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Abstract

Sinusoidal endothelial cells (SEC) and hepatic stellate cells (HSC), are closely associated 

specialized vascular cells residing in the hepatic sinusoid. These cells have been shown to play 

important roles in many different pathophysiologic processes, in particular in liver fibrosis/

cirrhosis and portal hypertension. Caveolin-1 functions as a scaffolding protein, and has a variety 

of functions including in many disease states, such as liver cirrhosis. Although previous studies 

have shown that in the injured rat liver, caveolin-1 is upregulated, the precise cells in which 

remains unclear. Therefore, the purpose of this study was to clarify the cell type (or types) in 

which caveolin-1 is expressed in normal and injured rat liver. We have utilized both detailed 

immunohistochemical labeling with cell specific markers as well as cell isolation techniques 

(isolating sinusoidal endothelial cells, HSCs, and hepatocytes) in normal and injured (bile duct 

ligation) rat liver. We show here that in the normal liver caveolin-1 is expressed predominantly in 

HSCs and SECs but after liver injury there is upregulation of caveolin-1 in HSCs, but not in SECs. 

These data have functional implications for the cells in which caveolin-1 is regulated.
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Immunohistochemical detection of caveolin-1 in normal and injured rat liver tissue. The images 

depict caveolin-1 co-labeling with desmin (a marker of HSCs), which is greater in the injured liver 

than the normal liver. Desmin labelling is visualized in portal and central vascular structures, in 

addition to HSCs.
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1. Introduction

Sinusoidal endothelial cells (SECs) and hepatic stellate cells (HSCs) are specialized cells 

residing in the hepatic sinusoid. These cells have been shown to play important roles in 

many different pathophysiologic processes, in particular in liver fibrosis/cirrhosis and portal 

hypertension (Iwakiri et al., 2014).

Caveolae, organelles containing lipid rafts, are abundantly present on the plasma membrane 

of many specialized cells including endothelial cells, fibroblasts, epithelial cells and 

adipocytes (Yokomori et al., 2015). They are involved in many cellular functions including 

the regulation of endocytosis, intracellular trafficking, cholesterol homeostasis, and signal 

transduction (Simons and Toomre, 2000). Caveolin-1, a 22KDa integral membrane protein, 

is one of the important proteins found in caveolae. Caveolin-1 has been shown to play a role 

in tissue repair and fibrosis in different studies (Gvaramia et al., 2013). For example, 

previous investigation reported downregulation of caveolin-1 in a radiation/bleomycin 

induced lung fibrosis model (Kasper et al., 1998; Tourkina et al., 2008) and also in other 

fibrotic diseases such as idiopathic pulmonary fibrosis, scleroderma, cardiac fibrosis, keloid 

scars and systemic sclerosis (Del Galdo et al., 2008; Miyasato et al., 2011; Wang et al., 

2006; Zhang et al., 2011). In contrast, caveolin-1 expression has been reported to be elevated 

in liver diseases after liver injury (Gao et al., 2014; Yamazaki et al., 2013; Yokomori et al., 

2002), including after alcoholic liver injury (Gao et al., 2014), fatty liver disease (Qiu et al., 

2013), liver regeneration after partial hepatectomy (Mayoral et al., 2007), and hepatocellular 

carcinomas (Cokakli et al., 2009; Zhang et al., 2009). Additionally, there has been confusion 

about expression and cellular localization of caveolin-1 in the liver (Garver et al., 1997; Oh 

et al., 1998). In one study, caveolin-1 was suggested to be present in SECs (Garver et al., 
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1997) whereas, in another it was reported to be enriched in hepatocytes (Pol et al., 1999). 

However, careful review of the literature indicates that the precise cellular localization of 

caveolin-1 in liver is unclear and that there is a need for more robust data that elucidates the 

specific cell type(s) in which caveolin-1 is expressed in the liver, especially after injury.

Given other literature in which during injury, caveolin-1 is regulated primarily in fibrogenic 

cells (Gvaramia et al., 2013), we hypothesized that in the liver during injury, caveolin-1 

expression is regulated primarily in HSCs rather than other liver specific cells. To test this 

hypothesis, we have utilized cell isolation techniques as well as immunohistochemical 

methodology to more accurately assess caveolin-1 expression during liver injury.

2. Material and methods

2.1. Isolation and culture of liver cells

HSCs and SECs were isolated as described previously. In brief, the liver was perfused 

sequentially with a series of the following solutions: solution A: L15 buffer containing 

EGTA (0.5mM) and glucose (5mM); solution B: L15 containing CaCl2 (3.8mM) and 

pronase (1mg/ml, Roche); solution C: L15 containing CaCl2 (0.38mM) and collagenase type 

I (0.13mg/ml, Worthington). The digested liver was agitated in solution D (L15 containing 

pronase (0.2mg/ml) and DNase (0.0375mg/ml) at 37°C for 20 minutes. The resultant cell 

suspension was washed once with cold GBSS, and resuspended in cold GBSS solution with 

Accudenz (Accudenz, Accurate Chemical & Scientific Co., Westbury, NY) gradients and 

centrifuged as described (Shi and Rockey, 2010). After centrifugation, HSCs were removed 

from the upper part of gradient, washed and placed in plastic culture dishes in 199OR 

medium containing 20% serum (10% horse/calf). Cell purity was assessed after 24 hours by 

examination of morphologic features, vitamin A droplets, and immunohistochemical 

detection of desmin (characteristic of HSCs) and was greater than 95%. HSCs underwent 

spontaneous activation after 3 to 5 days when grown in 199OR medium containing 20% 

serum (Rockey et al., 1992). SECs were isolated with the same methodology except that 

they were removed from the middle part of the gradient and further purified by centrifugal 

elutriation (15–18 ml/min flow) as described (Liu et al., 2012). SECs were plated on rat-tail 

collagen coated dishes in the same medium as above. Cell purity was assessed by visual 

inspection of SEC cultures, and in addition, contamination with HSCs and/or Kupffer cells 

was detected by immunolabeling and/or immunoblotting with anti-desmin (Abcam, 

Cambridge, MA) and anti-F4/80 (Abcom, Cambridge, MA) antibodies, respectively as 

previously described (Rockey and Chung, 1994). Only primary sinusoidal endothelial 

isolates of >95% purity were used for study. For hepatocyte isolation, liver was digested by 

collagenase type I only and hepatocytes were separated by centrifugation in percoll gradient 

(Sigma, St. Louis, MO) and cultured on rat-tail collagen coated dishes in the same medium 

as above. All cells were grown at 37 °C with 2.5% CO2. Cell purity was assessed by visual 

inspection of hepatocyte cultures, and in addition, contamination with nonparenchymal cells 

was as above.
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2.2. Liver injury induced by bile duct ligation

Liver injury and portal hypertension were induced by performing bile duct ligation in 450–

500-g male retired breeder Sprague-Dawley rats. The common bile duct was isolated, ligated 

at two locations. This model creates a portal based fibrogenic response and portal 

hypertension in 10–14 days of surgery (Connelly et al., 2005). In sham-operated rats, same 

surgical procedure was followed other than isolation and section of the bile duct. All animals 

received humane care according to National Institutes of Health guidelines; studies were 

approved by the local Institutional Animal Care and Use Committees.

2.3. RNA isolation and PCR

Total RNA was isolated from normal and injured rat liver tissue, cultured SECs, HSCs and 

hepatocytes using TRIzol (Invitrogen, Grand Island, NY), according to the manufacturer’s 

instruction. 2 μg of total RNA was used for cDNA synthesis in a 20μl reaction volume, by 

reverse transcription kit (Invitrogen) and the cDNAs were subjected to quantitative PCR 

using the SYBR Green Master Mix (Biorad, Hercules, CA). Relative expression of 

caveolin-1 mRNA was normalized to endothelial nitric oxide synthase (eNOS) and β actin 

mRNA expression using the 2−ΔΔCT method (Livak and Schmittgen, 2001). Primer pairs 

used were as follows: caveolin-1-F 5’atgtctgggggtaaatacgtagac 3’, caveolin-1-R 

5’gatggaatagacacggctga 3’, eNOS-F 5’ctggccaaagtgaccattg 3’, eNOS-R 

5’ggcaggggacaggaaatagt 3’, β actin-F 5’caagatcattgctcctcctg 3’, β actin-R 5’ 

taacagtccgcctagaagca 3’. The PCR program was as follows: one cycle at 95°C for 2 min 

followed by 40 cycles of 15 s at 95 °C, 30s at 62 °C, and 30 s at 72 °C.

2.4. Immunoblotting

Cultured cells were washed in ice cold PBS and lysed with RIPA buffer. Tissues were 

homogenized and after removing debris and unbroken cells by centrifugation at 8000g for 

15 min, the protein concentration was measured as described (Boyd et al., 2003). Proteins 

were separated by SDS-PAGE and transferred to nitrocellulose and probed by indicated 

primary antibodies followed by respective HRP-conjugated secondary antibodies. 

Immunoreactive bands were visualized by SuperSignal West Pico chemiluminescent 

substrate (Thermo Scientific, Fremont, CA) as per the manufacturer’s instruction. 

Antibodies used included the following: anti-caveolin-1 (Santa Cruz Biotechnology, Dallas, 

TX), anti-eNOS (Transduction Laboratories, San Jose, CA), anti-G protein-coupled receptor 

kinase 2 (GRK2, Santa Cruz Biotechnology, Dallas, TX), anti-smooth muscle α-actin 

(Sigma, St Louis, MO) and anti-β-actin (Sigma, St Louis, MO).

2.5. Immunohistochemistry and microscopy

Fresh frozen rat liver sections were fixed in methanol for 5 minutes, permeabilized in 0.1% 

Triton X-100 and incubated in blocking reagent. Liver tissue was incubated with primary 

antibodies, anti-caveolin-1 (Santa Cruz Biotechnology, Dallas, TX), anti-VE cadherin (BD 

Pharmingen, San Jose, CA), anti-desmin (Thermo Scientific, Fremont, CA) and anti-

albumin (Santa Cruz Biotechnology, Dallas, TX) at 4°C overnight. Tissue was washed, 

exposed to secondary staining performed by fluorescent antibodies Alexa Flour 555 (red) 

and Alexa Flour 488 (green). The fluorescent images for all the stained slides were acquired 
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on Zeiss Axio imager M2 fluorescence microscope using a 20 × lens (Carl Zeiss, 

Thornwood, NY).

2.7. Statistical Analysis

All experiments were performed in triplicates using cells isolated from different rats. Results 

are expressed as mean ± SE, and compared using the Student t test. Two-tailed p values less 

than 0.05 were considered significantly different (between groups).

For RT-PCR, the Ct value of candidate gene (caveolin-1) after normalization with 

endogenous control (ΔCt) was used for calculating the relative expression (fold difference) 

in normal and BDL rat liver using the 2−ΔΔCt formula. ΔCt values representing the mean 

level of mRNA in normal whole tissue, SECs, HSCs and hepatocytes were considered 1 for 

normalization of the fold difference of caveolin-1 gene expression in normal and BDL.

3. Results

We initially measured caveolin-1 in normal and injured whole rat liver samples and found 

caveolin-1 mRNA was 5.7 fold higher in injured than in normal liver. Additionally, 

caveolin-1 protein expression was 2 fold higher in injured liver than in normal liver (Figure 

1A, 1B).

To investigate at a cellular level the cell type responsible for the upregulation of caveolin-1 

in the injured rat liver, we examined expression of caveolin-1 at the mRNA and protein 

levels in primary purified isolated normal and injured SECs, HSCs and hepatocytes. For all 

of these experiments, we isolated cells, allowed them to adhere to culture dishes or on glass 

coverslips overnight, then inspected the cells and performed immunohistochemical and/or 

histochemical studies to assess cell purity. We went to great effort to obtain pure isolates of 

non-parenchymal cells and hepatocytes. Hepatocyte purity was routinely >95% and HSC 

purity was routinely > 99% (Supplemental Figures 1–4). SEC purity was routinely > 90% 

(Supplemental Figures 1–4), with contaminants being primarily HSCs.

In SECs, caveolin-1 mRNA expression was 12.2 fold higher in injured (Figure 2A). 

However, immunoblotting revealed no difference in caveolin-1 protein expression (Figure 

2B). To further ensure the purity of cells isolated, we normalized caveolin-1 expression to 

eNOS (because eNOS is only found in liver sinusoidal endothelial cells and not in any other 

liver specific cell type, and because eNOS expression remains unchanged after injury 

(Rockey and Chung, 1998). In HSCs, caveolin-1 mRNA expression was increased by 7.8 

fold after injury (Figure 3A). Further, protein expression of caveolin-1 was significantly 

increased in BHSCs (Figure 3B). To further evaluate caveolin-1 expression in injured HSCs, 

and to explore whether caveolin-1 expression was associated with HSC activation, we 

utilized a well-characterized culture model of activation (Bachem et al., 1992; Shafiei and 

Rockey, 2012). We found that caveolin-1 protein expression increased progressively during 

HSC activation in culture, from day 1 to day 5 of culture (Figure 3C). As expected, smooth 

muscle α-actin, a protein well established to be upregulated during HSC activation (Rockey 

et al., 1992), was also increased in this model (Figure 3C). Finally, we measured caveolin-1 
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expression in hepatocytes from normal and injured rat liver. Caveolin-1 mRNA (Figure 4A) 

and protein levels (Figure 4B) were unchanged in normal and injured hepatocytes.

We next investigated the localization of caveolin-1 in situ in normal and injured liver by 

immunohistochemical analysis. The approach was to examine cell specific expression in the 

major liver cells including in SECs, HSCs and hepatocytes. In the normal liver, caveolin-1 

was expressed in vascular structures as well as in cells in sinusoids (Figure 5A, 5B). 

Maximal caveolin-1 co-labeling was with desmin (Figure 5A, upper panels), which was 

greater than with co-labeling with VE cadherin (Figure 5B, upper panels). Since desmin is 

expressed exclusively in HSCs and in portal and central vascular structures, the co-labeling 

data suggest abundant expression of caveolin-1 in normal HSCs and vascular smooth muscle 

cells in injured liver. Since SECs express VE cadherin, the co-labeling data indicate that 

there is some caveolin-1 expression in normal SECs. In contrast, there was less to no co-

labeling overlap between the hepatocyte specific marker albumin and caveolin-1 (Figure 5C, 

upper panels). After liver injury, the expression of caveolin-1 appeared to be increased in 

HSCs, but not in SECs (Figure 5A–5B, lower panels). Desmin, labeling was also increased, 

consistent with previous data demonstrating proliferation of HCSs after liver injury (Figure 

5A, lower panel) (Rockey et al., 1992). There was not apparent increase in SEC number or 

hepatocyte number after liver injury (Figure 5B/5C, lower panel). These data are consistent 

with the PCR and immunoblotting data in all the three isolated cells (Figure 2/3/4).

4. Discussion

In the present study, we have shown that expression of caveolin-1 mRNA and protein are 

increased after liver injury (Figure 1), consistent with previous studies (Shah et al., 1999). 

However, the most important advance reported here is that we have carefully characterized 

the cellular expression of caveolin-1 expression in liver specific cell types. We have now 

shown that caveolin-1 is not expressed in hepatocytes to a significant degree, but rather is 

found in sinusoids (as well as large vascular structures – as previously described (Shah et al., 

2001). Both SECs and HSCs express caveolin-1, and more importantly, caveolin-1 

expression is increased in HSCs after liver injury but not in SECs (Figure 2 and 3). Of note, 

we did not find a change in caveolin-1 expression in bile duct epithelial cells after injury.

The findings presented here are consistent with data presented in previous studies of 

caveolin-1 expression in the normal liver. In one study, immunoblot analysis of cell fractions 

revealed that caveolin-1 was not detected in hepatocytes, but was found to be enriched in 

non-parenchymal cell fractions, and was additionally found to be expressed in both HSCs 

and SECs (Shah et al., 2001). Caveolin-1 expression appeared to be greater in SECs than 

HSCs, although quantitative data were not provided.

Perhaps more importantly, our data not only extend the previous data examining caveolin-1 

expression in the injured liver, but also bring into question the conclusion that the expression 

of caveolin-1 is increased in SECs after liver injury (Hendrickson et al., 2003; Shah et al., 

1999). In one study (Ogi et al., 2003), it was shown by electron microscopy using 

immunogold labeling that after liver injury induced by bile duct ligation, there was an 

increase in caveolin-1 labeling in SECs lining larger hepatic vascular structures and that 
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there immunogold particles were prominent on SECs. Of note, immunogold particles were 

also prominently visible on a HSC from the BDL liver. However, this study did not 

specifically address the relative expression of caveolin-1 in HSCs and SECs. Another study 

demonstrated labeling of caveolin-1 in sinusoidal endothelial cells in human liver (Yokomori 

et al., 2002; Yokomori et al., 2003), and demonstrated what appeared to be an increase in 

caveolin-1 expression in hepatic lining cells in cirrhotic samples. However, this study did not 

perform co-localization studies and thus was unable to provide insight as to the cellular 

source of caveolin-1.

Our extensive quantitative data advance the field by demonstrating that caveolin-1 is 

upregulated in HSCs but not SECs. These data are important for several reasons. First, they 

bring in to question the conventional dogma that a reason that SEC eNOS function is 

impaired after liver injury in SECs by simple upregulation of caveolin-1. This is critical 

because other literature suggests that a key regulator of eNOS is phosphorylated caveolin-1 

rather than simple total caveolin-1 (Joshi et al., 2012). Thus, it is possible that phospho-

caveolin-1 is a more important regulator of eNOS than total caveolin-1 after liver injury.

We recognize strengths and limitations of our study. First, the current study provides two 

different types of evidence supporting the expression of caveolin-1 in liver; we provide both 

immunohistochemical cell localization and cell based data indicating expression of 

caveolin-1. Additionally, we have provided quantitative measurements of caveolin-1 mRNA 

and protein expression, and have included important controls which provide further 

assurance that the cells isolated are more than 95% pure (Supplemental Figures 1–4), and 

are what they are purported to be. One limitation of the immunohistochemical studies is that 

by their nature, these are qualitative only. It should also be noted that we have also 

performed quantitative analyses on cells after culture overnight, and it could be argued that 

these do not have precisely the same gene and/or protein expression profile as do cells 

placed in culture. The rationale for this approach is that we also that there may be dead cells 

present in cell isolations. By harvesting only living (attached cells), the technique allows us 

to avoid the contamination of dead cells and include only healthy cells for study. We have 

also found that after a very short time period in culture (as used in this study), there is very 

little if any effect on gene or protein expression. This is important in hepatocytes since 

caveolin-1 may be regulated by cellular stress; in one study fenofibric acid, a peroxisome 

proliferator-activated receptor-α agonist, led to changes in caveolin-1 expression 

(Woudenberg et al., 2010) and in another study, dedifferentiation and loss of hepatocyte 

polarity during primary culture also affected caveolin-1 expression in hepatocytes (Meyer et 

al., 2013). Finally, it should also be pointed out that this practice has become standard in the 

field.

In summary, we have shown that caveolin-1 mRNA and protein are increased after liver 

injury in HSCs, but not in SECs. Since caveolin-1 appears to be an important scaffolding 

protein and regulator of signaling, these data have important implications for the cellular 

pathobiology of various signaling cascades in HSCs after liver injury. Further, these data 

raise questions about the importance of caveolin-1 - eNOS signaling in injured SECs.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Caveolin-1 is upregulated after liver injury. In (A), total RNA was isolated from normal and 

injured (BDL) rat liver. RNA was reverse transcribed to cDNA followed by RT-PCR to 

detect caveolin-1 mRNA expression, which is presented graphically (n=3, (*p <0.05 vs 

normal). In (B), Liver tissue was homogenized and prepared from normal and injured (BDL) 

rat liver as in Methods. Proteins were separated by SDS PAGE and analyzed by 

immunoblotting. In the upper panel, a representative immunoblot is shown. In the lower 
panel, specific signals were scanned and quantitated and normalized to β-actin (n=3, *p < 

0.01 vs normal).
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Figure 2. 
Caveolin-1 remains unchanged in SECs after liver injury. SECs were isolated from normal 

(NSEC) and injured (BDL, BSEC) rat liver and cultured in collagen coated dishes for 24 

hours as in Methods. In (A), total RNA was extracted and cDNA was prepared after reverse 

transcription and used for real time PCR analysis to determine caveolin-1 mRNA 

expression, which is presented graphically (n=3, *p < 0.01 vs NSEC). In (B), total protein 

lysates were prepared from the same cells and caveolin-1 expression was detected by 

immunoblot analysis, (representative immunoblots are shown in upper panel). In the middle 
panel, specific signals were quantitated and normalized to β-actin and eNOS. The lowest 
panel depicts GRK2 expression, known to be upregulated in only injured SECs (Liu et al., 

2005), was used as a control (n=3, *p<0.05 vs NSEC).
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Figure 3. 
Caveolin-1 is upregulated in injured HSCs. HSCs were isolated from normal and injured 

(BDL, BHSC) rat liver and cultured. In (A), total RNA was extracted and cDNA was 

prepared, followed by RT-PCR to detect caveolin-1 mRNA expression, which is presented 

graphically (n=3, *p < 0.01 vs HSC). In (B), total protein lysates were prepared from the 

same cells and caveolin-1 expression was detected by immunoblot analysis (representative 

immunoblots are shown in upper panel). In the middle panel, specific signals were 

quantitated, normalized to β-actin and the data presented graphically (n=3, *p<0.05 vs 

HSC). In (C), HSCs were grown for 1, 3 and 5 days in culture and processed as in (B). The 

upper panel shows a representative immunoblot while the middle panel depicts quantitative 

analysis of blots. In both (B) and (C) the lowest panels depict expression of smooth muscle 

α actin, known to be upregulated only in injured HSCs (Rockey et al., 1992), was used as a 

control (n=3, *p<0.05 vs day1).
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Figure 4. 
Hepatocytes have a minimal expression of caveolin-1. Hepatocytes were isolated from 

normal and injured (BDL) rat liver and cultured for 24 hours. In (A), total RNA was 

extracted and cDNA was prepared, followed by RT-PCR to detect caveolin-1 mRNA 

expression, which is presented graphically (n=3, p > 0.05 vs normal). In (B), total protein 

lysates were prepared from normal and injured (BDL) hepatocytes and caveolin-1 

expression was detected by immunoblot analysis (a representative immunoblot is shown in 

the upper panel). In the lower panel, specific signals were quantitated, normalized to β-actin, 

and the data presented graphically (n=3, p > 0.05 vs normal).
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Figure 5. 
Immunohistochemical detection of caveolin-1 in normal and injured rat liver tissue. 

Immunoflorescence staining to detect caveolin-1 and desmin (A), VE cadherin (B), or 

albumin (C) was performed in normal and BDL rat liver sections. Desmin expression is 

restricted to HSCs and smooth muscle cells, VE cadherin to endothelial cells, whereas 

albumin expression is restricted to hepatocytes. In each series, the upper panels depict 

representative normal liver sections, while the lower panels depict representative injured 

(BDL) liver sections. The scale bar represents 100 μm.
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