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Abstract

Preeclampsia is a pregnancy-related disorder characterized by hypertension and often fetal 

intrauterine growth restriction, but the underlying mechanisms are unclear. Defective placentation 

and apoptosis of invasive cytotrophoblasts cause inadequate remodeling of spiral arteries, placental 

ischemia and reduced uterine perfusion pressure (RUPP). RUPP causes imbalance between the 

anti-angiogenic factors soluble fms-like tyrosine kinase-1 and soluble endoglin and the pro-

angiogenic vascular endothelial growth factor and placental growth factor, and stimulates the 

release of proinflammatory cytokines, hypoxia-inducible factor, reactive oxygen species, and 

angiotensin AT1 receptor agonistic autoantibodies. These circulating factors target the vascular 

endothelium, smooth muscle and various components of the extracellular matrix. Generalized 

endotheliosis in systemic, renal, cerebral and hepatic vessels causes decreases in endothelium-

derived vasodilators such as nitric oxide, prostacyclin and hyperpolarization factor, and increases 

in vasoconstrictors such as endothelin-1 and thromboxane A2. Enhanced mechanisms of vascular 

smooth muscle contraction such as intracellular Ca2+, protein kinase C and Rho-kinase cause 

further increases in vasoconstriction. Changes in matrix metalloproteinases and extracellular 

matrix cause inadequate vascular remodeling and increased arterial stiffening, leading to further 

increases in vascular resistance and hypertension. Therapeutic options are currently limited, but 

understanding the molecular determinants of microvascular dysfunction could help in the design 

of new approaches for the prediction and management of preeclampsia.
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INTRODUCTION

Normal pregnancy is associated with several uteroplacental and hemodynamic changes in 

order to meet the metabolic demands of the growing fetus. Placental remodeling and 

trophoblast invasion of spiral arteries maintain adequate uteroplacental perfusion.1 Also, the 
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increases in maternal plasma volume and cardiac output are counterbalanced by systemic 

vasodilation and decreased vascular resistance, leading to slight decrease in blood pressure 

(BP).2,3 These pregnancy-related changes involve marked uteroplacental and vascular 

remodeling and redistribution of blood flow in different maternal tissues.4 Matrix 

metalloproteinases (MMPs) are major regulators of tissue remodeling, and play an important 

role in the uteroplacental and vascular remodeling during pregnancy.

In 5 to 8% of pregnancies, women may have hypertension in pregnancy (HTN-Preg) in one 

of four forms: chronic HTN that predates pregnancy, preeclampsia (PE)-eclampsia, chronic 

HTN with superimposed PE, and nonproteinuric gestational HTN.5 PE is diagnosed after the 

20th week of pregnancy by new onset HTN, and occasional proteinuria, edema, increased 

platelet aggregation, and fetal intrauterine growth restriction (IUGR).5 PE may be a part of 

hemolysis elevated liver enzymes low platelets (HELLP) syndrome. If not treated, PE may 

progress to eclampsia with severe HTN and convulsions, and could culminate into coma and 

death, causing an estimated 14% of pregnancy-related maternal deaths.6

Although PE is a major cause of maternal and fetal morbidity and mortality, its etiology and 

pathophysiology are not fully understood. Certain genetic and environmental risk factors are 

believed to cause inadequate placentation and reduction in uteroplacental perfusion pressure 

(RUPP), and the resulting placental ischemia/hypoxia causes the release of circulating 

factors that target the blood vessels (Fig. 1). Because of the difficulty to perform mechanistic 

studies in pregnant women, animal models of HTN-Preg have been developed. RUPP during 

late pregnancy in sheep, dog, rabbit and rat has been shown to induce a hypertensive state 

that closely resembles PE.7,8 BP is increased, and the litter size and pup weight are 

decreased in RUPP versus normal pregnant rats.9,10 Studies have also shown changes in 

circulating levels of pro-angiogenic and anti-angiogenic factors, proinflammatory cytokines, 

hypoxia-inducible factor, reactive oxygen species and angiotensin II (AngII) type 1 receptor 

(AT1R) agonistic autoantibodies (AT1-AA) in PE. These circulating factors are believed to 

target endothelium-derived relaxing and contracting factors and the mechanisms of vascular 

smooth muscle (VSM) contraction leading to increased vasoconstriction. Also, 

abnormalities in MMPs could affect extracellular matrix (ECM) and lead to inadequate 

vascular remodeling. Changes in systemic vessels cause generalized vascular dysfunction 

and HTN, while changes in renal glomeruli cause glomerular endotheliosis, increased 

glomerular permeability and proteinuria. Also, changes in cerebral vessels cause cerebral 

edema and seizures, while changes in hepatic vessels could lead to HELLP syndrome.5,11

In this review, we will discuss the possible initiating events leading to RUPP, and the various 

circulating factors released in response to placental ischemia. We will then discuss the 

different molecular targets in the vascular endothelium, VSM and ECM that could lead to 

microvascular dysfunction, decreased vascular relaxation, increased vasoconstriction, 

aberrant vascular remodeling, and HTN. Throughout the review we will briefly define the 

factor involved, and describe the levels during normal pregnancy followed by the changes in 

human PE and experimental HTN-Preg. We will then discuss how identifying the molecular 

determinant of microvascular dysfunction could help design new approaches in the 

prediction and management of PE.
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Defective Placentation and Uteroplacental Ischemia in PE

During early pregnancy, the placenta is developed as a maternal-fetal interface through 

several biological processes including vasculogenesis, angiogenesis, and trophoblast 

invasion and remodeling of spiral arteries. Vasculogenesis is the development of de novo 
blood vessels from endothelial progenitor cells and occurs ~18–35 days after conception in 

humans. Angiogenesis is the sprouting of new blood vessels from preexisting vessels and is 

regulated by the coordinated actions of pro-angiogenic factors and the invasive capability of 

trophoblast cells.12 Healthy pregnancy requires adequate placental vascularization. During 

the first trimester, the placental extravillous trophoblasts invade deep into the maternal 

decidua up to one-third of the myometrium, progressively invading the spiral arteries, 

replacing endothelial cells and VSM, and substituting the elastic tissue with fibrinoid 

material.13 This causes gradual dilation and transformation of the spiral arteries from low-

capacity high-resistance to high-capacity low-resistance vessels, thus ensuring sufficient 

blood and nutrient supply to the developing fetus.

The symptoms of PE remit after delivery of the baby and placenta, implicating the placenta 

as a central culprit in the disorder. Defective placentation, RUPP and placental ischemia/

hypoxia are important initiating events in PE.8,14 Predisposing genetic, demographic and 

environmental factors could affect placental development. Defective placentation could be 

caused by abnormal immune responses and accumulation of natural killer (NK) cells and 

macrophages, apoptosis of cytotrophoblasts, and abnormal expression of integrins and 

MMPs, leading to shallow trophoblast invasion and poor remodeling of spiral arteries.

Predisposing genetic, demographic and environmental factors in PE

Mutations in placental genes have been associated with PE, and 31 out of 36 placental genes 

are downregulated in PE.15 Susceptibility genes include ACVR2A gene on chromosome 

2q22 and STOX1 gene on chromosome 10q22. STOX1 Y153H polymorphism has been 

linked to inadequate trophoblast invasion and IUGR, and was detected in families with 

several generations of women who developed early and severe PE.16 Also, wild-type female 

mice crossed with transgenic male mice overexpressing human STOX1 show PE features 

including HTN and proteinuria.17 FOXP3 is another gene that plays a role in the activation 

of regulatory T cells (Tregs) and controls the immune response and maternal tolerance 

during pregnancy. Downregulation or polymorphism in FOXP3 gene could alter the 

maternal immune response, reduce maternal tolerance and predispose to PE.18,19

Ethnic background, age, maternal lifestyle, pre-pregnancy weight, previous and family 

history of PE, primiparity, and multiple pregnancy could be risk factors for PE.20 The rate of 

PE is higher among African-American (5.2%) than Asian women (3.5%).21 Very young <16 

years or older women >40 years are more prone to PE, and studies in Finland and India 

support that older women are at higher risk of developing PE.22,23 The incidence of PE is 

~3% in women with normal body mass index (BMI, 18.5–24.9), but increases to 7% in 

overweight women with BMI 30–34.9 and to 13% in obese women with BMI around 50.24 

Preexisting medical condition such as heart disease, chronic respiratory disorders, diabetes, 

renal disorders, systemic lupus erythematosus, mental stress, reproductive tract surgery and 

history of antepartum hemorrhage also increase the risk for PE.20 The relationship between 
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age, ethnic background, obesity and other predisposing factors and placental development in 

the setting of PE should be an important area of investigation.

Immune Responses and Defective Placentation in PE—Pregnancy is a 

physiological process that poses a challenge to maternal tolerance and the immune response. 

For healthy pregnancy, the maternal systems must tolerate the semi-allogenic fetus, and 

likewise, the fetus needs to be protected from rejection by the maternal immune response.25 

PE is associated with augmented immune response and increased pro-inflammatory 

cytokines TNFα and IL-6. In support, HIV-positive women, who often have suppressed 

immune response, show lower incidence of hypertensive disorders and PE.26

During normal pregnancy, cytotrophoblasts express the major histocompatibility complex 

molecules HLA-C, HLA-E and HLA-G which interact with their respective inhibitory 

receptors KIR, CD 94/NKGs and ILT-2 on NK cells. These interactions reduce the activity 

of NK cells and prevent them from attacking normal placental and fetal tissues.27 A decrease 

in HLA-C/KIR interaction would lead to increased activity of NK cells, which attack 

placental and fetal tissues and lead to PE.28 Also, healthy pregnancy is associated with 

moderate activation of the complement system. Increased complement activation products 

Bb, C3a and C5a have been associated with PE.29 Also, small subcutaneous vessels from PE 

women show more neutrophils adherent to the endothelium, which may contribute to 

endothelial dysfunction.30 Inhibition of complement activation or depletion of neutrophils 

decreases BP in RUPP rat model of placental ischemia, supporting a role of complement 

activation and innate immune response in HTN-Preg.29,31

Integrins and Reduced Trophoblast Invasion of Spiral Arteries—Trophoblast 

invasion and remodeling of the spiral arteries is in part regulated by integrins and other 

adhesion molecules. Cytotrophoblasts initially express epithelial cell-type adhesion 

molecules such as integrins α6/β4 and α6/β1, and E-cadherin. During normal pregnancy 

cytotrophoblasts become more invasive, and the epithelial cell-type adhesion molecules are 

replaced by the endothelial-type integrins α1/β1 and αV/β3; a process known as vascular 

mimicry or pseudovasculogenesis.32 These phenotypic changes in integrins may be impaired 

during placental hypoxia and PE. Hypoxia increases expression of integrin α5 and 

fibronectin and decreases expression of integrin α1.33 Abnormal expression of epithelial 

cell-type adhesion molecules and apoptosis of cytotrophoblasts cause limited invasion of 

spiral arteries, placental ischemia and RUPP.32,34 Ezrin, an integrin involved in cell 

adhesion, organization and migration, is downregulated in syncytiotrophoblast microvesicles 

from PE women, resulting in reduced invasiveness of cytotrophoblasts, shallow placentation 

and decreased vascularization of the placenta.35 The decreased trophoblast invasion and 

replacement of vascular cells also leads to retention of VSM cells in the spiral arteries, 

causing more vasoconstriction and placental ischemia.36

Endothelial intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion 

molecule-1 (VCAM-1) promote leukocyte migration and adhesion to the endothelium. Also, 

soluble ICAM-1 (sICAM-1) in the plasma could function as a regulatory molecule of 

ICAM-1/2-integrin interaction. Endothelial ICAM-1 and VCAM-1 are downregulated 

during normal pregnancy, thus minimizing leukocyte adhesion to endothelial cells, and 
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maintaining patency and blood flow in the spiral arteries. In contrast, plasma levels of 

sICAM-1 and soluble VCAM-1 (sVCAM-1) are increased in PE, indicating endothelial cell 

dysfunction and increased endothelial ICAM-1 and VCAM-1, which would increase 

leukocyte adhesion to endothelial cells and restrict blood flow in the spiral arteries.37,38

PE is associated with increased placental expression of microRNA miRNA-125b-1–3p 

which reduces the expression of S1PR1, a G-protein coupled receptor that facilitates 

invasion of human trophoblasts.39 PE is also associated with increased expression of 

placental miRNA-517a/b and miRNA-517c, which may contribute to the decreased 

trophoblast invasion of extravillous trophoblasts under hypoxic conditions.40

MMPs, Abnormal Placentation, and Placental Ischemia

MMPs are zinc-dependent proteases that play a role in tissue remodeling.41,42 MMPs 

include collagenases, gelatinases, stromelysins, matrilysins, membrane-type MMPs, and 

other MMPs.43 MMPs play a role in endometrial tissue remodeling during the estrous cycle 

and menstrual cycle, and the uterine and vascular remodeling during pregnancy.44,45 

Trophoblast invasion into the decidual stroma requires degradation of ECM proteins by 

MMPs. MMP-2 (gelatinase A) and MMP-9 (gelatinase B) are abundantly expressed in 

invading extravillous trophoblasts.46,47 Also, epidermal growth factor (EGF)–mediated 

trophoblast invasion is associated with increased expression of MMP-2 and MMP-9.48 

MMP-2 is the main MMP in the umbilical cord5, and serum MMP-9 level is elevated in 

normal pregnancy.41 The pregnancy-related increase in MMPs may be caused by estrogen 

and progesterone. Estrogen enhances the release of MMP-2 from human VSM cells.49 Also, 

MMP-2 and MMP-9 are increased in the uterus and aorta of pregnant rats, and estrogen and 

progesterone enhance MMP-2 and MMP-9 expression in the aorta of virgin rats.50

The role of MMPs in trophoblast invasion of spiral arteries is supported by the observation 

that in first trimester trophoblasts, suppression of MMP-9 inhibits the invasive capability of 

trophoblasts.51 Also, MMP-9 ablation in MMP-9 knockout mice shows a phenotype that 

mimics PE possibly due to impaired trophoblast invasion.52 Genetic polymorphisms in 

MMP-2 and MMP-9 transcription have been described in PE, and decreased MMP-9 levels 

have been observed in PE compared with normal placenta.53 In PE, increased expression of 

miRNA-519d-3p and miRNA-204 could target MMP-2 and MMP-9 and decrease 

trophoblast invasion of spiral arteries.51,54 These observations suggest a relationship 

between decreased MMP-2 and MMP-9 and impaired trophoblast invasion in PE. However, 

measurements of plasma MMP levels have not been consistent in PE, with some studies 

showing an increase in MMP-2 and MMP-9,55 while other studies showing a decrease in 

MMP-9,41 making it important to further measure MMPs in the plasma, placenta and other 

tissues of PE women and animal models of HTN-Preg.

We have examined whether alteration of MMP expression/activity is a potential mechanism 

in the uteroplacental and vascular remodeling in animal models of HTN-Preg. We examined 

the specific changes in three important tissues during pregnancy; the uterus which undergoes 

remodeling to accommodate the growing fetus, the placenta which provides nutrient supply 

to the developing fetus, and the aorta for the vascular changes in the maternal circulation. 

The uterus, placenta, and aortic tissue weight was reduced in RUPP versus normal pregnant 
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rats. Also, histological morphometry showed reduction in uterine, placental and aortic cross-

sectional area in RUPP versus normal pregnant rats, supporting growth-restrictive 

remodeling in RUPP rats.42 Western blots, gelatin zymography and immunohistochemistry 

revealed abundant MMP-2 and MMP-9 in tissues of normal pregnant rats.50 MMPs 

immunostaining was prominent in the aortic media, consistent with reports that VSMCs are 

a major source of MMPs.56,57 The levels of MMP-2 and MMP-9 were reduced in uterus, 

placenta and aorta of RUPP versus normal pregnant rats. The decreases in MMP levels, in 

parallel with the decreases in uterine, placental, and aortic tissue weight and cross-sectional 

area suggest a role for reduced MMP-2 and MMP-9 in growth-restrictive remodeling in 

tissues of RUPP rats.42

Other MMPs may also be involved in uterine and vascular remodeling in PE. The 

collagenase MMP-1 is expressed in cytotrophoblasts and syncytiotrophoblasts of the 

placenta and decidua and may play a role in trophoblast invasion. Some studies have shown 

low levels of MMP-1 in umbilical cord blood, placenta and decidua of PE versus normal 

pregnant women.58 Other studies suggest a role of MMP-1 in the pathogenesis of PE.59 

Also, the matrilysin MMP-7 could play a role in endometrial tissue remodeling during the 

menstrual cycle and pregnancy.60 Cytotrophoblasts and VSM also release MMP-12, which 

could mediate elastolysis and remodeling of spiral arteries.61 Also, some MMPs cleave other 

pro-MMPs, and MT1-MMP is a key activator of proMMP-2.62 MMP activity could also be 

influenced by tissue inhibitors of metalloproteases (TIMPs) and other MMP modulators.62 

For instance, TIMP-2 or specific MMP-2 blocking antibody inhibits cytotrophoblast 

invasion in vitro.47 Also extracellular MMP inducer (EMMPRIN, CD147, Basigin) is a 

widely expressed membrane protein of the immunoglobulin superfamily,63 that has been 

implicated in tissue remodeling, cancer, and heart failure.50 EMMPRIN stimulates the 

production of MMP-1, MMP-2, MMP-3, and MMP-9, and regulates MMPs in endothelial 

cells and tumors.64 We have shown that EMMPRIN expression is increased in the aorta of 

pregnant compared with virgin rats as well as in the aorta of virgin rats treated with estrogen 

and progesterone. Also, the sex hormone-induced increases in aortic MMP-2 and MMP-9 

were blocked by EMMPRIN neutralizing antibody, supporting a role of EMMPRIN in the 

increases in vascular MMPs during pregnancy.50

Circulating Bioactive Factors in PE

Placental hypoxia/ischemia is believed to trigger the release of several bioactive factors 

including the antiangiogenic factors sFlt-1 and sEng, pro-inflammatory cytokines such as 

TNFα and IL-6, HIF, ROS and AT1-AA (Fig. 1).65–68 These factors could target 

uteroplacental and vascular MMPs causing further vasoconstriction of spiral arteries and 

placental ischemia, as well as the vascular endothelium, VSM and ECM in the systemic 

circulation leading to generalized vasoconstriction and HTN-Preg.11

Pro-angiogenic and Anti-angiogenic Factors in PE

Vascular Endothelial Growth Factor (VEGF)—The VEGF gene is located on 

chromosome 6p21.3, and consists of 8 exons involved in the expression of a family of 

growth factors including VEGF-A, VEGF-B, VEGF-C, VEGF-D, and PlGF.69 VEGF-A, 

VEGF-B and PlGF bind to tyrosine kinase receptor Flt-1 (VEGFR-1). VEGF-A binds to 
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VEGFR-2 (Flk-1 or KDR) to promote the development of the placental vasculature.69 

VEGF regulates endothelial cell proliferation, angiogenesis and vascular permeability.69 In 

endothelial cells, VEGF increases [Ca2+]i, Ca2+/calmodulin, endothelial nitric oxide 

synthase (eNOS) activity, and prostacyclin (PGI2).70,71 VEGF also stimulates Ca2+-

independent generation of NO by promoting Akt activation and eNOS Ser1177 

phosphorylation in human umbilical vein endothelial cells (HUVECs).72

Some studies show an increase in circulating VEGF in PE.73–75 Also, villous explants from 

PE women produce greater amounts of VEGF than those form normal pregnant women.76 It 

is likely that the severe vasoconstriction in PE would increase vascular shear-stress, and in 

turn increase circulating VEGF.20 Other studies have shown a decrease or unchanged serum 

levels of VEGF in PE.77,78 Women with the T allele of VEGF 936C/T have lower levels of 

VEGF and a higher risk of PE than women with VEGF 936C/C.79 Plasma VEGF levels are 

decreased in RUPP rat model of HTN-Preg,8 although as with human villous explants, 

placenta from RUPP rats show greater VEGF production.80 The differences in the results 

may be related to the method of VEGF measurement.

A decrease in VEGF may also play a role in the glomerular endotheliosis and proteinuria in 

PE. VEGF is synthesized constitutively by podocytes in the glomerulus where it maintains 

endothelial cell health and induces the formation of fenestrae. Endotheliosis and loss of 

fenestrae have been detected in genetic glomerular VEGF deficiency.81 Also, in clinical 

cancer trials the use of VEGF neutralizing antibodies is associated with proteinuria.82 In 

mice, infusion of VEGF antibodies leads to glomerular endotheliosis and proteinuria.83 

Also, mice lacking one VEGF allele in renal podocytes develop a renal pathology similar to 

that in PE. Importantly, infusion of VEGF ameliorates the renal lesions, glomerulonephritis 

and thrombotic microangiopathy in RUPP rats, suggesting potential benefits of pro-

angiogenic factors in the glomerular endotheliosis associated with HTN-Preg.84,85

MMPs induce the release of growth factors by cleaving the growth factor-binding proteins or 

matrix molecules. MMPs may also be regulated by growth factors.86 MMPs may mediate 

the angiogenic effects of VEGF by virtue of their proteolytic activity and other mechanisms 

including helping to detach pericytes from the vessels undergoing angiogenesis, releasing 

ECM-bound angiogenic growth factors, exposing cryptic pro-angiogenic integrin binding 

sites in ECM, generating pro-migratory ECM component fragments, and cleaving 

endothelial cell-cell adhesions.87 Interestingly, VEGF increases the expression of MMP-1, 

MMP-3, MMP-7, MMP-8, MMP-9, MMP-10, MMP-13, and MMP-19 in HUVECs, and 

induces MMP-10 expression via PI3K and MAPK pathways.88 The interaction between 

MMPs and VEGF in the setting of uteroplacental and vascular remodeling in normal 

pregnancy and PE should be further examined.

Placental Growth Factor (PlGF)—PlGF is a pro-angiogenic factor that binds to 

VEGFR-1 and enhances the angiogenic effects of VEGF.89 PlGF has only 1/10th the affinity 

of VEGF for VEGFR-1, but its levels are ~40 times higher than those of VEGF during 

normal pregnancy. PIGF promotes endothelial cell growth, placental vasculogenesis, and 

vasodilation of uterine vessels.11
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Plasma PlGF levels are low in non-pregnant women (~44 pg/mL), and markedly increase 

during normal pregnancy.89 PlGF levels are ~353 pg/mL during gestational weeks 21 and 

22, rising steadily to ~574 pg/mL after gestational weeks 29 and 30.90 Circulating PlGF 

levels decrease in PE,73,91 and the decrease is more apparent in early than late PE.92 PlGF 

has four alternatively spliced mRNA forms (PIGF 1–4), and its predominant isoform PIGF-1 

is downregulated in PE.93 Circulating levels of PlGF are also decreased in RUPP and 

deoxycorticosterone acetate (DOCA)-salt hypertensive rats.8,94

In addition to its growth promoting effects, PlGF promotes vasodilation via VEGFR-1 and 

endothelium-derived hyperpolarizing factor (EDHF)-mediated activation of small 

conductance Ca2+-activated K+ channels (SKCa).95,96 In small mesenteric arteries of 

pregnant rats treated with L-NAME and indomethacin, a second exposure to PlGF produces 

greater vasodilation and greater reduction in VSM [Ca2+]i than the first PlGF application. 

VEGF and PlGF may promote VEGFR-1 dimerization, and the initial exposure to PlGF may 

facilitate the formation of receptor homodimers and their submembrane signaling, leading to 

augmented vasodilator responses to repeated PlGF stimulation.96 A decrease in the levels of 

PlGF may be partly responsible for the decreased vasodilator responses in PE.

Soluble fms-like Tyrosine Kinase-1 (sFlt-1)—sFlt-1 (sVEGFR-1) is an anti-

angiogenic factor expressed as an alternatively spliced variant of VEGFR-1 that lacks both 

the transmembrane and cytoplasmic domains. sFlt-1 binds VEGF and PlGF and blocks their 

angiogenic effects on VEGFR. sFlt-1 may also form a heterodimer with the surface 

membrane VEGFR-1 and inhibit its post-receptor signaling actions.97 Trophoblasts express 

sFlt-1 mRNA. sFlt-1 levels are ~0.15 ng/mL in non-pregnant women and increase to ~1.5 

ng/mL in normal pregnant women.11 sFlt-1 levels are largely stable in normal pregnant 

women, and show an increase after gestational week 36. Throughout the third trimester, an 

increase in sFlt-1 is associated with some reduction in VEGF and PlGF levels. PE women 

show imbalance between sFlt-1, VEGF and PlGF.77,92 The sFlt-1 gene has a gene locus on 

chromosome 13q12. In women with trisomy 13, an extra copy of the sFlt-1 gene is 

associated with increased circulating sFlt-1, reduced PlGF and increased risk of PE.98 

Studies have shown higher circulating levels of sFlt-1 in early and late PE.91,92 Serum sFlt-1 

is also higher in women with previous PE (~0.5 ng/mL) than in women with previous 

normal pregnancy (~0.3 ng/mL), and the increases can be detected even 6 months after 

delivery.99 sFlt-1 levels are also greater in villous explants from PE compared with normal 

pregnant women.76

Placental ischemia/hypoxia may trigger the production of sFlt-1. During placental hypoxia, 

HIF-1 may bind to the promoter region of flt-1 gene leading to upregulation of sFlt-1.76,77 In 

extravillous trophoblasts, overexpression of miR-517a/b and miR-517c increase the 

expression of TNFSF15, a cytokine that promotes Flt-1 splicing, and increases the 

production of sFlt-1.40 sFlt-1 e15a, a splice variant of sFlt-1 and the most abundant form 

released by the placenta, binds VEGF and in turn decreases endothelial cell migration, 

invasion, and tube formation. sFlt-1 e15a is expressed in syncytiotrophoblasts and its serum 

levels are 10-fold higher in PE than normal pregnant women.100
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Because of the increased levels of sFlt-1, a 53% decrease in VEGF/sFlt-1 ratio and a 70% 

decrease in PlGF/sFlt-1 ratio have been observed in PE placenta.76 The circulating sFlt-1/

PlGF ratio is higher in PE than normal pregnant women from second trimester onwards and 

may serve as a predictor of the onset of PE,92 However, some studies suggest that the 

circulating sFlt-1/PlGF ratio could be lower in late versus early PE.92,101 Circulating sFlt-1 

levels and sFlt-1/PlGF ratio are higher in twin than singleton pregnancies, and the difference 

is likely related to the greater placental mass in twin pregnancies.102,103 The proportionate 

increases in sFlt-1 and sFlt-1/PlGF ratio in twin versus singleton pregnancies support the 

concept that the placenta is a major source of these factors. Angiogenic imbalance may 

affect endothelin-1 (ET-1) levels. PE women with sFlt-1/PlGF ratio >85 have higher levels 

of ET-1 than women with sFlt-1/PlGF ratio <85.104 Importantly, extracorporeal removal of 

circulating sFlt-1 from PE patients decreases sFlt-1/PlGF ratio, improves symptoms and 

prolongs pregnancy,105 further supporting a role of sFlt-1 in PE.

RUPP rats show increases in plasma and placental levels of sFlt-1 and plasma sFlt-1/PlGF 

ratio.8,106 Other animal models of HTN-Preg show either increased or little change in 

circulating sFlt-1 levels.94,107–111 Importantly, Infusion of exogenous sFlt-1 or adenoviral 

overexpression of sFlt-1 in pregnant rats causes increases in BP, decreased plasma VEGF, 

proteinuria, and glomerular endotheliosis with occlusion of renal capillaries and focal fibrin 

deposition in glomerular cells.77,112 Also, mice treated with sFlt-1 show increased vascular 

response to ET-1.113 Treatment of endothelial cells with plasma of PE patients decreases 

angiogenesis, and removal of sFlt-1 or treatment with VEGF or a sFlt-1 antibody restores 

endothelial cell angiogenesis.76

Of note, VEGF through an action on VEGFR-2 stimulates the production of sFlt-1 in human 

placental explants.114 This feedback modulation of VEGF by sFlt-1 may represent a local 

protective mechanism at the maternal-fetal interface to control VEGF levels and prevent 

damage to the placenta or fetus by excess VEGF during normal pregnancy,114 and this 

VEGF-sFlt-1 feedback mechanism may be altered in PE.

Some studies suggest that sFlt-1-induced inhibition of VEGFR-2 could decrease endothelial 

VEGF production and MMP-2 and MMP-9 expression/activity.115 In mouse model of 

abdominal aortic aneurysm treatment with sFlt-1 reduces aneurysm size and attenuates 

MMP-2 and MMP-9 activity in peri-aortic tissue.116 Also, our recent studies have supported 

a role of sFlt-1 as a potential upstream mechanism to decrease MMPs in HTN-Preg.42 We 

found that sFlt-1 reduced MMPs in uterine, placental and vascular tissues of normal 

pregnant rats, while VEGF reversed the sFlt-1 induced decreases in MMPs in tissues of 

normal pregnant rats and increased MMPs levels in tissues of RUPP rats to levels similar to 

those in normal pregnant rats. These observations are consistent with reports that infusion of 

VEGF reduces BP in RUPP rats.117

Soluble Endoglin (sEng)—Transforming growth factor-β1 (TGF-β1) binds to TGF 

receptor and induces proliferation and migration of endothelial cells.69 Endoglin (Eng) is a 

co-receptor for TGF-β1 and TGF-β3 that is highly expressed on cell membrane of 

endothelial cells and syncytiotrophoblasts, where it mediates proliferation of angiogenic 

endothelial cells and trophoblasts.118 Mutations in Eng gene are associated with loss of 
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capillaries, arterio-venous malformations, and hereditary hemorrhagic telangiectasia.119 

sEng is an anti-angiogenic protein that binds TGF-β1 and prevents it from binding to its 

natural angiogenic receptor, and thereby inhibits TGF-β1-induced eNOS activation and 

vasodilation.69 Hypoxia induces the release of sEng. In placental extracts, exposure to 

hypoxia increases the expression of sEng.120

Serum levels of sEng are barely detectable in non-pregnant women and are much lower in 

normal pregnant women.121 The levels of sEng are 3-, 5- and 10-fold higher in women with 

mild PE, severe PE and HELLP syndrome, respectively, compared with gestational age–

matched control pregnant women.121 Serum levels of sEng may be increased in early and 

late PE.122,123 However, one study showed an increase in sEng levels at gestational weeks 

10–17 in women who developed early PE, but not in those who developed late PE.101

In RUPP rat model of HTN-Preg, sEng levels are increased in the serum and placenta, and 

serum TGF-β levels are decreased.67 However, sEng levels did not show detectable change 

in DOCA-salt or L-NAME treated rat models of HTN-Preg.94,107 It is likely that sEng acts 

in concert with sFlt-1 to aggravate vascular permeability, proteinuria, IUGR and HTN.121 In 

support, pregnant rats infused with both sEng and sFlt-1 show HELLP syndrome-like 

characteristics.124 In cultured HUVECs, sEng impairs endothelial formation.121 Whether 

sEng targets MMPs and affects uteroplacental and vascular remodeling in HTN-Preg is 

unclear. Of note, MMP-14 cleaves Eng, the TGF-β co-receptor, and inhibits its angiogenic 

effects,125 and these effects may play a role in PE.

Cytokines, TNFα, and Interleukins

In PE, defective trophoblast invasion and decreased uteroplacental blood flow result in 

periods of ischemia/reperfusion. During placental reperfusion injury, reestablished blood 

flow causes the release of the pro-inflammatory cytokines TNFα and interleukins (ILs).
5,11,25,126 The circulating levels of TNFα are greater in PE than normal pregnant women,
127,128 although the placental levels of TNFα may not be different in PE versus normal 

pregnancy.129 LIGHT, or TNF superfamily member 14, is also increased in PE and may 

contribute to placental ischemia.130 The plasma levels and CD4+T cell production of TNFα 
are increased in RUPP versus normal pregnant rats.126,131,132 Infusion of TNFα causes HTN 

and proteinuria in late pregnant mice, rats, and baboons.110,111,133 Similarly, infusion of the 

TNF superfamily member LIGHT in pregnant mice increases BP, proteinuria, and the 

expression of ET-1 and sFlt-1.130 TNFα may work in concert with IL-6 to increase ET-1 

levels and cause HTN in RUPP rats.126 TNFα may also function in synergy with sFlt-1 to 

promote a pro-inflammatory and antiangiogenic state. Treatment of HUVECs with both 

TNFα and sFlt-1 causes an increase in the adhesion molecules ICAM and VCAM and 

promotes the release of markers of endothelial dysfunction such as ET-1 and von Willebrand 

factor.72 In support of a role of TNFα in HTN-Preg, blockade of TNFα with the TNFα 
decoy receptor etanercept reduces BP in RUPP rats. Also, treatment of HUVECs with serum 

from RUPP rats treated with the TNFα blocker etanercept produces less ET-1 than serum 

from nontreated RUPP rats.126

TNFα modulates the immune response. TNF-α increases vascular permeability, fibroblast 

proliferation and lymphocyte activation, and promotes the production of IL-6 and IL-8. 
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TNFα downregulates eNOS and mitochondrial biogenesis, leading to mitochondrial 

dysfunction, oxidative stress and increased ROS production.134 TNFα also alters the 

expression of adhesion molecules in placental vessels.126 and MMP production in PE.135

IL-6 is another cytokine that is elevated in PE.123,127 RUPP rats show increased plasma 

levels and higher CD4+T cell production of IL-6.131,132 Chronic infusion of IL-6 in pregnant 

rats causes HTN, proteinuria,136 enhanced vascular contraction and reduced endothelium-

dependent relaxation.65 IL-6 promotes dimerization of the surface receptor GP-130 on 

endothelial cells leading to abnormal cell signaling and vascular dysfunction. IL-6 also 

increases vascular permeability by disrupting the tight junctions in endothelial cells.137

IL-1β could also promote the inflammatory response and disrupt endothelial function in PE. 

Monocyte production of IL-1β is greater in PE than normal pregnant women.138

IL-10 is an anti-inflammatory cytokine whose levels are reduced in the plasma and placenta 

of PE women and plasma of RUPP rats.128,129,132 Also, in placental trophoblasts, exposure 

to hypoxia increases pro-inflammatory cytokines and decreases IL-10.139

The source of pro-inflammatory cytokine in PE is mostly in the maternal circulation. 

Monocytes and macrophages are the main reservoirs of cytokines and are the first cells to be 

activated in nonspecific immune response.140 Monocytes produce more TNFα and IL-6 

when treated with plasma from PE than normal pregnant women.140 IL-10 may regulate the 

monocytes and the inflammatory response during normal pregnancy by controlling TNFα 
and IL-1β gene expression,138 and the IL-10-mediated regulatory effects appear to be lost in 

PE. Interestingly, uric acid stimulates monocytes to release cytokines, and hyperuricemia is 

often observed in PE patients. Also, monocytes from PE patients with high levels of uric 

acid produce more TNFα and IL-1β than monocytes from normal pregnant women.138 

MMPs may also promote the release of cytokines in PE.141

Hypoxia-Inducible Factor (HIF)

HIF is a transcriptional factor that plays a role in the physiologic responses to hypoxia. 

HIF-1 is a heterodimer consisting of an oxygen-regulated HIF-1α and HIF-2α subunits and 

a constitutively expressed HIF-1β subunit. While hypoxia is an important inducer of HIF, de 
novo synthesis of HIF-1α may occur in response to non-hypoxic stimuli such as pro-

inflammatory factors. TNFα upregulates HIF-1α mRNA expression.111 Also, a large 

number of genes are regulated by HIF-1 including VEGF, leptin, TGF-β3, and NOS. DNA 

microarray analysis in arterial endothelial cells have shown that more than 2% of human 

genes are regulated directly or indirectly by HIF-1.5

HIF expression increases during pregnancy, likely due to increased estrogen and 

progesterone. Estrogen stimulates uterine HIF-2α, and progesterone upregulates uterine 

HIF-1α expression.142 HIF shows further increase in PE.143 Circulating HIF-1α levels are 

increased in PE compared with normal pregnant women.144 HIF-1α may contribute to the 

pathogenesis of PE by upregulating the anti-angiogenic factors sFlt-1 and sEng, binding to 

ET-1 gene and changing ET-1 mRNA expression, reducing the trophoblast invasion 

capability, and inducing AngII-converting enzyme (ACE) expression in the lungs and kidney 
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and AngII production.5,145 In support, HIF-1α increases sFlt-1 in human villous 

trophoblasts.146 Placental levels of HIF-1α are elevated in RUPP rat model of HTN-Preg.67 

Also, downregulation of HIF-1α mRNA using siRNA reverses the increases in BP, 

proteinuria, renal damage and serum levels of sFlt-1 in mice models of HTN-Preg.146

In addition to the role of HIF in oxygen homeostasis and its regulation by oxygen,147 

cytokines, hormones, metallic ions and mechanical stretch induce HIF expression.147,148 

Prolonged mechanical stretch increases HIF-1α and HIF-2α mRNA expression and protein 

levels in skeletal muscle fibers.149,150 Also, upregulation of HIF-1α has been observed in rat 

cardiac myocytes, aortic VSM cells and fibroblasts exposed to mechanical stretch.151–153 

HIF-1α mRNA is upregulated in VSM cells subjected to cyclic stretch for 4 hours.151 Also, 

HIF-1α protein is increased in fibroblasts subjected to cyclic stretch for 24 hours.153 The 

mechanisms via which mechanical stretch upregulate HIF may involve PI3K and MAPK.
148,149,151 Studies have suggested that HIF regulates the expression of MMP-2 and 

MMP-9.154,155 Also, we have shown that mechanical stretch increases HIF-1α expression, 

and that HIF could increase MMP expression in rat inferior vena cava.156 Whether HIF 

functions as a transducing signaling mechanism between vascular mechanical stretch and the 

expression of MMPs during pregnancy needs to be examined.

Reactive Oxygen Species (ROS)

ROS such as superoxide anion (O2
•-), hydrogen peroxide (H2O2) and hydroxyl ion (OH−) 

contain highly reactive O2. Normal pregnancy represents a state of oxidative stress caused 

by increased maternal metabolism and metabolic activity of the placenta. Although 

generation of ROS is increased during pregnancy,157 placental production of ROS is 

normally counterbalanced by antioxidants.5 In contrast, in PE, defective placentation and 

decreased uteroplacental vascularization result in periods of placental ischemia/reperfusion 

and a hypoxic environment that favors oxidative stress.134 In PE, the levels of antioxidants 

may be too low to counterbalance the increased ROS production.158

Hemeoxygenase (HO) is the rate-limiting enzyme responsible for degradation of heme to 

biliverdin, free iron and carbon monoxide (CO) in the endoplasmic reticulum. Biliverdin is 

rapidly reduced to bilirubin, an antioxidant, by the cytosolic enzyme biliverdin reductase. 

CO is a potent vasodilator with anti-apoptotic properties. HO has two main isoforms, HO-1 

and HO-2. HO-2 is a 36 kDa protein constitutively expressed at high levels in the brain, 

testis and vascular endothelium. HO-1 is an inducible 32 kDa protein that is widely 

distributed in the body, with high levels in the liver and spleen. HO-1 is induced by its 

substrate heme and by heavy metals. Stimuli that cause oxidative stress, such as 

peroxynitrite, modified lipids, hypoxia, hyperoxia, ischemia/reperfusion, hyperthermia and 

endotoxic shock, up-regulate HO-1 expression.159 HO-1 via its products inhibits oxidative 

stress, inflammation and apoptosis.160 HO-1 deficiency results in endothelial damage as 

indicated by elevation of thrombomodulin and von Willebrand factor.161

Expression of antioxidant enzymes such as HO-1, HO-2, copper/zinc superoxide dismutase, 

glutathione peroxidase and catalase is decreased in PE. Also, the total antioxidant capacity is 

lower in serum of PE than normal pregnant women.162 ROS/antioxidants imbalance leads to 

lipid peroxidation, increased thromboxane A2 (TXA2) and loss of glutathione peroxidase 
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activity in the placenta.163 Antioxidant levels were reduced in women who were later 

diagnosed with early PE,164 supporting a role of oxidative stress in the pathogenesis of PE. 

In PE women, reduced brachial artery flow-mediated dilation is associated with decreased 

plasma levels of the antioxidant ascorbate, and administration of ascorbic acid improves 

flow-mediated dilation, supporting a relation between oxidative stress and endothelial 

dysfunction in PE.165 Also, placental levels of HO-1 are reduced in RUPP compared with 

normal pregnant rats,67 supporting a role of ROS in HTN-Preg.

Neutrophils and monocytes are major sources of ROS in PE. Monocytes from PE women 

produce more H2O2 and O2
•- and cause more endothelial cell damage than monocytes from 

normal pregnant women.166,167 Neutrophils also produce NO, which can protect cells from 

the damaging effects of O2
•- during normal pregnancy. However, in PE, excess O2

•- 

scavenge the NO produced by neutrophils to form peroxynitrite (ONOO–), thus reducing 

NO bioavailability and causing endothelial cell damage.167 NADPH oxidase is a membrane-

bound enzyme that catalyzes the one-electron reduction of oxygen to O2
•- via NADPH. 

NADPH oxidase isoform NOX1 is overexpressed in the placenta of PE women.168 In 

HUVECs, treatment with serum from PE women increases mRNA expression of the 

NADPH oxidase subunit gp91phox, and augments O2
•- production.169 Treatment of 

HUVECs with PE serum also causes overexpression of iNOS,169 which produces excess NO 

and in turn increase ROS and promotes endothelial cell injury. In RUPP rat model of HTN-

Preg treatment with iNOS inhibitors decreases BP, aortic levels of ROS and NADPH-

dependent production of ROS.170 Biopterin (BH4) promotes eNOS dimerization and activity. 

Hypoxia reduces BH4 causing eNOS uncoupling, increased ROS production, and decreased 

NO bioavailability.171 In DOCA-salt hypertensive rats, supplementation with a BH4 such as 

sepiapterin decreases production of ONOO− and O2
•- and increases NO production.171

Other markers of lipid peroxidation and oxidative stress such as malondialdehyde and 

prostaglandin F2α are increased in serum of PE women at gestational weeks 10–14. This 

may cause gradual oxidative damage in the placenta, even before overt symptoms of PE.172 

Plasma levels of the oxidative stress marker 8-isoprostane, and total aortic and placental 

levels of ROS are higher in RUPP than normal pregnant rats.132,170 In first-trimester villous 

trophoblasts, excessive oxidative stress affects the expression of miRNAs involved in 

angiogenesis, apoptosis, immune response and inflammation, and this could be a potential 

mechanism in PE.173 MMPs may also contribute to the increases in ROS in PE.141

AngII and AT1 Receptor Agonistic Autoantibodies (AT1-AA)

The renin-angiotensin-system (RAS) is involved in the regulation of salt, water, and BP. 

Normal pregnancy is associated with increased blood volume with little change in BP, 

raising the possibility that RAS plays a role in PE. In a study to investigate the role of RAS 

and plasma progesterone levels in HTN-Preg, sequential measurements were made 

throughout pregnancy in normotensive subjects, HTN-Preg patients in whom HTN became 

manifest only during pregnancy (PE), and patients with chronic HTN antedating pregnancy. 

Among the normotensive subjects, plasma renin activity and substrate, and plasma 

aldosterone and progesterone levels were elevated as early as gestational week 6. 

Progressive increases were noted in renin substrate, aldosterone and progesterone levels 
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during pregnancy, but plasma renin activity did not continue to rise. In HTN-Preg groups, 

plasma levels of renin substrate and progesterone were not different from those in 

normotensive pregnancy, but plasma renin activity and aldosterone levels were suppressed 

during the last trimester, likely through secondary effects. RAS suppression did not appear 

to be due to a decrease in renin substrate levels and a hypothesized deficiency of plasma 

progesterone was not observed in the hypertensive subjects suggesting that it may not play a 

permissive role in the development of HTN-Preg.174 Another prospective longitudinal study 

explored the relationship between RAS and the development of superimposed PE. In 

pregnant women with chronic HTN in whom PE did not develop, BP decreased and RAS 

was stimulated, beginning in the first trimester and continuing throughout pregnancy as in 

normotensive pregnant women. Plasma estradiol and progesterone levels also increased 

progressively. In women with chronic HTN in whom PE developed, BP decreased and RAS 

was stimulated in the first trimester as in the other groups. However, later in pregnancy BP 

began to rise in the second trimester. Initially RAS remained stimulated, but in the early 

third trimester, when PE was diagnosed, plasma renin activity and urine aldosterone 

excretion decreased, and atrial natriuretic factor increased,175 supporting that RAS is 

modulated in HTN-Preg and PE.

AngII is an important regulator of water and electrolyte homeostasis and BP. AngII 

activation of vascular AT1R promotes vascular growth, inflammation, and vasoconstriction 

and increases [Ca2+]i and Rho-kinase activity in VSM. AngII activation of endothelial AT2R 

increases eNOS activity and NO production, PGI2, and vasodilation, and thereby counteracts 

AngII-induced vasoconstriction. Therefore, while normal pregnancy is associated with 

increased plasma levels of renin and AngII, the pressor effects of AngII are decreased due to 

decreased AT1R and/or increased AT2R. On the other hand, the dose of AngII required to 

elicit a 20 mmHg pressor response in the diastolic BP in women at gestational weeks 23–26 

was lower in women who subsequently developed PE compared with normal pregnant 

women who remained normotensive,176 suggesting an increase in the pressor response to 

AngII long before overt PE.

AngII levels and AT1R mRNA expression are increased in chorionic villi and placenta of PE 

versus normal pregnant women.177,178 Plasma hemopexin activity increases during normal 

gestation from week 10 onward, and active hemopexin downregulates AT1R in human 

monocytes and endothelial cells, and decreases functional AT1R and AngII-induced 

contraction in rat aortic rings. In PE, hemopexin activity may be inhibited resulting in 

enhanced AT1R expression and increased vasoconstriction.179

AT1-AA is a bioactive factor that promotes vasoconstriction and VSM growth via AT1R. 

Serum levels of AT1-AA are elevated in PE than normal pregnant women,109,180 and are 

further elevated in severe PE and in early versus late PE.181 AT1-AA has been linked to 

increased BP, reduced trophoblast invasion, increased sFlt-1, ROS and cellular Ca2+, 

activation of coagulation tissue factor and thrombosis, vascular damage in the adrenal 

glands, and reduced aldosterone secretion in PE.109,182 AT1-AA also promotes collagen-

induced platelet aggregation, which may contribute to the hypercoagulability in PE.180 In 

cultured trophoblasts, stimulation of AT1R with IgG isolated from PE women causes 

increases in sFlt-1 levels.183 In HUVECs, treatment with AT1-AA isolated from PE women 
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induces the release of the cell death and necrosis marker lactate dehydrogenase,184 

suggesting that AT1-AA causes endothelial cell damage and necrosis. Also, in HUVECs, 

AT1-AA induces the activity of caspase-3 and caspase-8, suggesting that it promotes 

endothelial cell apoptosis.184 Circulating levels of AT1-AA are also increased in RUPP 

compared with normal pregnant rats.185,186 Infusion of AT1-AA in pregnant mice causes 

some of the manifestations of PE including increased BP, proteinuria and plasma sFlt-1 

levels.109 Also, infusion of AT1-AA in pregnant rats increases ET-1 levels 4-fold in the 

placenta and 11-fold in the renal cortex.187 Endothelium-dependent acetylcholine (ACh)-

induced vasodilation is reduced in the renal interlobar arteries of pregnant rats infused with 

AT1-AA, suggesting a link between AT1-AA and renal endothelial dysfunction in HTN-

Preg. The impaired ACh-induced vasodilation in AT1-AA infused pregnant rats is reversed 

by an ETAR antagonist, suggesting an interplay between AngII and ET-1 in the setting of 

endothelial dysfunction and HTN-Preg.188 While the mechanisms causing the release of 

AT1-AA in PE are not understood, plasma levels of AT1-AA are increased in pregnant rats 

infused with TNFα, suggesting cytokine-mediated pathways.186

Extracellular Vesicles (EVs) in PE

Extracellular vesicles (EVs) are lipid-bilayer structures that are released from cells into the 

extracellular environment. They contain proteins, miRNA, growth and apoptotic factors, and 

other regulatory components to induce cell-to-cell communication and signaling throughout 

the body. EVs are released under normal and pathological conditions, and multiple EV types 

can be produced from different cells, including red blood cells, fibroblasts, endothelial cells, 

and trophoblasts. After secretion from cells, EVs modify the activity of adjacent cells or 

travel to regions distal to the site of release in several body fluids. In PE, impaired placental 

function with placental apoptosis and necrosis causes increased release of microvesicles and 

nanovesicles. These exosomes contain proteins, miRNA, DNA, RNA; as well the lipids 

comprising the vesicular wall. EVs (including exosomes) originating from placental explant 

and cells promote pro-inflammatory cytokines production and endothelial dysfunction, and 

may be involved in different stages of PE.189

Vascular Dysfunction in HTN-Preg and PE

Normal pregnancy is associated with vasodilation of the maternal uterine, renal and systemic 

vessels,190 and reduction in the mechanisms of vascular contraction, likely due to increased 

plasma levels of estrogen and progesterone.191,192 Estrogen causes relaxation of VSM of the 

rat aorta and uterine artery.193,194 Also, progesterone inhibits contraction of rat blood 

vessels.193 PE is associated with endothelial dysfunction, increased mechanisms of VSM 

contraction and inadequate remodeling of ECM.

Endothelial Dysfunction in PE

Normal and functional endothelium ensures healthy gestation and a favorable prognosis for 

the mother and fetus.195 Brachial artery diameter and flow-mediated dilation increase as 

gestation progresses.196 Also, endothelium-dependent bradykinin-induced relaxation is 

increased in small subcutaneous arteries from pregnant compared with non-pregnant 

women.197 ATP also causes periodic bursts in cytosolic free Ca2+ concentration ([Ca2+]c) 

that are more frequent in uterine artery endothelial cells from pregnant compared with non-
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pregnant ewes,198 leading to increased vasodilation, decreased uterine artery myogenic tone, 

and adequate uterine blood flow during pregnancy.199

In addition to their effects on the uterus, gonadal hormones contribute to the vascular 

changes during pregnancy. Estrogen promotes endothelium-dependent vascular relaxation by 

increasing the release of NO, PGI2 and EDHF.200 Estrogen also causes relaxation of 

endothelium-denuded vessels by inhibiting the mechanisms of VSM contraction including 

[Ca2+]c and protein kinase C.201,202 Estrogen may have additional effects on the vascular 

cytoskeleton, ECM, lipid profile and inflammatory response.200 Progesterone also causes 

vasodilation by mechanisms similar to estrogen.202,203 Some of the vascular effect of 

estrogen could involve MMPs. In cultured human coronary artery and umbilical artery VSM 

cells, estrogen causes dose-dependent increases in MMP-2 levels in culture media.49

In contrast with normal pregnancy, women with PE show systemic endothelial cell 

dysfunction and HTN.5 Brachial artery flow-mediated dilation is less in PE than normal 

pregnant women.195,204 PE women also show less vasodilation in the radial artery when 

compared to normal pregnant women.205 Bradykinin-induced relaxation is decreased in 

small subcutaneous arteries of PE compared with normal pregnant women.197 Circulating 

endothelial cells and other markers of endothelial activation/injury such as soluble 

VCAM-1, E-selectin and endocan are increased in PE compared with normal pregnant 

women.99,206–208 On the other hand, circulating endothelial progenitor cells are decreased 

and may serve as a marker of endothelial damage in PE women.209

The RUPP rat shows some of the characteristics of PE including high BP, proteinuria, 

decreased glomerular filtration rate and renal plasma flow, and IUGR, and therefore has 

been used to study the vascular mechanisms of HTN-Preg.210–212 ACh is less potent in 

inducing relaxation in the aorta and mesenteric microvessels of RUPP than normal pregnant 

rats, suggesting endothelial damage in RUPP rats.7,212 Endothelial cells release various 

vasodilator substances including nitric oxide (NO), prostacyclin (PGI2) and endothelium-

derived hyperpolarizing factor (EDHF) as well as contracting factors as endothelin-1 (ET-1) 

and thromboxane A2 (TXA2). Endothelial dysfunction is associated with abnormal release 

of endothelium-derived vasodilator and vasoconstrictor factors.

Changes in Nitric Oxide (NO) in PE—NO is a potent vasodilator and relaxant of VSM. 

NO diffuses into VSM and increases cyclic guanosine monophosphate (cGMP), which 

promotes Ca2+ efflux, decreases VSM [Ca2+]c and causes VSM relaxation. Nitrites are 

important metabolites of NO that are increased in serum of normal pregnant compared with 

non-pregnant women.213 Plasma levels and urinary excretion of cGMP, a second messenger 

of NO, are also increased in normal pregnancy. NOS expression/activity increase in human 

uterine artery and in the placenta with gestational age.214,215. Also, urinary nitrite levels, 

mRNA expression of eNOS, iNOS and nNOS, and protein level of activated phospho-eNOS 

are increased in normal pregnant compared with virgin rats,216 supporting pregnancy-related 

increase in NO.

Polymorphisms in eNOS gene could be a risk factor for PE. The VNTRa and 894T alleles of 

eNOS gene are associated with early and late severe PE, respectively. For the eNOS 
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VNTRb/a polymorphism, plasma NO metabolites are lower in subjects homozygous for the 

“a” allele. Also, the eNOS 894T allele is prone to selective proteolytic cleavage in 

endothelial cells and vascular tissues, thus accounting for the reduced NO production in 

subjects homozygous for this variant.217 The T786C allele is also increased in PE compared 

with normal pregnant women.218,219 Also, normal pregnant women with the TT phenotype 

for the T-786C allele have lower plasma nitrite levels than those with the CC phenotype,220 

and the TT phenotype has been proposed as a risk factor for PE in Tunisian women.218

Endothelial dysfunction is often associated with decreased NO due to decreased synthesis or 

bioavailability.221 Clinical studies have shown increased222 or decreased223–225 plasma 

nitrite levels in PE compared with normal pregnant women. Also, urinary nitrite levels may 

not differ in PE versus normal pregnant women,223 and this may not be solely related to 

dietary nitrate intake since a study that carefully controlled dietary nitrate/nitrite intake did 

not show decreased NO production in PE women.226

The lack of change in whole-body NO despite the increase in BP and the renal damage in PE 

suggest tissue-specific changes in NOS expression and NO bioavailability.5 Studies have 

shown a decrease in nitrites in placentae from PE women.225 Also, eNOS expression is 

decreased in umbilical cord of PE compared with normal pregnant women,227 and the 

decrease is greater in women with severe PE.228,229 However, some studies showed an 

increase in eNOS mRNA expression in placenta of PE women.230 Also, while the levels of 

cGMP are increased during normal pregnancy, the plasma and urinary cGMP levels are not 

different in PE versus normal pregnant women.223

The role of NO has also been examined in animal models of HTN-Preg. In mid- to late 

pregnant rats, NOS blockade with Nω-nitro-L-arginine methyl ester (L-NAME) causes PE-

like manifestations including increased BP, renal vasoconstriction, proteinuria, 

thrombocytopenia and IUGR.231 However, similar to the observation in humans, 

measurements of NO in HTN-Preg animals have not been consistent. Studies showed no 

difference in nitrite levels in L-NAME treated versus nontreated pregnant rats.107 Also, 

while plasma nitrite levels were lower in RUPP than normal pregnant rats,210 no differences 

were observed in urinary nitrite levels.211,232 Also, consistent with the studies in human, no 

changes in circulating levels of the NOS substrate L-arginine were observed in RUPP versus 

normal pregnant rats.233 Vascular function studies have shown increased aortic vascular 

reactivity to phenylephrine in L-NAME treated pregnant rats.231 Also, ACh-induced 

relaxation, eNOS expression, and NO production are reduced in mesenteric artery and aorta 

of RUPP versus normal pregnant rats, supporting reduced NO synthesis in the vasculature.
7,212 In DOCA-salt rat model of HTN-Preg, NO-dependent relaxation was reduced in 

mesenteric vessels despite elevation of eNOS mRNA expression.171

We should note that NO has diverse functions that extend beyond vasodilation/VSM 

relaxation. NO plays a role in regulation of renal tubular function, immune modulation, and 

as an antioxidant, and dysregulation of these NO functions may be important mechanisms 

underlying HTN-Preg and PE.
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Changes in Prostacyclin (PGI2) in PE

PGI2 is produced from the metabolism of arachidonic acid by cyclooxygenase 2 (COX)-2 

and COX-1, and is a potent vasodilator and inhibitor of platelet aggregation. During normal 

pregnancy, the synthesis of 6-keto-PGF1α (a stable metabolite of PGI2) is increased in 

fetoplacental tissues, suggesting a role in the regulation of the maternal and fetal circulation.
234,235 Plasma and urinary levels of PGF1α are decreased in severe PE, suggesting that the 

overall PGI2 synthesis is diminished. Endothelial PGI2 production may also decrease in PE.
236 While the release of PGI₂ may not be different in apical and basal trophoblasts of PE 

compared with normal pregnant women, the release of TXA₂, another COX product, from 

basal trophoblast cells is increased in PE and may contribute to increased placental 

vasoconstriction.237

Hydrogen Sulfide (H2S)—In some arteries, relaxation responses cannot be fully 

explained by NO and PGI2, and a possible role of H2S has been suggested. Reduction in 

plasma levels of H2S has been reported in PE pregnancies. Also, cystathionine-γ-lyase 

(CSE), the primary H2S-synthesizing enzyme in the vasculature, is reduced in PE.238

Endothelium-Derived Hyperpolarizing Factor (EDHF) in PE—EDHF is a relaxing 

factor with specialized role in the control of small resistance vessels, local organ blood flow, 

peripheral vascular resistance and BP. Although the nature of EDHF is unclear, it often 

presents as K+ efflux from endothelial cells through intermediate and small conductance 

Ca2+-activated K+ channels (IKCa and SKCa, respectively) causing hyperpolarization of 

endothelial cells. Endothelial cell hyperpolarization then spreads via myoendothelial gap 

junctions (MEGJs) and connexins to cause VSM hyperpolarization, reduction of Ca2+ influx 

via voltage-dependent Ca2+ channels and suppression of the activity of phospolipase C, an 

enzyme involved in signal transduction in VSM. The opening of endothelial cell IKCa and 

SKCa could also cause some accumulation of K+ ion in the myoendothelial interface which 

could induce VSM hyperpolarization by activating the inwardly rectifying K+ (KIR) 

channels and the Na+/K+-ATPase.239 EDHF relaxation may also be caused by diffusible 

factors released from endothelial cells. EDHF may be a product of cytochrome P450 

(CYP450), such as epoxyeicosatrienoic acid (EET), which activate large conductance KCa 

(BKCa) and cause hyperpolarization of VSM. In some vessels, H2O2 may mimic EDHF-

mediated responses by mechanisms involving KCa activation.240 Thus multiple EDHFs may 

exist and the identity of EDHF could vary depending on the vascular bed and animal species 

studied.241

In small subcutaneous and myometrial arteries of normal pregnant women, EDHF is 

responsible for ~50% of bradykinin-induced relaxation, acting together with NO to maintain 

proper vascular tonus.242,243 The gap junction proteins connexins 37, 40 and 43 are partly 

involved in EDHF-mediated vascular response during normal pregnancy.244 An increase in 

endothelial cell [Ca2+]c activates IKCa and SKCa and EDHF-mediated dilation in uterine 

radial arteries of pregnant rats.245 The delayed rectifier type of voltage-sensitive K+ channels 

(Kv) may also play a role in EDHF-mediated dilation in uterine artery of pregnant rats.246
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Studies in subcutaneous arteries from normal pregnant women have shown that MEGJs 

alone are the main pathway of EDHF-mediated relaxation, while in women with PE MEGJs 

alone or in combination with H2O2 or CYP450 epoxygenase metabolites of arachidonic acid 

could mediate EDHF-induced vasodilation. The changes in the role of MEGJs may be 

caused by morphological changes within the vascular wall during PE.247 Small myometrial 

arteries from PE women also showed reduced vasodilatory responses that were attributed to 

decreased contribution of EDHF due to physical disruption of MEGJs.248 Studies in mice 

have shown pregnancy-associated adaptations in the form of decreased sensitivity to 

phenylephrine and enhanced bradykinin-induced vasodilation in normal pregnant wild-type 

mice, but not in knockout mice lacking pregnane X receptor, a nuclear receptor that induces 

the expression of CYP450. Also, treatment with CYP450 inhibitor changed the vasodilatory 

response to bradykinin in wild-type but not the knockout mice, supporting that metabolites 

of CYP450 such as EET may play a role in the vascular adaptations during pregnancy.249 As 

EET is one of the possible factors involved in EDHF-mediated relaxation, it is plausible to 

suggest that alterations in EDHF may lead to impaired vascular function and HTN-Preg. 

Although studies in mesenteric microvessels have suggested that the EDHF relaxation may 

not be compromised in RUPP versus normal pregnant rats,212 decreased EDHF-mediated 

relaxation contributes to the vasoconstriction observed in HTN and diabetes, and its role in 

PE needs to be further examined.

Endothelin-1 (ET-1) in PE—ET-1 is a major endothelium-derived vasoconstrictor that 

could play a role in PE.250 ET-1 synthesis is initiated from the long 203 amino acid 

preproET, which is cleaved by furin-like protease to biologically inactive 37 to 41 amino 

acid big-ET. Big-ET is cleaved by endothelin converting enzymes, members of the 

metalloprotease family, to produce active 21 amino acid ET-1. Circulating factors in PE such 

as cytokines, hypoxia and AT1-AA may stimulate endothelial cells to produce ET-1.250 In 

support, serum from PE women causes HUVECs to produce greater amounts of ET-1 than 

normal pregnant serum.251 Some studies suggest that plasma ET-1 levels are elevated in PE.
252 ET-1 levels are higher during later stages of PE and return to normal levels within 48 

hours after delivery,253 suggesting that ET-1 may be involved in the progression rather than 

the initiation of PE. However, in most studies serum ET-1 levels do not differ in PE versus 

normal pregnant women, and higher levels of ET-1 are observed mainly in HELLP 

syndrome.74,254,255 Of note, ET-1 is released in a paracrine fashion from endothelial cells 

directly toward VSMCs, and the increases in ET-1 levels in PE may be localized in tissues. 

Studies have shown a 4- to 8-fold increase in ET-1 levels in umbilical cord cells and in renal 

tissues during later stages of PE.253,256 In perfused placentas under hypoxia, both the 

maternal and fetal side produce increased levels of ET-1.257 In RUPP rats, preproET levels 

show a 45% increase in renal cortex and 22% increase in renal medulla.258 Thus, circulating 

ET-1 levels may not always reflect local ET-1 levels in tissues. It is possible that in severe 

PE and in HELLP syndrome ET-1 production is so augmented such that it “loses” its 

paracrine directionality and leads to increased circulating ET-1 levels. In support, rat models 

that mimic severe PE and HELLP syndrome show increased plasma levels of ET-1.124,259

ET-1 may play a role in the pathogenesis of PE by inducing apoptosis of trophoblast cells 

and increasing oxidant and anti-angiogenic substances.250,260 ET-1 activates endothelin 

Yu et al. Page 19

Microcirculation. Author manuscript; available in PMC 2020 April 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



receptor type A (ETAR) and type B (ETBR).261–263 ET-1 activation of VSM ETAR 

stimulates Ca2+ release from the intracellular stores and Ca2+ entry through Ca2+ channels, 

and causes protein kinase C-dependent inhibition of K+ channels leading to increased 

[Ca2+]c and VSM contraction.261 ET-1-induced vasoconstriction is reduced in mesenteric 

vessels of normal pregnant compared with non-pregnant rats,264 and VSM ETAR is reduced 

in aortic media and VSMCs of late-pregnant rat.265 Also, treatment with ETAR antagonist 

reduces BP in RUPP rat and other animal models of HTN-Preg.258,266,267 Of note, among 

Brazilian women with PE, 52% of the patients with severe PE exhibited increases in ETAR 

agonistic autoantibodies (ETA-AA) which targets ETAR and increases vasoconstriction.268 

ET-1 also activates ETBR in endothelial cells and stimulates the release of NO, PGI2, and 

EDHF which in turn reduce myogenic vascular tone, promote vasodilation of renal arteries 

and hyperfiltration in pregnant rats.261,269 Downregulation of ETBR may impair trophoblast 

invasion in PE and decrease microvascular dilation in pregnant rats. ETBR expression is 

reduced in endothelial and renal cells of RUPP rats. Also, ETBR-mediated NO production is 

less in the aorta and mesenteric artery of RUPP versus normal pregnant rats, supporting that 

downregulation of endothelial ETBR could play a role in HTN-Preg.212

Thromboxane A₂ (TXA₂) in PE—TXA₂ is a potent stimulator of platelet aggregation, 

vasoconstriction, and VSM cell proliferation and mitogenesis. PE is associated with 

decreased vascular production of PGI₂ and increased production of TXA₂, and this may 

explain HTN and increased platelet aggregation in PE. Imbalance between urinary TXB₂ 
metabolites, markers of TXA₂ synthesis, and PGI₂ predates clinical symptoms of PE.236 

This led to the suggestion that antiplatelet agents such as low-dose aspirin and other 

thromboxane modulators might prevent or ameliorate PE. In clinical trials, women at high 

risk for PE showed no benefit of low dose aspirin as a preventive measure.270 However, 

ozagrel, a thromboxane modulator, was found to reduce the occurrence of HTN-Preg and 

proteinuria,271 making it important to further examine the role of TXA2 in PE.

Vascular Smooth Muscle (VSM) Dysfunction in PE

VSM Ca2+ in PE—Ca2+ is a major determinant of VSM contraction and growth. Ca2+ 

release from the intracellular stores and Ca2+ entry from the extracellular space increase 

[Ca2+]c in VSM. Ca2+ binds calmodulin to form Ca2+-calmodulin complex which activates 

myosin light chain kinase, and causes myosin phosphorylation, actin-myosin interaction and 

VSM contraction. Decreased Ca2+ in VSM activates myosin phosphatase which 

dephosphorylates myosin light chain and leads to dissociation of the Ca2+-calmodulin 

complex. Endothelium-derived relaxing factors act on VSM to decrease [Ca2+]c. During 

normal pregnancy, increased KCa channel activity decreases uterine artery tonicity and 

increases uteroplacental blood supply. In PE, KCa channel activity is suppressed leading to 

increased uterine artery [Ca2+]c, vasoconstriction and reduced fetal blood supply.272 

Myometrial vessels may show similar vasoconstriction responses to high KCI, 

phenylephrine and AngII in normal pregnancy and PE.273 However, basal and agonist-

stimulated [Ca2+]c are reduced in renal arterial VSM of normal pregnant rats, and increased 

in pregnant rats treated with L-NAME.274 AT1R activation increases [Ca2+]c in platelets, 

erythrocytes, and lymphocytes of PE women, and these effects subside 6 weeks after 

delivery.182 AngII- and caffeine-induced contraction and [Ca2+]c in Ca2+-free solution are 
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similar in VSM of normal pregnant and RUPP rats, while KCl-induced maintained [Ca2+]c 

in a Ca2+-containing medium is greater in VSM of RUPP than normal pregnant rats, 

suggesting that it is not Ca2+ release from the intracellular stores, but Ca2+ entry from the 

extracellular space that increases vasoconstriction in HTN-Preg.275

Protein Kinase C (PKC) in PE—PKC is an important mediator of VSM contraction. 

PKC phosphorylates CPI-17 which inhibits myosin phosphatase and in turn increases 

myosin light chain phosphorylation and VSM contraction. PKC also phosphorylates 

calponin, an actin binding protein that inhibits myosin ATPase, leading to more actin-

myosin interaction and VSM contraction. Phorbol esters activate PKC to cause VSM 

contraction with no detectable change in [Ca2+]c, suggesting that PKC increases Ca2+ 

sensitivity of the contractile proteins. PKC activity and contraction are reduced in uterine 

artery of late pregnant ewes and gilts and the aorta of late pregnant rats.276–278 Also, the 

expression and subcellular redistribution of Ca2+-dependent α-PKC and Ca2+-independent 

δ- and ζ-PKC are reduced in aortic VSM of late pregnant rats, but are increased in L-NAME 

treated pregnant rat.277,279 PKC may increase the production of AT1-AA which stimulates 

AT1R. In cultured rat cardiomyocytes treatment with IgG obtained from PE women 

enhances AT1R-mediated response which is ameliorated with the PKC inhibitor calphostin 

C.280 Increased BKCa channel activity inhibits PKC-mediated contraction in ovine uterine 

arteries during pregnancy, and gestational hypoxia may upregulate PKC and inhibit BKCa.
272 PKC inhibitors decrease TXA2 mediated contraction in uterine and mesenteric arteries of 

virgin rats and in mesenteric artery of pregnant rats, supporting a role of PKC in mediating 

VSM contraction during pregnancy.281 Blocking PKC can prevent PKC-mediated 

vasoconstriction in PE. Cicletanine is an anti-hypertensive drug that prevents the increase in 

PKC and lowers BP in HTN-Preg rats. MMP-2 may reduce vascular contraction by 

degrading the actin-binding protein and PKC substrate calponin,282 and a decrease in 

MMP-2 would spare calponin and affect VSM contraction in HTN-Preg.

Mitogen-activated protein kinase (MAPK) is a serine/threonine protein kinase that regulates 

cellular activities such as gene expression, mitosis, differentiation, and VSM contraction. 

During VSM contraction, PKC may phosphorylate MAPK kinase which in turn 

phosphorylates and activates MAPK. Activated MAPK phosphorylates the actin-binding 

protein caldesmon thus preventing its inhibition of ATPase and increases actin-myosin 

interaction and VSM contraction. Changes in PKC activity in VSM during normal 

pregnancy and HTN-Preg could affect MAPK/caldesmon phosphorylation and VSM 

contraction.283 In support, inhibition of p38 MAPK reduces TXA2-induced contraction in 

uterine and mesenteric arteries of virgin and pregnant rats.281

VSM Rho-Kinase (ROCK) in PE—Rho is a family of small GTP-binding proteins that 

are involved in cell migration, cytoskeletal reorganization and VSM contraction. RhoA 

binding to GTP activates Rho-kinase (ROCK), and activated ROCK is inactivated by 

hydrolyzing GTP to GDP. ROCK has two isoforms, ROCK-1 (ROCK-I, ROKβ) and 

ROCK-2 (ROCK-II, ROKα), which contribute to the formation of microvilli structures 

during pregnancy. In PE, placental villi show abnormal expression of ROCK-II and 

apoptosis of the syncytium.284 ROCK increases Ca2+ sensitivity of the contractile proteins in 
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subcutaneous resistance arteries of PE women.285 Also, AngII via AT1R induces RhoA/

ROCK activity in L-NAME treated hypertensive rats.286 ROCK may stimulate IL-17 to 

phosphorylate the inhibitory eNOS Thr495 residue thus decreasing NO production in PE.287 

ROCK Inhibition reduces TXA2-induced contraction in uterine vessels of non-pregnant rats.
281 However, some studies show decreased ROCK mRNA expression in umbilical arteries of 

PE women,270,288 making it important to further examine the role of ROCK in the vascular 

changes in PE.

Extracellular Matrix and Vascular Remodeling in PE

The extracellular matrix (ECM) is an integral component of the vascular wall. Pregnancy-

associated changes in MMPs play a role in ECM and vascular remodeling, angiogenesis, and 

structural changes in blood vessels.87 MMPs degrade different substrates including collagen, 

gelatin, and other proteins.43,62 We have investigated the changes in MMPs substrates in the 

RUPP rat model of HTN-Preg. Picro-Sirius Red staining revealed an increase in collagen 

content in uterus, placenta and aorta of RUPP versus normal pregnant rats.42 Because MMPs 

facilitate cell growth and migration by promoting proteolysis of ECM, the decreased 

MMP-2 and MMP-9 and increased collagen deposition in RUPP tissues could impede cell 

growth, proliferation and migration, and thus interfere with uteroplacental tissue invasion 

and uterine and placental growth. Also, while the aortic collagen content increased, there 

was a decrease in aortic tissue weight and thickness in RUPP rats, likely because the 

decreased MMPs and increased collagen content would interfere with VSMC growth and 

migration. The decreased MMP activity and increased vascular collagen content could also 

increase the blood vessel rigidity and decrease its plasticity and thus contribute to increased 

vascular resistance and HTN. This is consistent with reports that MMP-1, MMP-2, and 

MMP-9 activity is decreased and collagen deposition is increased in internal mammary 

artery from hypertensive compared with normotensive patients undergoing coronary artery 

bypass surgery.289 It is important to note that collagen has 18 types and different subtypes.
290 MMP-2 can degrade collagen I, II, III, IV, V, VII, X, and XI while MMP-9 can degrade 

collagen IV, V, VII, X, XIV.43,62,291 Studies should measure the changes in various collagen 

subtypes in HTN-Preg. Also, RT-PCR experiments should determine whether any increases 

in a collagen subtype are due to decreased degradation or increased de novo collagen mRNA 

expression and protein biosynthesis.

While MMPs are largely known for their proteolytic effects on ECM, we and others have 

identified novel MMP-induced downstream pathways that could affect membrane receptors, 

cell signaling and vascular function.59,292–294 Prolonged increases in intravascular pressure 

and wall tension cause increases in MMP-2 and MMP-9 expression.293–295 Also, MMP-2 

and MMP-9 cause relaxation of phenylephrine precontracted rat aorta294 and inferior vena 

cava.293,295 Thus during normal pregnancy, plasma volume expansion could lead to 

increased MMP-2 and MMP-9, vasodilation and decreased BP. The decrease in vascular 

MMP-2 and MMP-9 is expected to hinder vasorelaxation in RUPP rats, consistent with the 

observed decrease in ACh-induced relaxation in blood vessels of RUPP versus pregnant rats.
7,264
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MMPs break down big-ET-1 into different endothelins with different affinities for ETAR and 

ETBR. MMPs degrade big-ET into ET-1, which largely stimulates ETAR and promotes 

vasoconstriction.296 Studies have suggested a role of ET-1 and ETAR in some forms of HTN 

including HTN-Preg.258,266,297–299 In omental vessels of pregnant women, MMP-1 causes 

vasoconstriction and enhances reactivity to AngII via an endothelium-dependent protease-

activated receptor (PAR) and ET-1 pathway.59 ET-1 in turn can stimulate VSM contraction 

mechanisms including [Ca2+]c, PKC, and ROCK.300–302

MMP-2 and MMP-9 could degrade big-ET to ET1–32 which preferentially stimulates 

endothelial ETBR and promotes relaxation. MMP-2 and MMP-9 cause vascular relaxation 

by decreasing Ca2+ influx into VSM,294 and a decrease in these MMPs could lead to 

increased Ca2+ influx, vasoconstriction and HTN-Preg. We have shown increases in MMP-2, 

MMP-9 and ETBR in normal pregnant rats.50,264,292 ETBR is downregulated in RUPP rats, 

and infusion of the ETBR antagonist BQ788 increases BP in pregnant rats.212 Also, MMP-2 

induces vascular relaxation partly via hyperpolarization and activation of K+ channels.293,295 

Thus, the decrease in MMP-2 and MMP-9 mediated relaxation may contribute to the 

enhanced vascular contraction and increased BP in RUPP rat model of HTN-preg.7,106,212

Prediction and Management of PE

PE has a relatively long preclinical phase before manifesting in late gestation, and the 

identification of women at risk, early diagnosis using biomarkers, and prompt management 

could improve the maternal and perinatal outcome.5 Thrombocytopenia is common and 

progresses with severity of PE.303 Longitudinal studies have shown that women who 

develop PE have higher mean platelet volume 4.6 weeks prior to the appearance of 

symptoms.270 Doppler screening at 23 weeks of pregnancy and detection of early diastolic 

bilateral uterine artery notching in the waveform could predict PE. PE women with uterine 

artery notching have altered levels of fibrinolytic activators and inhibitors such as tissue-type 

plasminogen activator (t-PA), PAI-1, PAI-2, plasmin-α2-antiplasmin (PAP) and D-dimers. 

Increased t-PA levels in PE women appears to be related to endothelial cell activation/

dysfunction.304 Also, a decrease in brachial artery flow-mediated vasodilation is an early 

indicator of endothelial dysfunction between the 24th and 28th gestational weeks and before 

clinical diagnosis of PE. The sensitivity of flow-mediated vasodilation is 87.5% and 95.5% 

for the prediction of early and late PE, respectively.195

Biomarkers allow early assessment in asymptomatic pregnant women at increased risk of PE 

based on their clinical history of PE or HTN in a previous pregnancy, or pre-pregnancy state 

e.g. HTN, obesity, or autoimmune disease. Angiogenic imbalance is an important feature in 

PE. Measurements of plasma VEGF, PlGF, sFlt-1 and sEng may help early detection in 

asymptomatic women at high risk for PE.5 In PE, circulating levels of sFlt-1 are increased 

more than one month before the onset of clinical symptoms, and PlGF is decreased in 

women who subsequently develop PE from the end of the first trimester.305 The sFlt-1/PlGF 

ratio is increased in both early and late PE.92 A meta-analysis of 20 different studies suggest 

that the overall diagnostic accuracy of sFlt-1/PlGF ratio for PE is relatively high, and is 

higher in early than late PE.306 However, patients with late onset PE could show lower levels 

of sFlt1/PlGF ratio compared to early onset PE,92 suggesting that other factors may be 
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involved and could serve as markers of PE. sFlt1–14 is human-specific splicing variant of 

VEGFR-1 produced by nonendothelial cells and a potent inhibitor of VEGF. The expression 

of sFlt1–14 is elevated in placenta of PE women, specifically in abnormal clusters of 

degenerative syncytiotrophoblasts known as syncytial knots.307

Abnormal maternal immunological response could help in predicting PE in early pregnancy, 

and is often presented as a change in monocytes and natural killer (NK) cells, increased pro-

inflammatory cytokines, increased AT1-AA, and activation of AT1R.5,308 The alternate 

complement pathway is upregulated in PE and plasma levels of factor B-derived Bb 

fragment are higher in PE than normal pregnant women.270 TNFα levels could be an early 

predictor of PE. Plasma obtained at gestational weeks 11–13 showed high TNFα levels in 

women who later developed PE.309 Elevated plasma TNFα levels in association with 

changes in uterine artery Doppler at 11–13th gestational weeks have a 100% sensitivity in 

predicting PE.310 Also, plasma levels of sTNF-R1 and sTNF-R2 are elevated in PE.311 Other 

reports suggest that plasma TNFα levels may be useful in predicting PE in the early third 

trimester, but not the first or second trimesters.312

Uric acid is a marker of oxidative stress, tissue injury and renal dysfunction. During normal 

pregnancy, uric acid levels decrease initially, but then gradually increase over gestational 

time. Hypoxia and ischemia of the placenta and cytokines such as interferon induce 

expression of xanthine oxidase which increases the production of uric acid and ROS. During 

PE, hyperuricemia may develop as early as 10th week of gestation. Increased circulating uric 

acid may attenuate trophoblast invasion and spiral artery remodeling, stimulate monocytes to 

produce TNFα, IL-6 and IL-1β, and contribute to endothelial dysfunction and reduced NO 

production.313 Plasma levels of malondialdehyde, a highly reactive compound and a marker 

for oxidative stress are also higher in PE than normal pregnant women, and positively 

associated with maternal plasma sFlt-1 levels.314

Elevated serum level of placental glycoprotein pregnancy-associated plasma protein-A 

(PAPP-A) and of placental protein 13 (PP13), together with abnormal Doppler ultrasound of 

the uterine artery, have a high predictive value in PE.315 Also, serum levels of fetal 

hemoglobin, α1-microglobulin, activin A, and inhibin A are altered in PE.314,316

Amniocentesis and amniotic fluid analysis in the second trimester may be useful in 

predicting PE. Insulin-like factor 3 (INSL3) is a member of the insulin/relaxin family of 

peptide hormones made by the fetal testis and is responsible for the first trans-abdominal 

phase of testicular descent. In the presence of a male fetus, INSL3 is elevated in amniotic 

fluid samples of women who subsequently develop PE.270 The amniotic fluid levels of 

inhibin A, a glycoprotein produced by syncytiotrophoblast, are higher in pregnant women 

who subsequently develop severe PE than in normal pregnant women317. Also, the level of 

sFlt-1 is higher in the amniotic fluid of PE than normal pregnant women.318

Microarray analysis could be used to screen the placental transcriptome for upregulated and 

downregulated genes in PE. The mRNA levels of plasminogen activator inhibitor-1 (PAI-1), 

tissue-type plasminogen activator (t-PA), VEGFR-1 (Flt-1), endoglin, placenta-specific 

protein 1 and P-selectin were increased in plasma from pregnant women who later 
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developed PE. Flt-1 had the highest detection rate while placenta-specific protein 1 had the 

lowest detection rate, with the best multivariable model obtained by the combination of all 

markers.319 miRNA-206 interacts with several genes involved in PE and is elevated at 

gestational week 28 in plasma and placenta from women who subsequently develop PE,320 

although other studies show little predictive value of miRNAs.321

Measurements of MMPs have not been consistent in PE, with some studies showing an 

increase in MMP-2 and MMP-9,55 while other studies showing a decrease in MMP-9.41 

However, plasma MMPs represents global changes in MMPs in different tissues, and 

localized changes in uteroplacental tissues and fluids may carry more predictive value.

In search for other PE biomarkers, studies have shown that pregnant mice deficient in 

catechol-O-methyltransferase (COMT) show a PE-like phenotype. COMT deficiency leads 

to an absence or decrease of 2-methoxyestradiol (2-ME), a natural metabolite of estradiol, 

which is normally elevated during the third trimester of normal pregnancy. Administration of 

2-ME ameliorated several of the PE-like features in the Comt–/– pregnant mice, and 

suppressed placental hypoxia, HIF-1α expression, and sFlt-1 elevation. Plasma levels of 

COMT and 2-ME are decreased in PE women, and may be used as biomarkers for PE.322 

Despite the existence of several markers for PE, their predictive value needs to be further 

assessed in order to identify the best marker combinations for use in clinical settings.

Currently, inducing labor and delivery of the fetus and placenta are the most effective 

measures for PE. Prenatal care is most important in management of PE and includes bed rest 

and anti-HTN drugs such as oral nifedipine or intravenous hydralazine or diazoxide, 

depending on severity of HTN. International guidelines recommend one antihypertensive 

agent e.g. methyldopa, labetalol, another beta-blocker (acebutolol, metoprolol, pindolol, 

propranolol), or Ca2+ channel blocker (nifedipine).323 Angiotensin receptor blockers 

(ARBs) and angiotensin converting enzyme (ACE) inhibitors should not be used due to their 

teratogenic effects, and atenolol and prazosin are not recommended prior to delivery. If PE 

worsens to eclampsia, airway patency should be maintained to prevent fluid aspiration, and 

anticonvulsants are given, with Mg2+ sulfate infusion being the drug of choice.324

Sildenafil may be useful in women with severe early-onset IUGR, as it could promote fetal 

growth with no maternal side effects.325 Sildenafil citrate dilates myometrial artery and 

restores endothelial cell integrity in placental vessels of L-NAME treated mouse model of 

HTN-Preg.326 Eculizumab, an anti-C5 antibody, normalized laboratory values and prolonged 

pregnancy by 17 days in a woman with PE/HELLP syndrome, suggesting the benefits of 

manipulating the complement system during PE. However, complement inhibitors could 

increase susceptibility to infection and their long-term use requires close monitoring.327

Correcting the angiogenic imbalance may be beneficial in PE. In trophoblast cells and 

HUVECs treated with cobalt chloride to simulate hypoxic conditions, the free radical 

scavenger edaravone inhibits sFlt-1 expression in trophoblast cells and protects against the 

decrease in vascular development and tube formation in HUVECs.328 VEGF could improve 

the angiogenic imbalance, but may impair bradykinin-induced vascular relaxation and 

enhance basal tone and vascular permeability in PE.13 Modulators of PlGF could be more 
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promising in PE, and low molecular weight heparin increases circulating PlGF levels during 

the third trimester.329 Infusion of PlGF or VEGF reduces BP in RUPP rats.117,330

TNFα antagonists such as etanercept decrease BP, increase eNOS expression and decrease 

ET-1 levels in RUPP rats.126,331 IL-17 soluble receptor C inhibits IL-17, prevents the 

recruitment of host defense cells, suppresses the inflammatory response, decreases AT1-AA 

and ROS, and ameliorates HTN and pup and placental weight in RUPP rats.332 Infusion of 

anti-inflammatory IL-10 decreases BP in DOCA/salt rat model of HTN-Preg.333

Another approach is to aim at downstream targets affected by cytoactive factors. If MMPs 

are a central target in HTN-Preg, then modulating MMP expression/activity should promote 

vasodilation and reduce BP. Doxycycline is an MMP inhibitor that could alleviate HTN and 

vascular dysfunction, but may decrease placenta weight and cause IUGR in normal pregnant 

rats, and reduce trophoblast invasion and placental perfusion in HTN-Preg rats.135 Novel 

approaches to indirectly or directly correct mediators of microvascular dysfunction should 

provide new strategies in the management of HTN-Preg and PE.

Perspective

Normal pregnancy is associated with uteroplacental and vascular remodeling in order to 

adapt for the growing fetus. Genetic and environmental factors cause defective placentation, 

altered maternal immune response, and abnormal expression of integrins, inflammatory 

cytokines and MMPs, leading to apoptosis of trophoblast cells, shallow trophoblastic 

invasion and inadequate spiral artery remodeling, RUPP, and placental ischemia/hypoxia. 

Ischemic/hypoxic placenta causes the release of bioactive factors such as sFlt-1, sEng, 

TNFα, IL-6, HIF, ROS and AT1-AA. Bioactive factors could affect endothelial cells, cause 

endothelial dysfunction, decrease vasodilators or increase ET-1, or target MMPs in ECM 

leading to increased vasoconstriction, altered uteroplacental and vascular remodeling, 

increased uteroplacental and vascular collagen, growth-restrictive remodeling, and HTN-

Preg.156,334 These bioactive factors and vascular mediators may be different with respect to 

timing, severity and mechanisms in early versus late-onset PE. Further understanding of the 

interaction between bioactive factors, vascular mediators and molecular mechanisms should 

help design more efficient measures for early detection and management of PE.
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2-ME 2-methoxy estradiol
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AngII angiotensin II

ARB angiotensin receptor blocker

AT1R AngII type 1 receptor

AT1-AA AngII AT1R agonistic autoantibodies

BP blood pressure

[Ca2+]c cytosolic free Ca2+ concentration

cGMP cyclic guanosine monophosphate

COX cyclooxygenase

DOCA deoxycorticosterone acetate

ECM extracellular matrix

EDHF endothelium-derived hyperpolarizing factor

eNOS endothelial nitric oxide synthase

EMMPRIN extracellular MMP inducer

EGF epidermal growth factor

ET-1 endothelin-1

HO hemeoxygenase

H2O2 hydrogen peroxide

HIF hypoxia-inducible factor

HELLP hemolysis elevated liver enzymes low platelets

HTN-Preg hypertension in pregnancy

HUVECs human umbilical vein endothelial cells

ICAM-1 intercellular adhesion molecule-1

IL interleukin

IUGR intrauterine growth restriction

L-NAME Nω-nitro-L-arginine methyl ester

MAPK mitogen-activated protein kinase

MEGJ myoendothelial gap junction

MMP matrix metalloproteinase

NO nitric oxide
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NOS nitric oxide synthase

O2•- superoxide anion

PE preeclampsia

PGI2 prostacyclin

PlGF placental growth factor

PKC protein kinase C

RAS renin-angiotensin-system

ROCK Rho-kinase

ROS reactive oxygen species

RUPP reduced uterine perfusion pressure

sEng soluble endoglin

sFlt-1 soluble fms-like tyrosine kinase-1

TGF-β transforming growth factor-β

TIMP tissue inhibitor of metalloproteinases

TNFα tumor necrosis factor-α

TXA2 thromboxane A2

VEGF vascular endothelial growth factor

VCAM-1 vascular cell adhesion molecule-1

VSM vascular smooth muscle
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Fig. 1. 
Mechanisms of microvascular dysfunction in HTN-Preg. Initial reduction of uteroplacental 

perfusion pressure (RUPP) and uteroplacental ischemia causes the release of bioactive and 

circulating factors, which target blood vessels leading to decreased endothelium-dependent 

vascular relaxation pathways, increased endothelin-1 (ET-1) and mechanisms of VSM 

contraction, and abnormalities in MMPs expression/activity and increased collagen 

deposition in extracellular matrix (ECM), resulting in increased vascular resistance and 

HTN-Preg.

AT1-AA, AngII AT1R agonistic autoantibodies; EDHF, endothelium-derived hyperpolarizing 

factor; HIF, hypoxia-inducible factor; HO, hemeoxygenase, IL-6, interleukin-6; NO, nitric 

oxide; PKC, protein kinase C; PlGF, placental growth factor; ROS, reactive oxygen species; 

sEng, soluble endoglin; sFlt-1, soluble fms-like tyrosine kinase-1; TNFα, tumor necrosis 

factor-α; VEGF, vascular endothelial growth factor; VSM, vascular smooth muscle
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