1s and/or ATF6 activation, there is a clear correlation 

between the two data sets in upregulated targets (Fig. S3C–E). These results demonstrate 

that our targeted RNAseq assay can sensitively deconvolute the complex integration of 

stress-responsive signaling pathways involved in UPR signaling.

Targeted RNAseq profiling defines stress-pathway activation induced by cellular toxins.

We next used our targeted RNAseq assay to profile activation of stress-responsive signaling 

pathways induced by chemical toxins including tunicamycin (Tm; an ER stressor that 

inhibits N-linked glycosylation), the environmental toxin arsenite (As(III)), the 

mitochondrial ATP synthase inhibitor oligomycin, and the ROS generating compound 

paraquat (PQ). As predicted, our assay demonstrates that these compounds induce unique 

activation profiles of different stress-responsive signaling pathways. Consistent with the 

selective induction of ER stress, Tm treatment activates the three arms of the UPR without 

globally impacting other stress-responsive signaling pathways (Fig. 4A). In contrast, As(III) 

induces robust activation of the cytosolic HSR, OSR, and ISR signaling pathways (Fig. 4B), 

highlighting the promiscuous nature of this toxin for cytosolic proteostasis pathway 

activation56. Oligomycin treatment only significantly activated the ISR geneset, reflecting 

emerging evidence showing that mitochondrial stress promotes signaling through this 

pathway (Fig. 4C)8, 50–51, 57. PQ treatment also showed modest increases in ISR genes, 

although the entire pathway was not significantly activated (Fig. S4). However, while our 
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genesets report on activation of whole pathways, numerous individual stress-responsive 

genes from multiple pathways were induced upon these different treatments. For example, 

the OSR target gene HMOX1 is induced in cells treated with mitochondrial toxins 

oligomycin and paraquat, although we do not observe induction of other OSR target genes. 

Since HMOX1 can be regulated by multiple stress-responsive signaling pathways36, these 

results suggest that administration of these toxins induce pleiotropic effects on multiple 

stress-responsive signaling pathways outside of the four primary proteostasis pathways 

profiled in our targeted RNAseq platform. Regardless, it is clear that our targeted RNAseq 

assay does accurately reflect predicted toxin-induced activation of proteostasis pathways, 

further validating the benefit of this approach for profiling pharmacologic activators of 

stress-responsive proteostasis pathways.

Defining selectivity of pharmacologic NRF2 activating compounds through Targeted 
RNAseq transcriptional profiling.

We next employed our targeted RNAseq assay to define the selectivity of two putative NRF2 

activating compounds: bardoxolone and the recently described CBR-470–1 (Fig. S5A)29. 

Bardoxolone is an anti-inflammatory compound currently in clinical trials for chronic 

kidney disease. This compound is reported to induce protective benefits through activation 

of the OSR-associated transcription factor NRF223, 58. However, it also covalently modifies 

hundreds of proteins59 and displays additional cellular activities including inhibition of the 

mitochondrial protease LON60, suggesting that, apart from NRF2, bardoxolone could also 

activate other stress-responsive signaling pathways. Interestingly, we show in HEK293T 

cells that bardoxolone significantly induces expression of the OSR-target gene HMOX1, but 

not other OSR target genes (Fig. 5A). However, this compound does induce both the HSR 

and the ISR genesets, indicating promiscuous activity for this pharmacologic agent. 

Furthermore, we see strong upregulation of the ATF6 target gene HSPA5 (also known as 

BiP), without complete activation of the ATF6 pathway. These results indicate that 

bardoxolone induces pleiotropic effects on stress-responsive genes outside of NRF2 

activation in HEK293T cells. In contrast, CBR-470–1 showed selective activation of the 

OSR geneset with no significant induction of other stress pathways, suggesting improved 

selectivity of CBR-470–1 for OSR activation (Fig. 5B). Consistent with this, qPCR analysis 

of BAG3 (an HSR target) and HSPA5 shows that bardoxolone promiscuously induces these 

non-NRF2 target genes, while CBR-470–1 does not (Fig. 5C,D). However, both compounds 

induce activation of the OSR target gene HMOX1 (Fig. 5E). This result is identical to that 

observed by our targeted RNAseq analysis (Fig. S5B–D). These results show that CBR-470–

1 shows increased selectivity for OSR activation relative to bardoxolone and demonstrates 

the utility for our targeted RNAseq assay to profile selectivity of putative OSR activating 

compounds in clinical development.

Defining the selectivity of HSR activating compounds by targeted RNAseq

Previous high-throughput screening identified numerous compounds, including compounds 

A3, C1, D1, and F1 (Fig. S6A), that activate a cell-based reporter of the HSR-associated 

transcription factor HSF1 in HeLa cells21. However, the selectivity of these compounds for 

the HSR remains to be fully defined. Previous reports show that these compounds 

preferentially induce expression of HSR target genes, but also show mild induction of genes 
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regulated by other stress pathways such as BiP (or HSPA5) regulated by ATF6 and HMOX1 
regulated by the OSR. We used our targeted RNAseq assay to define the selectivity of these 

putative HSF1 activating compounds for specific HSR activation. Our results show that 

compound A3 strongly induced the HSR geneset (Fig. 6A) to a level comparable to that 

observed with dox-dependent cHSF1 activation (Fig. 2B). Compounds C1, D1, and F1 also 

significantly induced the HSR geneset, albeit to a lower extent (Fig. 6B–D). Administration 

of these compounds also induced expression of other stress-responsive genes. This was most 

evident with A3, which showed robust activation of select ISR and OSR target genes such as 

ATF3 and HMOX1, respectively, without global activation of these pathways (Fig. 6A). 

Similar results were observed for the other three compounds to lesser extents (Fig. 6B–D). 

Interestingly, both ATF3 and HMOX1 have been shown to be transcriptionally induced 

following stress-independent activation of the HSR-associated transcription factor HSF117, 

suggesting that their increased expression in response to compound treatment could, in part, 

reflect HSF1 activity.

To further define the selectivity of these HSR activating compounds for the HSR proteostasis 

transcriptional program in HEK293T cells, we performed whole transcriptome RNAseq 

(Table S4). Analysis of the top 100 most significantly altered transcripts in this whole 

transcriptome RNAseq data demonstrated that compound A3 induced the greatest effects on 

gene expression, consistent with our targeted RNAseq results (Fig. 6E). Furthermore, 

performing the same correlation-based geneset analysis used for targeted RNAseq revealed 

an identical preferential activation of the HSR in this whole transcriptome dataset (Fig. 

S6B–I). Interestingly, comparing genes induced by A3 with those induced by a 43°C heat 

shock6 or dox-dependent cHSF117 activation demonstrated an overlap of ~100 genes (Fig. 

6F), including many classical HSR proteostasis target genes such as HSPA1A, DNAJB1, and 

CryAB (Table S4). Importantly, all shared upregulated targets between A3 and heat shock 

are also found as shared targets with dox-dependent cHSF1. While this supports an A3-

dependent induction of the HSR, there are many genes upregulated in the whole-

transcriptome data that are not upregulated by these other HSR-activating insults. GO 

analysis reveals that most targets induced by treatment with A3 are involved in RNA 

polymerase II-dependent transcription (Fig. 6G). This finding is consistent with recent 

studies indicating that apart from direct transcriptional upregulation, HSF1 may recruit 

factors that increase the rate of Pol II release from its paused state in transcript promoter 

regions6. Thus, the altered expression of Pol II regulatory factors suggests that A3 could 

influence HSR activity by targeting RNA Pol II pause-release. While the impact of A3 on 

RNA Pol II could limit the further development and usage of this compound as a chemical 

tool to define HSR-dependent regulation of cellular proteostasis, these results demonstrate 

the potential for our targeted RNAseq assay to define the selectivity of prioritized 

compounds identified through reporter based HTS for activating specific stress-responsive 

proteostasis pathways.

CONCLUDING REMARKS

The establishment of highly selective activators of stress-responsive signaling pathways 

provides unique opportunities to identify new roles for these pathways in regulating cellular 

physiology and defining their potential for correcting pathologic defects associated with 
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diverse diseases. Here, we establish a medium-throughput targeted RNAseq assay that 

reports on the activation of predominant stress-responsive proteostasis pathways such as the 

HSR, OSR, ISR, and UPR. We demonstrate the potential for this approach to deconvolute 

the complex integration of stress-responsive signaling pathways in HEK293 cells treated 

with chemical genetic or pharmacologic perturbations. Furthermore, we show that this 

approach is suitable for defining the selectivity of putative activators of different stress-

responsive signaling pathways. These results demonstrate that this assay provides new 

opportunities to improve screening efforts focused on establishing pharmacologic activators 

of stress-responsive signaling pathways by identifying compounds or classes with high 

selectivity earlier in the screening pipeline (i.e., after reporter based HTS). Furthermore, this 

assay can be paired with medicinal chemistry to establish next generation compounds with 

improved selectivity and/or potency through monitoring activation of specific pathway 

reporter genesets, as well as other complementary approaches such as transcription factor 

knockouts or pharmacologic inhibitors of stress-responsive pathways to validate the 

activation or inhibition of specific pathways observed upon pharmacologic treatment.

While we specifically focus on stress-responsive proteostasis pathways in human HEK293 

cells (see Fig. 1A), many of the genes included in our stress pathway genesets are robustly 

activated across mammalian cell types. For example, we used these genesets to show similar 

activation of stress signaling pathways in mouse embryonic fibroblasts treated with Tg or 

As(III) to that observed in HEK293 cells (Fig. S7). This indicates that this approach can 

report on stress-pathway activation in other models. However, these genesets could easily be 

modified to improve reporting on stress-pathway activation in other models. The flexibility 

of the targeted RNAseq platform allows inclusion or replacement of reporter genes to 

increase the ability to accurately report on pathway activation in specific tissues or 

organisms, providing new opportunities to monitor stress-pathway activity in vivo for efforts 

such as defining compound bioavailability and pharmacodynamics. This platform can 

additionally be expanded through the inclusion of additional genesets reporting on the 

activation of other signaling pathways, further improving the ability for this approach to 

define compound selectivity at early stages of compound development. Ultimately, the 

targeted RNAseq assay and approach described herein will improve the establishment of 

pharmacologic activators of stress-responsive signaling by providing new opportunities to 

define compound specificity at an earlier stage in compound development.

EXPERIMENTAL PROCEDURES

Materials and Reagents

Thapsigargin was purchased through Fisher Scientific (#50-464-295), tunicamycin was 

purchased through Cayman Chemical (#11089-65-9), oligomycin A was purchased from 

Sigma Aldrich (#75351), and paraquat was purchased from Sigma Aldrich (#36541). qPCR 

primers used include: Bag3 (3’-TGGGAGATCAAGATCGACCC-5’, 5’-

GGGCCATTGGCAGAGGATG-3’), Hspa5 (3’-GCCTGTATTTCTAGACCTGCC-5’, 5’-

TTCATCTTGCCAGCCAGTTG-3’), and Hmox1 (3’-GAGTGTAAGGACCCATCGGA-5’, 

5’-GCCAGCAACAAAGTGCAAG-3’) as well as RiboPro control (3’-

CGTCGCCTCCTACCTGCT-5’, 5’-CCATTCAGCTCACTGATAACCTTG-3’).
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Cell lines and treatments

Stable cell lines expressing inducible cHSF1, ATF6, and XBP1s were used as previously 

described to activate cHSF1, ATF6, and XBP1s transcription factors17, 28. Cells types as 

listed in Table 2 were cultured in DMEM with 10% FBS, pen/strep, and glutamine at 37C, 

5% CO2 in Corning 96-well tissue culture plates. Cells were treated for the indicated 

durations (Supplementary Table S2) with either chemical genetic activators or 

pharmacologics solubilized in DMSO, treatments were performed in triplicate.

RNA extraction

RNA was extracted from HEK293T, HEK293Dax, and HEK293TREX using the Zymo 

Research ZR-96 Quick-RNA isolation kit as per manufacturer’s instructions. Briefly, cells 

were rinsed with DMSO prior to lysis, samples were then cleared of particulate matter 

through centrifugation. The supernatant was then subject to standard column purification 

steps including an on-column DNase treatment, prior to RNA elution in DNase/RNase-Free 

water.

Targeted RNA-seq library preparation and sequencing

Stress-responsive sequencing libraries were prepared using the Illumna TruSeq Targeted 

RNA Expression technology, with targeted probes selected to create a custom gene panel to 

report on stress-responsive transcripts across several signaling pathways. Briefly, 50ng intact 

total RNA was reverse transcribed into cDNA using ProtoScript II Reverse Transcriptase 

(25°C 5 min, 42°C 15 min, 95°C 10 min, 4°C hold) and the targeted oligo pool was 

hybridized in each sample (70°C 5 min, 68°C 1 min, 65°C 2.5 min, 60°C 2.5 min, 55°C 4 

min, 50°C 4 min, 45°C 4 min, 40°C 4 min, 35°C 4 min, 30°C 4 min, hold at 30°C). 

Hybridized products were washed using magnetic beads, extended, and amplified using i7 

and i5 adapters (95°C 2 min, 28x: 98°C 30 sec, 62°C 30 sec, 72°C 60 sec, followed by 72°C 

for 5 minutes, 10°C hold). Libraries were cleaned and pooled prior to being loaded on the 

MiSeq desktop sequencer.

Alignment and Expression Analysis

Alignment of targeted RNA-seq reads was performed using the Illumina TruSeq Targeted 

RNA-seq software using the custom target manifest containing sequences of targeted region 

sequences. Alignment of whole-transcriptome RNA-seq data was done using DNAstar 

Lasergene SeqManPro to the GRCh37.p13 human genome reference assembly. Aligned 

counts from Targeted RNAseq were median normalized and Log2 transformed prior to 

correlation analysis.

Whole-transcriptome RNA-seq

HEK293T cells were treated with 10uM A3, C1, D1, or F1 for 6 hours prior to RNA 

isolation using the ZymoPure RNA-mini kit as per manufacturer’s instructions, including 

on-column DNase I treatment to remove contaminating genomic DNA. RNA was quantified 

by NanoDrop. Conventional RNA-seq was conducted via BGI Americas on the BGI 

Proprietary platform, providing single-end 50bp reads at 20 million reads per sample. Each 

condition was performed in triplicate.
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Gene expression correlation network graph and hierarchical clustering

Raw counts data from the triplicate RNAseq experiments for each condition were averaged 

and Pearson correlation coefficients were calculated for each pair of genes. We created the 

gene expression correlation graph by representing each gene as a vertex and connecting the 

vertices for the genes that had correlation coefficients ≥ 0.6. There were a few genes whose 

expression levels did not correlate with those of any other genes at this level. These genes 

were connected only to the gene with which they had the highest correlation coefficient to 

ensure that the network graph was fully connected. The hierarchical clustering of genes by 

expression pattern shown in Figure 1 was performed using the Euclidean distance between 

each genes’ expression level correlation coefficients with all other genes as the distance 

metric and single-linkage clustering as the linkage criterion. Thus, two genes that have 

similar sets of correlation coefficients with all other genes were most likely to cluster 

together. The network graph and dendrogram in Figure 1 were produced using Mathematica 

11.3.

Statistical analysis

Statistical significance of residual values from targeted RNAseq correlation analysis were 

calculated using standard one-way ANOVA, with the lowest p-values presented. Full 

ANOVA tables from our targeted RNAseq assay are included in Table S3. qPCR data was 

analyzed using one-tailed Student’s t-test.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Targeted RNA sequencing deconvolutes stress-responsive transcriptional programs.
A. Illustration showing the stress-responsive proteostasis pathways profiled in our targeted 

RNAseq assay. Stresses that activate each pathway and specific transcription factors 

activated downstream of these pathways are also shown.

B. Schematic of the general protocol used for our targeted RNAseq assay. Briefly, RNA is 

isolated from cells in a 96-well plate format following a given treatment. This RNA is then 

converted into cDNA libraries that are probed using oligos targeted to specific stress-

responsive genes (red) for sequencing library generation. Barcoded sequencing libraries 

from each individual treatment condition are then pooled for sequencing.
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C. Dendrogram of individual target genes from our targeted RNAseq panel (see Table 1) 

grouped by hierarchical clustering using the Euclidean distance between each genes’ 

expression level correlation coefficients over all treatment conditions (see Table 2 and Table 

S1). Genes are colored by assignment to specific stress-responsive signaling pathways to 

report on activation of the HSR (orange), the OSR (purple), the ATF6 UPR signaling 

pathway (blue), the IRE1/XBP1s UPR signaling pathway (red), the PERK/ISR signaling 

pathway (green), or other pathways (grey). The asterisks identify SOD1 (purple) and 

MTHFR (green).

D. Network graph of individual target genes from our targeted RNAseq panel showing the 

clustering of genes into defined stress-responsive signaling pathways. This graph is derived 

by representing each gene as a vertex and connecting the vertices for genes whose 

expression level changes correlate with Pearson R > 0.6. Genes that do not correlate at this 

level with any other genes are connected only to the gene with which they have the highest 

correlation coefficient. Pathways are colored using the same scheme described above in Fig. 

1C. SOD1 and MTHFR are identified by name.
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Figure 2. Targeted RNAseq accurately defines HSR activation induced by stress-independent 
activation of cHSF1
A. Log2 normalized aligned transcript counts for HEK293TREX cells expressing doxycycline 

(dox)-inducible cHSF1 treated with 2.25 μM dox (y-axis) or vehicle (x-axis) for 16 h. 

Aligned transcript counts represent averages from three independent replicates quantified 

from our targeted RNAseq assay. All identified genes are HSR target genes.

B. Plot showing residuals calculated by comparing the expression of our panel of stress-

responsive genes between HEK293TREX cells expressing dox-inducible cHSF1 following 16 

h treatment with dox (2.25 μM) or vehicle. Calculation of residuals was performed as 

described in Fig. 2A. Statistics were calculated using one-way ANOVA. Significance shown 

reflects comparison to “Other” target transcript set. **p<0.01, ***p<0.001, ****p<0.0001. 

See Table S3 for full ANOVA table.
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Figure 3. Targeted RNAseq defines stress-independent activation of UPR-associated signaling 
pathways
A. Plot showing residuals calculated by comparing the expression of our panel of stress-

responsive genes between HEK293DAX cells following treatment with trimethoprim (10 μM 

4 h; activates DHFR.ATF6) or vehicle. Calculation of residuals was performed as described 

in Fig. 2A. Statistics were calculated using one-way ANOVA. Significance shown reflects 

comparison to “Other” target transcript set. ****p<0.0001. See Table S3 for full ANOVA 

table.

B. Plot showing residuals calculated by comparing the expression of our panel of stress-

responsive genes between HEK293DAX cells following treatment with dox (1 μg/mL 4 h; 

activates dox-inducible XBP1s) or vehicle. Calculation of residuals was performed as 

described in Fig. 2A. Statistics were calculated using one-way ANOVA. Significance shown 

reflects comparison to “Other” target transcript set. ****p<0.0001. See Table S3 for full 

ANOVA table.

C. Plot showing residuals calculated by comparing the expression of our panel of stress-

responsive genes between HEK293DAX cells following treatment with both trimethoprim 

(10 μM, 4 h; activates DHFR.ATF6) and dox (1 μg/mL 4 h; activates dox-inducible XBP1s) 

or vehicle. Calculation of residuals was performed as described in Fig. 2A. Statistics were 

calculated using one-way ANOVA. Significance shown reflects comparison to “Other” 

target transcript set. ****p<0.0001. See Table S3 for full ANOVA table.

D. Graph showing normalized residuals for genesets regulated by the ATF6 (blue), XBP1s 

(red) or PERK (green) UPR signaling pathways in HEK293DAX cells following treatment 

with TMP (10 μM, 4 h; activates DHFR.ATF6). The residuals for each gene were 

normalized to those observed for thapsigargin (Tg)-induced ER stress in HEK293DAX cells 

(Fig. S3A,B). Normalized data was subjected to ROUT outlier testing. Statistics from one-

way ANOVA **p<0.01, ***p<0.001.

E. Graph showing normalized residuals for genesets regulated by the ATF6 (blue), XBP1s 

(red) or PERK (green) UPR signaling pathways in HEK293DAX cells following treatment 
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with dox (1μg/mL, 4 h; activates dox-inducible XBP1s). The residuals for each gene were 

normalized to those observed for thapsigargin (Tg)-induced ER stress in HEK293DAX cells 

(Fig. S3A,B). Normalized data was subjected to ROUT outlier testing. Statistics from one-

way ANOVA **p<0.01, ***p<0.001.

F. Graph showing normalized residuals for genesets regulated by the ATF6 (blue), XBP1s 

(red) or PERK (green) UPR signaling pathways in HEK293DAX cells following treatment 

with both TMP (10 μM, 4 h; activates DHFR.ATF6) and dox (1μg/mL, 4 h; activates dox-

inducible XBP1s). The residuals for each gene were normalized to those observed for 

thapsigargin (Tg)-induced ER stress in HEK293DAX cells (Fig. S3A,B). Normalized data 

was subjected to ROUT outlier testing. Statistics from one-way ANOVA. *p<0.05, 

**p<0.01.
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Figure 4. Targeted RNASeq profiling defines activation of stress-responsive signaling pathways 
induced by diverse environmental toxins.
A. Plot showing residuals calculated by comparing the expression of our stress-responsive 

gene panel between HEK293T cells following treatment with tunicamycin (Tm; 10 μM, 4 h) 

or vehicle. Calculation of residuals was performed as described in Fig. 2A. Genes are 

grouped by target stress-responsive signaling pathway. Statistics were calculated using one-

way ANOVA, Significance shown reflects comparison to “Other” target transcript set. 

***p<0.001, ****p<0.0001. See Table S3 for full ANOVA table.

B. Plot showing residuals calculated by comparing the expression of our stress-responsive 

gene panel between HEK293T cells following treatment with arsenite (As(III); 25 μM, 16 h) 

or vehicle. Calculation of residuals was performed as described in Fig. 2A. Genes are 

grouped by target stress-responsive signaling pathway. Statistics were calculated using one-

way ANOVA, Significance shown reflects comparison to “Other” target transcript set. 

**p<0.01, ***p<0.001. See Table S3 for full ANOVA table.

C. Plot showing residuals calculated by comparing the expression of our stress-responsive 

gene panel between HEK293T cells following treatment with oligomycin A (Oligo; 100 nM, 

24 h) or vehicle. Calculation of residuals was performed as described in Fig. 2A. Genes are 

grouped by target stress-responsive signaling pathway. Statistics were calculated using one-

way ANOVA, Significance shown reflects comparison to “Other” target transcript set. 

**p<0.01. See Table S3 for full ANOVA table.
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Figure 5. Defining the selectivity of reported NRF2 activating compounds through targeted 
RNAseq transcriptional profiling
A. Plot showing residuals calculated by comparing the expression of our stress-responsive 

gene panel between HEK293T cells treated with bardoxolone (1 μM, 24 h) or vehicle. 

Calculation of residuals was performed as described in Fig. 2A. Genes are grouped by target 

stress-responsive signaling pathway. Statistics were calculated using one-way ANOVA, 

Significance shown reflects comparison to “Other” target transcript set. **p<0.01, 

****p<0.0001. See Table S3 for full ANOVA table.

B. Plot showing residuals calculated by comparing the expression of our stress-responsive 

gene panel between HEK293T cells treated with CBR-470–1 (10 μM, 24 h) or vehicle. 

Calculation of residuals was performed as described in Fig. 2A. Genes are grouped by target 

stress-responsive signaling pathway. Statistics were calculated using one-way ANOVA, 

Significance shown reflects comparison to “Other” target transcript set. **p<0.01. See Table 

S3 for full ANOVA table.

C. Graph showing qPCR analysis of the HSR target gene BAG3 in HEK293T cells treated 

for 24 h with bardoxolone (1 μM) or CBR-470–1 (10 μM). Error bars show SEM for n= 3. 

P-values calculated using one-tailed Student’s t-test.

D. Graph showing qPCR analysis of the UPR (ATF6) target gene BiP in HEK293T cells 

treated for 24 h with bardoxolone (1 μM) or CBR-470–1 (10 μM). Error bars show SEM for 

n= 3. P-values calculated using one-tailed Student’s t-test.

E. Graph showing qPCR analysis of the OSR target gene HMOX1 in HEK293T cells treated 

for 24 h with bardoxolone (1 μM) or CBR-470–1 (10 μM). Error bars show SEM for n= 3. 

P-values calculated using one-tailed Student’s t-test.
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Figure 6. Defining the selectivity for HSF1 activating compounds identified through reporter 
based HTS.
A. Plot showing residuals calculated by comparing the expression of our stress-responsive 

gene panel between HEK293T cells treated with compound A3 (10 μM, 4 h) or vehicle. 

Calculation of residuals was performed as described in Fig. 2A. Genes are grouped by target 

stress-responsive signaling pathway. Statistics were calculated using one-way ANOVA. 

Significance shown reflects comparison to “Other” target transcript set. ****p<0.0001. See 

Table S3 for full ANOVA table.

B. Plot showing residuals calculated by comparing the expression of our stress-responsive 

gene panel between HEK293T cells treated with compound C1 (10 μM, 4 h) or vehicle. 

Calculation of residuals was performed as described in Fig. 2A. Genes are grouped by target 

stress-responsive signaling pathway. Statistics were calculated using one-way ANOVA. 

Significance shown reflects comparison to “Other” target transcript set. ****p<0.0001. See 

Table S3 for full ANOVA table.

C. Plot showing residuals calculated by comparing the expression of our stress-responsive 

gene panel between HEK293T cells treated with compound D1 (10 μM, 4 h) or vehicle. 

Calculation of residuals was performed as described in Fig. 2A. Genes are grouped by target 

stress-responsive signaling pathway. Statistics were calculated using one-way ANOVA. 

Significance shown reflects comparison to “Other” target transcript set. ****p<0.0001. See 

Table S3 for full ANOVA table.

D. Plot showing residuals calculated by comparing the expression of our stress-responsive 

gene panel between HEK293T cells treated with compound F1 (10 μM, 4 h) or vehicle. 
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Calculation of residuals was performed as described in Fig. 2A. Genes are grouped by target 

stress-responsive signaling pathway. Statistics were calculated using one-way ANOVA. 

Significance shown reflects comparison to “Other” target transcript set. *p<0.05. See Table 

S3 for full ANOVA table.

E. Heat map of fold-change transcript levels from whole-transcriptome RNAseq (relative to 

vehicle treated cells) for the 100 genes most significantly altered by A3 treatment in 

HEK293T cells (82 positive regulation, top; 10 negative regulation, bottom). The changes in 

these genes are also shown for HEK293T cells treated with C1, D1, and F4 (10uM for 4 

hours).

F. Venn diagrams showing overlap of upregulated genes from whole-transcriptome RNAseq 

of HEK293T cells treated with A3 (10μM 4 hours) and HeLa cells under heat shock (left)6, 

or dox-inducible cHSF1 (right) in HEK293TREX cells17. Select genes identified in the 

overlap are highlighted.

G. Numbers of genes from GO analysis of significantly altered transcripts in HEK293T cells 

treated with compound A3 (10 μM, 4 h) relative to vehicle-treated cells. GO analysis was 

performed using David61. Entire GO analysis is reported in Supplementary Table S5.
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Table 1.

Targeted RNAseq gene panel to report on activation of stress-responsive proteostasis pathways

ATF6 XBP1s PERK/ISR HSR OSR Other: Hypoxic SR NFkB UPRmito Misc

CALR DERL2 ASNS BAG3 GCLM GAPDH NFKB1 AFG3L2 ANAPC5 UFC1

CRELD2 DNAJB9 ATF3 CRYAB HMOX1 LDHA NFKB2 CLPP ATP5B ARF1

DNAJB11 DNAJC10 ATF4 CLU PRDX1 PGK1 NFKBIA DNAJA3 B2M MRPL20

HERPUD1 EDEM2 ATF6 DNAJB1 SOD1 SLC2A1 RELA ENDOG CHMP4B OMA1

HSPA5 HSPA13 CARS DNAJB4 SQSTM1 TFRC TRAF2 HSPA9 EIF4H P RELID 1

HY0U1 LMAN1 CEBPB GADD45B TXNRD1 VEGFA CCL2 LONP1 GUSB SLC25A28

MANF OSTC DDIT3 HBA2 GCLC ALDOA ICAM1 TXN2 HNRNPK TIMM17A

MIS 12 PDIA5 DDIT4 HSP90AA1 NQOI AK3 SERPINA3 YME1L1 MRPL9 TOMM22

PD1A4 PLPP5 GADD45A HSPA1A ME1 EDN1 TNFAIP3 HSPAD1 PIGT CEBPA

PDIA6 SEC23B PPP1R15A HSPA1B TXN FLT1 CCL5 PSMB1 ERP44

SEL1K SEC61A1 SARS HSPA4L RBM42 SEC31A

SEL1L SRP19 SLC1A4 HSPB1 RNF181 CYR61

SLC39A14 SRPRB TRIB3 HSPH1 RPL13 MRPL18

SLFN11 SSR1 WARS IER5 RPLPO BTG2

TMEM50B SSR3 YARS RGS2 SSBP1 GPX1

UGDH STT3A ABCF2 SERPINH1 SUM01 SOD2

HSD17B7 UFM1 MTHFR SUPT6H TP53

PLEKHA6 FICD P0N2 THRAP3 GSR

STARD4 MBNL2 LM04 UBE2D3

CBX4
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Table 2.

Treatment conditions for Stress Signaling Targeted RNAseq

Cell Type Treament Targeted Pathway

293TcHSF1 arsenite (As(III)) H5R/OSR/ISR

293TcHSF1 dox-HSFI HSR

293DAX dox-XBPIs XBP1s

293DAX DHFR.ATF6 ATF6

293DAX dox-XBP1s+DHFR.ATF6 XBP1S+ATF6

293DAX thapsigargin (Tg) UPR

293T thapsigargin (Tg) UPR

293T tunicamycin (Tm) UPR

293T oligomycin ISR/OSR

293T paraquat ISR/OSR

293T CBR-470–1 OSR

293T bardoxolone OSR

293T A3 HSR

293T Cl HSR

293T D1 HSR

293T FI HSR
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