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Abstract

Non-alcoholic fatty liver disease (NAFLD) is characterized by excessive lipid hepatic 

accumulation. Here, we investigated whether a reduction of CD98 expression mediated by CD98 

siRNA-loaded nanoparticles (NPs) could attenuate liver disease markers in a mouse model of 

NAFLD. NPs were generated using a double emulsion/solvent evaporation technique. Mice fed a 

high fat diet for 8 weeks to induce fatty liver were treated with vein tail injections of CD98 

siRNA-loaded NPs. In vitro, HepG2 treated with CD98 siRNA-loaded NPs showed significant 

downregulation of CD98 leading to a significant decrease of major pro-inflammatory cytokines 

and markers. In vivo, CD98 siRNA-loaded NPs strongly decreased all markers of NAFLD, 

including the blood levels of ALT and lipids accumulation, fibrosis evidence and pro-

inflammatory cytokines. In conclusion, our results indicate that CD98 appears to function as a key 

actor/inducer in NAFLD, and that our NPs approach may offer a new targeted therapeutic for this 

disease.
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Background

Non-alcoholic fatty liver disease (NAFLD) is highly correlated to obesity and insulin 

resistance. It is a major problem as many studies have strongly correlated NAFLD with non-

alcoholic steatohepatitis (NASH) and its possible pathogenesis to more dramatic liver 

diseases 1,2, such as cirrhosis and hepatocellular carcinoma (HCC). Thus, this “benign” 

liver-associated disease has been increasingly studied in the past decade 1–3.
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The liver contributes to multiple functions, including: carbohydrate metabolism, plasma 

protein synthesis, digestion, the disposal of drugs, toxins and hormones, phagocytosis, and 

the metabolism of lipids, proteins and amino acids 4. Some of the major diseases of the liver 

include fatty liver diseases (FLD), NASH, hepatitis B and C, fibrosis, cirrhosis, and HCC. 

FLD is classified into two types: NAFLD and alcoholic fatty liver disease (AFLD). NAFLD, 

which is very common in adults and children of Western society due to the common 

consumption of a high fat diet, is defined as lipid accumulation which progressively leads to 

NASH and dramatically increases the risks of cirrhosis, liver failure, and HCC 5,6. The 

pathogenesis of NAFLD is poorly understood, but the disease has been associated with a 

number of metabolic conditions including: insulin resistance, lipidemia and hepatic fibrosis 
7,8. Several theories have been put forth to explain the development of NAFLD. The most 

prominent is the multi-hit hypothesis, which states that NAFLD begins with insulin 

resistance, which leads to the oxidization of lipids and the release free fatty acids. In the first 

hit, the free fatty acids are repacked as triglycerides, which are stored in fat vacuoles in the 

liver, causing hepatic steatosis 7. In the second hit, lipid oxidation causes oxidative damage 

through the production of reactive oxygen species (ROS) and inflammatory mediators, such 

as tumor necrosis factor α (TNF-α), IL-6, cyclooxygenase 2 (Cox-2) and interferon gamma 

(IFN-γ) 7. This damage disrupts apoptosis and allows the hepatic steatosis to progress to 

NASH 7.

CD98 is a cell-surface amino-acid transporter formed by covalent linkage of the CD98 

heavy chain (CD98hc) with several different light chains (CD98lc). In this study, we targeted 

CD98 by siRNA strategy to reduce the CD98hc. The justification of our strategy is that 

CD98hc has particularly the function of a β1-integrin regulator and can be modulated by 

IFN-γ 9,10. The glycoprotein-associated transporters are a novel class of amino acid 

transporters that have gained recent research interest, not only in relation to transport, but 

regarding the CD98-linked functions in cell activation, integrin signaling, cell fusion and 

malignant transformation 11,12. In the context of intestinal inflammation, multiples studies 

have shown that pro-inflammatory cytokines upregulate CD98 expression, and that CD98 is 

a pro-inflammatory receptor involved in many inflammation-related diseases and cancers of 

various organs, including the intestinal tract 13–16 and lungs 17,18. Thus, blocking the 

progression of CD98 liver expression at an early stage of the disease inflammation could 

represent a key therapeutic strategy for attenuating the transition of NAFLD to cirrhosis or 

HCC.

CD98 has not been extensively studied in the liver, except in the context of HCC 19. The 

significance of our study is to show that modulation of hepatic CD98 expression could 

represent a promising therapeutic strategy for treating and preventing hepatic diseases, such 

as NAFLD. To test this hypothesis, we first tested CD98 siRNA-loaded NPs on HepG2 cells 

and generated a mouse model of liver inflammation using a high-fat diet. Then, we treated 

the mice with CD98 siRNA-loaded NPs to decrease the liver CD98 expression.

Methods

Analysis of human samples biopsies stained for CD98

See Supplementary Materials and Methods
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Preparation of CD98 siRNA/PEI-loaded NPs covered with PVA

NPs were synthesized via double emulsion/solvent evaporation, as described previously 20. 

An internal phase (see details below) containing the drug was mixed with 20 g/L of 

polylactic acid (PLA) in dichloromethane to generate a water-in-oil (W/O) emulsion after 2 

min of vortexing (Maxi Mix II, Thermodyne, Dubuque, Iowa) and 1 min of sonication with 

50% active cycles at 70% power (Pmax=400 W) (Digital Sonifier 450, Branson, Danbury, 

CT). This first emulsion was dropped in a second water phase containing 0.3g/L of PVA to 

generate a water/oil/water emulsion (W/O/W).

The W/O/W emulsion was dropped in a dispersing phase of 0.1g/L polyvinylic alcohol 

(PVA), and stirred at 45°C under a vacuum to remove dichloromethane. NPs were 

centrifuged at 9953g and freeze-dried overnight at −50°C under 0.1 mbar pressure. As the 

second emulsion allowed PVA to be grafted on the surface by hydrophobic interaction with 

the PLA matrix, NPs were coated with PVA to prevent aggregations through electrostatic 

repulsions.

Preparation of the internal phase

The internal phase has a typical N/P ratio of the number of negative charges of siRNA 

(CD98 siRNA or FITC-CD98 siRNA or scrambled siRNA) (P as the phosphorous charge) 

and positive charges of PEI (N as the ammonium charge) (N/P ratios of 30 for PEI/siRNA). 

A mixture of siRNA/PEI: 29 μL CD98 siRNA (5 μM) was combined with 18 μL PEI 

(5mM), and incubated for 10 min at room temperature for complexation. After 10 min, a 

polyplex was formed, and 750 μL bovine serum albumin (BSA, 50g/L) added, generating 

the first emulsion with dichloromethane.

SEM

See Supplementary Materials and Methods

AFM Measurement

See Supplementary Materials and Methods

NPs size and zeta potential measurements

See Supplementary Materials and Methods

WST-1

See Supplementary Materials and Methods

Cell Culture and Lipopolysaccharides (LPS) induction

See Supplementary Materials and Methods

Intracellular NP uptake visualization

See Supplementary Materials and Methods
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Mice

See Supplementary Materials and Methods

Oil red (or lipid vacuoles) staining and Hematoxylin and Eosin Y and red Sirius Staining 
Protocol

See Supplementary Materials and Methods

Western Blot of Liver Samples

See Supplementary Materials and Methods

Elisa for secreted cytokines on HepG2 cells

See Supplementary Materials and Methods

Flow Cytometry

See Supplementary Materials and Methods

Results

Hepatic CD98 is overexpressed in human liver biopsies from NAFLD patients

In tissue samples from humans of various ages, genders and liver pathologies, CD98 

expression was assessed by immunohistochemistry staining. Supplementary Figure 1 

represented two selected and significant examples of CD98 staining on human liver biopsies: 

a healthy 56-year-old man (Supplementary Figure 1A) and a 58-year-old man with 

nonalcoholic fatty liver (Supplementary Figure 1B). Compared to the basal expression of 

CD98 (brown staining obtained by classic immunohistochemistry staining) in the healthy 

liver tissue sample (Supplementary Figure 1A), the CD98 levels were significantly increased 

in the NAFLD patient. Pathological analysis of the liver tissues from NAFLD patients also 

showed major immune cells infiltration (circles on Supplementary Figure 1B). Interestingly, 

we observed overexpression of CD98 (brown staining) in membrane surfaces of both 

hepatocytes and immune cells. Based on this extensive observation, we hypothesized that the 

downregulation of hepatic CD98 could dramatically counter the pro-inflammation caused by 

NALFD in the liver. This data demonstrates the potential of CD98, not only as a marker of 

liver disease severity, but also as a potential therapeutic target for the treatment of liver 

disease.

Synthesis and characterization of CD98 siRNA-loaded polylactic acid (PLA) NPs

CD98 siRNA-loaded NPs were successfully synthesized using our previously described 

method 21–27. In short, double emulsion/evaporation of organic solvent was used to 

encapsulate the CD98 siRNA inside PLA matrix-based NPs. To ensure that the siRNAs 

would be released in the cytosol (a prerequisite for CD98 knockdown), we electrostatically 

pre-complexed the CD98 siRNA with a short-chain polyethylenimine (PEI). This should 

disrupt the endosomal membrane according to the principle of the proton-sponge effect and 

extend the duration over which the siRNA is released 22,24,27.
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Using scanning electron microscopy, the NPs were estimated at 275 nm in diameter and 

showed a homogeneous distribution (Figure 1A). This result was confirmed using atomic 

force microscopy, which showed a homogenous distribution centered on a diameter of 280 

nm (Figure 1B).

PEI/siRNA complex insured a “long lasting release profile” of the CD98 siRNA from the 

NPs (Figure 1C). In Figure 1C, the “burst effect” (early and significant release of a drug 

from drug-loaded NPs) 22,24,27 was not seen in our system: 60–70% of the active principle 

remained inside the NPs after a 4-h incubation in PBS (Figure 1C). This laps of time is 

relatively large for liver cells to take up the NPs from the blood stream (shown later in the 

study). Finally, we used dynamic light scattering to further confirm the size of the NPs and 

assess their surface charge. The diameter was confirmed to be around 275 nm, and the 

charge of the siRNA-loaded NPs was around −12.84 mV (Figure 1D). This charge was 

consistent to insure optimal interactions with cell membranes, and the absolute value of the 

charge was enough to prevent NPs from agglomerating via electrostatic repulsions 28. As 

shown in Figure 1E, we studied the cytotoxicity of the CD98 siRNA-loaded NPs on HepG2 

cell monolayers, and found that treatment of cells with 1 mg/mL of the NPs for 72 h did not 

have any cytotoxic effect in this system (98.56% viable cells). Similar results were obtained 

in Caco2-BBE and RAW 264.7 cells 13,29–33.

CD98 siRNA-loaded NPs were significantly uptaken by HepG2, Caco2-BBE and Raw 264.7 
cells, and CD98 knockdown attenuated mRNA expressions of major pro-inflammatory 
markers

The in vitro uptake of NPs by cells is a critical parameter in testing the efficiency of a 

potential therapeutic vector. FITC-tagged CD98 siRNA-loaded NPs were significantly 

uptaken by a monolayer of HepG2 cells (Figure 2A). The bright signal associated with the 

FITC-tagged siRNA was significantly observed both at the membrane (early stage of 

endocytosis) and in the cytosol (late stage of endocytosis). Furthermore, the integrity and 

intracellular efficiency of the CD98 siRNA encapsulated in NPs was demonstrated 

measuring the expression level of CD98 by quantitative real time polymerase chain reaction 

(qRT-PCR). The uptake of CD98 siRNA-loaded NPs by cells (Caco2-BBE, RAW 264.7 and 

HepG2 cells) was also examined after lipopolysaccharide (LPS) stimulation in vitro. LPS 

stimulation (10 μg/mL LPS for a period of 24h) was found to increase CD98 mRNA 

expression level compared to non-stimulated cells measured by qRT-PCR (Figure 2B). 

Pretreatment of cells with CD98 siRNA-loaded NPs significantly downregulated the LPS-

mediated induction of CD98 by 7- (Raw 264.7), 6- (HepG2), and 8- (Caco2-BBE) times 

compared to cells that were treated with control scrambled siRNA-loaded prior to LPS 

stimulation. Pretreatment with CD98 siRNA-loaded NPs also decreased the LPS-mediated 

upregulation of pro-inflammatory markers, including IL1-β (7-fold for Raw 264.7 cells, 6-

fold for HepG2 cells, and 10-fold for Caco2-BBE cells; Figure 2C), IFN-γ (10-fold, 6-fold, 

and 2-fold, respectively; Figure 2D), Cox-2 (5-fold, 4-fold, and 5-fold, respectively; Figure 

2E), and TNF-α (90-fold, 10-fold and 10-fold, respectively; Figure 2F).
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Collectively, our in vitro experiments showed that the CD98 siRNA-loaded NPs could 

efficiently downregulate CD98 and key regulators of inflammation. Therefore, we next 

tested these NPs in the high fat diet-induced mouse model of NAFLD.

CD98 siRNA-loaded NPs significantly reduced the secreted protein expressions of TNF-α, 
IL-6 and IFN-γ on HepG2 cells stimulated by LPS.

The reduction of major pro-inflammatory player shown by mRNA quantification (Figure 2 

B-F) was confirmed by secreted protein quantification of TNF-α, IL-6 and IFN-γ 
(Supplementary Figure 2). Based on ELISA quantification, Supplementary Figure 2A, B and 

C showed, respectively, the reduction of secretion of TNF-α by 14% (Supplementary Figure 

2A), IL-6 by 6% (Supplementary Figure 2B) and IFN-γ by 500% (Supplementary Figure 

2C). Altogether, the results based on cells shown in Figure 2A-F and Supplementary Figure 

2A-C demonstrated that CD98 siRNA loaded NPs were effectively uptaken and the siRNA 

was released inside cells. This cytosolic release led to a reduction of all major pro-

inflammatory signals via CD98 knockdown strategy. Based on those results, we transposed 

the study in vivo treating mice with CD98 siRNA loaded NPs simultaneously with high fat 

diet inducing NAFLD.

CD98 siRNA-loaded NPs were significantly uptaken by liver cells, where they attenuated 
the disease markers of high fat diet-fed mice

Age-matched female C57BL/6 mice were fed a high fat diet for 8 weeks and treated with 

twice-weekly intravenous injections of CD98 siRNA-loaded NPs (5mg/mL, 100μL) or 

scrambled siRNA-loaded NPs (5mg/mL, 100μL)). Fluorescent staining of nuclei (DAPI, 

blue), actin (rhodamine phalloidin, red) and NPs (FITC, green) was assessed (Figure 3A and 

3B). Normal patterns (without NPs cytotoxicity observed) were observed for liver samples 

obtained from mice treated with the scrambled (non-fluorescent) siRNA (Figure 3A), 

whereas a significant green signal (corresponding to the fluorescent-tagged siRNA) was 

observed in samples from mice treated with the CD98 siRNA-loaded NPs (Figure 3B). Thus 

these NPs had significant uptake by liver cells. Next, we examined high fat diet-induced 

histological changes (i.e., accumulation of lipid vacuoles in the cytosol, fibrosis, etc.) in liver 

tissues from mice treated with the scrambled siRNA-loaded NPs or CD98 siRNA-loaded 

NPs. Microscopic analyses of H&E and Sirius red-stained liver sections from these mice 

revealed the presence of lipid vacuoles (hepatic steatosis) and fibrotic tissue (yellow arrow) 

in livers from high fat diet-fed mice injected with scrambled siRNA-loaded NPs (Figure 3C 

and 3D), but not CD98 siRNA-loaded NPs (Figure 3E and 3F). The NAFLD score and 

fibrosis score were determined using the method developed by Kleiner et al 34. The NAFLD 

activity score was determined to be 7 for the scrambled siRNA-loaded NP liver tissue, which 

demonstrated high levels of steatosis, lobular inflammation, and a few instances of 

hepatocyte ballooning (Figure 3G). The fibrosis stage was determined to be 1 for scrambled 

siRNA loaded NP liver tissue. In contrast, CD98 siRNA-loaded NP liver tissue had a 

NAFLD score of 0 and no presence of fibrotic tissue. In terms of serum markers, high fat 

diet-fed mice injected with scrambled siRNA-loaded NPs (similar to control mice) had 

significantly elevated serum levels of alanine aminotransferase (ALT) (Figure 4A), liver 

triglycerides, cholesterol, high-density lipoprotein cholesterol (HDLc) and glucose (Figure 

4B). In contrast, the corresponding mice treated with CD98 siRNA-loaded NPs had normal 
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serum ALT and liver triglyceride levels, which represented a 13.7% decrease in triglyceride 

and 6.7% decrease in HDLc levels compared to that of the scrambled siRNA-loaded NP 

(Figure 4A and 4B).

Together, these findings indicate that our passive NP-mediated targeting strategy (i.e., due to 

the ability of liver macrophages to trap particles from the bloodstream) significantly 

delivered the NPs and released the CD98 siRNA to the liver of mouse. Thus, we next 

continued examining the beneficial outcome of CD98 siRNA loaded NPs on reducing liver 

pro-inflammatory response to high fat diet by measuring locally in the liver the expression 

of inflammation markers.

The protein expression levels of CD98 is downregulated in the livers of mice treated with 
CD98 siRNA-loaded NPs

Based on our mRNA results, we next assessed the levels of relevant proteins in the liver. 

Western blot analysis (Figure 4C) showed that the livers of high fat diet-fed mice injected 

with CD98 siRNA-loaded NPs had dramatically lower CD98 protein expression compared 

to mice treated with scrambled siRNA-loaded NPs or control mice fed a regular diet. These 

results indicated that our NP-mediated delivery of CD98 siRNAs successfully downregulates 

CD98 expression in the liver. The decreased level of CD98 expression has beneficial impacts 

on liver inflammation in high fat diet-fed mice.

CD98 siRNA loaded NPs IV injections preferentially target the liver locally specifically 
release siRNA to hepatocytes and Kupffer cells

We explored the biodistribution of FITC tagged NPs on different mice organs; heart, lung, 

brain, colon, kidney, spleen and liver were collected after 8 weeks of HFD and biweekly 

intravenous injections of NPs (1mg/mL, 100μL). Among all organs collected, only kidney, 

spleen and liver showed a FITC signal shown in Figure 5. Using the Cellsens dimension 

fluorescence analysis software, we managed to get fluorescent pictures totally free of tissues 

autofluorescence signal by optimizing the pictures acquisition of control tissues not treated 

with FITC-loaded NPs from kidney (Figure 5A), spleen (Figure 5B) and liver (Figure 5C). 

The fluorescent signal pictures of kidney, spleen and liver showed respectively in Figure 5D, 

5E and 5F only show the fluorescent due to FITC loaded NPs. As observed on Figure 5D, 

kidney had significant uptake of NPs versus a light uptake which was observed for spleen 

(Figure 5E). Interestingly, mice livers significantly uptake FITC-loaded NPs as shown in 

Figure 5E, confirming more strongly that the beneficial effect of CD98 loaded NPs on 

NAFLD was due to direct liver cells uptake.

Complementing those observations, we studied the uptake of FITC loaded NPs during low 

fat diet. After avoiding tissue auto-fluorescence, as previously mention (Supplementary 

Figure 3A, 3B and 3C), we noticed that kidney and spleen cells were not uptaking as much 

NPs as compared with HFD (Supplementary Figure 3D, 3E). Interestingly, liver cells had 

maintained a relatively high uptake of the FITC loaded NPs also during low fat diet probably 

due to Kupffer cells activity of phagocytosis (Supplementary Figure 3F).

Finally, we analyzed further the biodistribution at the cellular level within the liver using 

flow cytometry analysis. Flow cytometry, noted in Figure 6A, 6B, 6C and 6D, showed that 
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CD98 siRNA loaded NPs mainly target hepatocytes (FITC+ albumin+, Figure 6D) and 

macrophages like cells (FITC+ CD11b+, Figure 6B), but not dendritic cells (FITC+ CD11c

+, Figure 6C). We noticed that liver cells from mice suffering NAFLD were uptaking NPs 

differently when healthy or receiving HFD. like cells and hepatocytes from HFD treated 

mice, had three times more NPs uptake than cells in normal conditions respectively, 1.66 vs 

5.32 (Figure 6B) and 6.7 vs 18.0 (Figure 6D). Dendritic cells were not significantly 

“stimulated” by HFD with very low NPs uptake (below 1 for both conditions, Figure 6C). 

We also noticed that HFD induced cell death rate in the liver decreased from 63.4 to 50.4 

(Figure 6A).

Discussion

CD98 is a type II transmembrane protein that covalently links to one of several L-type 

amino acid transporters (light chains) to form large, functionally heterodimeric neutral 

amino acid transport systems 9,10. CD98 is constitutively expressed by a variety of tissues, 

including the liver, which can express different L-type amino acid transporters, including 

LAT-1 (large neutral amino acid transporter, Na+-independent; fetal liver), y+-LAT-2 

(cationic and large amino acid transporter, Na+-independent; liver) and asc-1 (small amino 

acid transporter, Na+-independent; liver) 35. In addition to functioning as an amino acid 

transporter via its extracellular domain 10,36, CD98 also regulates cell homeostasis by 

modulating the activation of integrin 15,37–40. Importantly, Yan et al. 41 demonstrated that 

DSS-induced colitis in mice (a colonic inflammation model) altered the expression of 

epithelial CD98, which is mediated via interferon-gamma (IFN-γ). The authors further 

showed that CD98 expression is activated at the transcriptional level in IFN-γ-treated cells, 

and examined the related mechanisms in the colonic epithelium 41. IFN-γ is present at high 

levels in pathological liver tissues, including those from NAFLD patients 42–45. Similar to 

IFN-γ, the synthesis of cytokines, such as TNF-α and IL-6, both involved in inflammatory 

and metabolic alterations, characterizes the earliest phases of different liver injury, leading to 

the synthesis of other cytokines that, jointly, induce cell migration and initiate healing 

processes, including fibrosis 46. A correlation has been found between TNF-α levels and 

fibrosis degree in NASH patients 47, as gene expression of either TNF-α or its receptor is 

significantly elevated in their hepatic and adipose tissues 48. Similar correlation has been 

found in NAFLD patients, whose circulating TNF-α were significantly elevated 

concomitantly with the increase in the activity score, NAS, the histologic scoring system 

recognized as standard reference in the evaluation and gradation of hepatic inflammation 

and damage 49. Also, progression of NAFLD correlates with polymorphisms in the TNF-α 
promoter region and serum level of soluble TNF receptor 2 50. A previous study showed that 

antibody-based inhibition of TNF-α ameliorated the chronic stage of colitis (16). However, 

systemic antibody treatment is often associated with important side effects 51,52. Here, we 

show that targeted downregulation of CD98, specifically in the liver, can be achieved using 

siRNA-loaded NPs. In such inflammatory context as described above, local damages 

(caused by overexpression of IFN-γ, TNF-α and IL-6) on the epithelium of veins and 

arteries lead to a leakage 53–56. NPs potentially used those defects to enter the space of Disse 

and interact directly with hepatocytes. Consequently, CD98 siRNA-loaded NPs were taken 

in by both macrophages-like cells and hepatocytes to effectively downregulate CD98 

Canup et al. Page 8

Dig Liver Dis. Author manuscript; available in PMC 2019 April 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



expression at the mRNA and protein levels. This treatment dramatically decreased the 

progression and symptoms in a mouse model of NAFLD. The inflammation due to the 

accumulation of lipids in liver cells (inherent to the high fat diet) was significantly 

decreased, as were the expression levels of all major inflammatory markers, including IFN-

γ, which is a direct modulator of CD98 41.

In conclusion, we have shown that CD98 is more than a marker for liver injury; rather, it 

should be considered a potential therapeutic target for NAFLD. In the future, we hope to 

improve the utility of our CD98 siRNA-loaded NPs, in particular, by modifying the polymer 

matrix into a stable bilayer liposome. This modification will allow us to anchor specific 

ligands on the liposome surface, thereby further increasing the ability of these NPs to target 

liver cells, and perhaps even a specific cell type within the liver (i.e., hepatocytes, stellate 

cells, Kupffer cells, etc.).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: The physicochemical properties of CD98 siRNA-loaded nanoparticles (NPs).
(A) Scanning electronic microscopy image of 500 μg/mL CD98 siRNA-loaded NPs 

suspension. (B) Atomic force microscopy image of 500 μg/mL CD98 siRNA-loaded NPs 

suspension. (C) Kinetic of release of CD98 siRNA complexed with PEI and loaded in NPs 

(PBS buffer, 37°C) (D) Size distribution and zeta potential (mV) measured by light 

scattering analysis of CD98 siRNA-loaded NPs and scrambled siRNA-loaded NPs (values 

represent means ± SE. Data are representative of n=3 determinations). (E) Cytotoxicity of 

1mg/mL CD98 siRNA-loaded NPs and scrambled siRNA-loaded NPs on HepG2 cells for 

48h (values represent means ± SE. Data are representative of n=8 determinations).
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Figure 2: FITC-tagged siRNA/PEI-loaded NPs covered with PLA are rapidly taken up by 
hepatic cells (HepG2 cells) and the CD98 siRNA is successfully delivered to the cytosol.
(A) Fluorescent microcopy of FITC-tagged siRNA/PEI-loaded NPs (200μg/mL, 100μL) 

uptaken by HepG2 cells after overnight contact NPs/ HepG2 cells (gray scale picture). (B) 

Level of CD98 mRNA expression in non-stimulated HepG2 cells (control) or LPS-

stimulated (10 μg/mL LPS for a period of 24h) pretreated overnight with CD98 siRNA-

loaded NPs (200μg/mL, 100μL) (+LPS+CD98 si NPs) and scrambled siRNA loaded NPs 

(200μg/mL, 100μL) (+LPS-CD98 si NPs). (C) Level of IL1-β mRNA expression in non-

stimulated HepG2 cells (control) or LPS-stimulated pretreated overnight with CD98 siRNA-

loaded NPs (200μg/mL, 100μL) (+LPS+CD98 si NPs) and scrambled siRNA loaded NPs 

(200μg/mL, 100μL) (+LPS-CD98 si NPs). (D) Level of IFN-γ mRNA expression in non-

stimulated HepG2 cells (control) or LPS-stimulated pretreated pretreated overnight with 

CD98 siRNA-loaded NPs (200μg/mL, 100μL) (+LPS+CD98 si NPs) and scrambled siRNA 

loaded NPs (200μg/mL, 100μL) (+LPS-CD98 si NPs). (E) Level of Cox-2 mRNA 

expression in non-stimulated HepG2 cells (control) or LPS-stimulated pretreated overnight 

with CD98 siRNA-loaded NPs (200μg/mL, 100μL) (+LPS+CD98 si NPs) and scrambled 

siRNA loaded NPs (200μg/mL, 100μL) (+LPS-CD98 si NPs). (F) Level of TNF-α mRNA 

expression in non-stimulated HepG2 cells (control) or LPS-stimulated pretreated overnight 

with CD98 siRNA-loaded NPs (200μg/mL, 100μL) (+LPS+CD98 si NPs) and scrambled 

siRNA loaded NPs (200μg/mL, 100μL) (+LPS-CD98 si NPs). Values represent means ± SE. 

Data are representative of n=3 determinations. ***P < 0.001, **P < 0.01, *P < 0.05 and NS, 

not statically significant.
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Figure 3: Mice treated with CD98 siRNA-loaded NPs (twice weekly by tail vein injection) show 
significant liver NP uptake and decreased lipid vacuolization when fed a high fat diet for 8 
weeks.
(A, B) Liver pictures of mice injected with scrambled siRNA loaded NPs (5mg/mL, 100μL) 

(A) and FITC tagged siRNA-loaded NPs (5mg/mL, 100μL) (B). After intravenous injection 

of FITC tagged siRNA-loaded NPs (5mg/mL, 100μL) (green), mice were sacrificed 4 h later 

and liver samples were stained for Alexa Fluor 568 phalloidin (red) and DAPI (blue). 

Representative hematoxylin and eosin (D, F) and Sirius Red (C, E)-stained sections of liver 

from 8 weeks high far diet fed mice receiving respectively scrambled siRNA-loaded NPs 

(5mg/mL, 100μL) (C, D) or CD98 siRNA-loaded NPs (5mg/mL, 100μL) (E, F) for 12 

weeks. Scale bar is 50 μm. n = 5 mice per group. Hematoxylin and Eosin Y stained liver 

tissue was scored using the scoring system developed by Kleiner et al 34 of mice injected 

twice weekly with NP treatments (5mg/mL, 100μL) (G).
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Figure 4: CD98 siRNA-loaded NPs reduce the levels of pro-steatosis markers (blood ALT and 
lipids) associated with the high fat diet fed mice and suppress CD98 protein expression level of 
CD98.
(A) Serum ALT levels of mice maintained for 8 weeks on regular diet with injection of 

scrambled siRNA-loaded NPs (5mg/mL, 100μL) (regular diet + scrambled siRNA NP) or 

high fat diet (8 weeks) with twice a week injections of CD98 siRNA NPs (5mg/mL, 100μL) 

(HFD + siRNA CD98 NP) or scrambled siRNA-loaded NPs (5mg/mL, 100μL) (HFD + 

scrambled siRNA NP). (B) Liver triglyceride, cholesterols, high density lipoprotein 

cholesterol (HDLC) and glucose levels of mice maintained for 8 weeks on regular diet with 

injection of scrambled siRNA-loaded NPs (5mg/mL, 100μL) (regular diet + scrambled 

siRNA NP) or high fat diet (8 weeks) with twice a week injections of CD98 siRNA –loaded 

NPs (5mg/mL, 100μL) (HFD + siRNA CD98 NP) or scrambled siRNA-loaded NPs 

(5mg/mL, 100μL) (HFD + scrambled siRNA NP). Values represent means ± SE. Data are 

representative of n=5 mice per group. **P < 0.01, *P < 0.05 and NS, not statically 

significant. (C) Assessment of CD98 in liver from n mice (n being the number of mice used 

for each group as indicated by the different lines of the WB) fed with regular diet and 

injected twice a week with scrambled siRNA loaded nanoparticles (5mg/mL, 100μL) 

(regular diet + scrambled siRNA NP) or with high fat diet for 8 weeks and injected twine a 

week with CD98 siRNA loaded nanoparticles (5mg/mL, 100μL) (HFD + siRNA CD98 NP) 

or scrambled siRNA loaded NP (5mg/mL, 100μL) (HFD + scrambled siRNA NP) during 8 

weeks. HFD + CD98 siRNA-NPs (n=5), HFD + scrambled siRNA-NPs (n=5), and RD + 

scrambled siRNA-NPs (n=4). n represent the number of mice for each group.
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Figure 5: Biodistribution study relative to liver, kidney, and spleen demonstrated significant 
uptake of the siRNA FITC-loaded NP while mice received HFD.
Histology after tail veins intravenous injections of FITC tagged siRNA-loaded NPs 

(5mg/mL, 100μL) (green), mice were sacrificed and (A, D) kidney, (B, E) spleen, and (C, F) 

liver samples were stained for Alexa Fluor 568 phalloidin (red) and DAPI (blue). Mice were 

fed a high fat diet for 8 weeks along with biweekly tail vein intravenous injections of FITC-

loaded NPs (5mg/mL, 100μL). Scale bar is 50 μm.
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Figure 6: Flow cytometry analysis indicating that biweekly injection of CD98 siRNA-loaded NPs 
is significantly uptake by hepatocytes and macrophage-like cells compared to dendritic cells.
Representative FACS plots illustrating the gating strategy utilized to define live cells (A), 

macrophages like cells (B), dendritic cells (C) and hepatocytes (D) for mice biweekly 

injected with FITC-loaded NPs (5mg/mL, 100μL) and receiving or not HFD. Cells were 

gated as followed for hepatocytes CD45-MHC class II−F4/80−CD11b-CD11c-albumin+, 

macrophages-like cells CD45+MHC class II+F4/80+CD11b+CD11c- cells and dendritic 

cells CD45+MHC class II+ F4/80−CD11b+CD11c+. Values represent means ± SE. Data are 

representative of n=5 mice per group. **P < 0.01, *P < 0.05 and NS, not statically 

significant.
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