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Chimeric antigen receptor (CAR) T cell therapy has been successful
in clinical trials against hematological cancers, but has experienced
challenges in the treatment of solid tumors. One of the main
difficulties lies in a paucity of tumor-specific targets that can serve
as CAR recognition domains. We therefore focused on developing
VHH-based, single-domain antibody (nanobody) CAR T cells that
target aspects of the tumor microenvironment conserved across
multiple cancer types. Many solid tumors evade immune recogni-
tion through expression of checkpoint molecules, such as PD-L1,
that down-regulate the immune response. We therefore targeted
CAR T cells to the tumor microenvironment via the checkpoint
inhibitor PD-L1 and observed a reduction in tumor growth,
resulting in improved survival. CAR T cells that target the tumor
stroma and vasculature through the EIIIB+ fibronectin splice variant,
which is expressed by multiple tumor types and on neovasculature,
are likewise effective in delaying tumor growth. VHH-based CAR
T cells can thus function as antitumor agents for multiple targets in
syngeneic, immunocompetent animal models. Our results demon-
strate the flexibility of VHH-based CAR T cells and the potential
of CAR T cells to target the tumor microenvironment and treat
solid tumors.
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Cancers can avoid eradication by evading, and sometimes
actively suppressing, the immune system, although they are

often initially recognizable by immune cells. The rapidly evolving
field of immunotherapy targets cancers by harnessing the power
of the immune system. A key player in that approach is the
chimeric antigen receptor (CAR) T cell (1–3). CAR T cells are
T cells into which a recombinant receptor has been introduced to
redirect their specificity toward an antigen of choice. Such re-
ceptors comprise an extracellular module that recognizes antigen
independent of MHC restriction, in combination with cytoplas-
mic signaling domains. The antigen recognition module of CAR
T cells is usually a single-chain variable fragment (scFv), linked
to a costimulatory domain and a cytoplasmic activation domain,
such as the CD3ζ or FcRγ intracellular signaling domain (4–6).
The scFvs are composed of a heavy-chain variable fragment
connected to a light-chain variable fragment by a flexible linker.
They are typically reformatted from a full-length Ig, with the
linker optimized to preserve heavy- and light-chain variable re-
gion pairing. However, scFvs do not always fold efficiently and
can be prone to aggregation (7, 8). In contrast, the variable re-
gions of heavy-chain−only antibodies (VHHs or nanobodies) are
small, stable, camelid-derived single-domain antibody fragments
with affinities comparable to traditional scFvs (9, 10). VHHs are
generally less immunogenic than murine scFvs and, owing to
their small size, can access epitopes different from those seen by

scFvs (11–13). VHHs could therefore serve as suitable antigen
recognition domains in CAR T cells, and several potentially in-
teresting VHHs (14–16) have been tested. Unlike scFvs, VHHs do
not require the additional folding and assembly steps that come
with V-region pairing. They allow surface display without the re-
quirement for extensive linker optimization or other types of
reformatting. The ability to switch out various VHH-based recog-
nition domains yields a highly modular platform, accessible without
having to reformat each new conventional antibody into an scFv.
CAR T cell therapies have proven clinically effective exclu-

sively in hematological cancers. CD19-specific CAR T cells have
shown success in treating a number of B cell leukemias and
lymphomas, as B cell depletion is comparatively well tolerated
(17, 18). However, not all tumors have highly specific biomarkers
or antigens that are shared by dispensable cell types such as B
cells, especially in the case of solid tumors. Antigens such as
ErbB2, PSMA, and B7-H3 are considered possible CAR targets
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for solid tumors, but expression at low levels elsewhere may
compromise such applications (19–21). Indeed, an ErbB2-
targeted CAR T cell designed to treat metastatic colon cancer
proved lethal in a patient, most likely due to off-tumor targeting
of healthy lung epithelial cells (19). Off-tumor effects can in-
clude widespread cytokine release, which can lead to organ
failure (19–21).
Current CAR T cell therapies target the tumor directly, as in

the case of CD19 or mesothelin-specific CAR T cells. However,
solid tumors rarely display unique antigenic markers, and ex-
ploitation of neoantigens would require their surface expression,
as well as the production of immunoglobulins or VHHs that
recognize them, to generate appropriately specific CARs. To
delay the growth of solid tumors, it may be helpful to compro-
mise their microenvironment. Moreover, the microenvironments
of many solid tumors share characteristics, for example, the ex-
pression of inhibitory molecules such as PD-L1 (22, 23). Using
VHHs as recognition domains, we therefore explored PD-L1−
specific CAR T cells to target the tumor microenvironment.
PD-L1 is widely expressed on tumor cells, as well as on the in-
filtrating myeloid cells and lymphocytes. A CAR that recognizes
PD-L1 should relieve immune inhibition and at the same time
allow CAR T cell activation in the tumor microenvironment. PD-
L1−targeted CAR T cells might thus reprogram the tumor mi-
croenvironment, dampening immunosuppressive signals and
promoting inflammation. To test this concept, we used the fully
syngeneic B16 melanoma model, as well as a PD-L1−overexpressing
B16 melanoma model and a colon adenocarcinoma cell line, MC38,
in immunocompetent mice. Our results show a significant delay in
tumor growth and improved survival by treatment with anti−PD-L1
CAR T cells.
The reliance of solid tumors on extracellular matrix (ECM)

and on neovasculature for nutrient supply affords yet another
possible target for CAR T cells, as tumor ECM and newly
formed blood vessels display unique antigens not commonly
found in healthy adults (24, 25). As an extension of the concept
that targeting PD-L1 in the tumor microenvironment may prove
beneficial, we generated CAR T cells using a VHH that recog-
nizes EIIIB, a splice variant of fibronectin strongly expressed in
both the tumor ECM and the neovasculature (24, 26). These
CAR T cells also reduce the rate of tumor growth in the B16
melanoma model. Attacking the tumor stroma and/or the neo-
vasculature may not only help to establish a local inflammatory
response that benefits subsequent immune recognition in a
vaccinal manner, but it may also enhance access to the tumor for
otherwise impermeant drugs in difficult to treat cancers. Many
solid tumors depend on stromal ECM and neovasculature for
survival, and, therefore, EIIIB serves as an easily generalizable
target that is not limited to a specific tumor type. In this study, we
establish VHH-based CAR T cells as a versatile, modular system to
target various compartments of the solid tumor microenvironment.

Results
VHH-Based CAR T Cells Expressed with Retention of Antigen
Specificity. The VHH-based CAR T cells generated in this
study follow the principal design of scFv-based CAR T cells,
where the VHH replaces the scFv as the recognition module. For
the construction of these CARs, we used VHHs specific for GFP
[referred to as “enhancer” or “Enh” (15)], for PD-L1 (B3 or
A12), and for the EIIIB splice variant of fibronectin (NJB2) (14,
27–29). For most experiments, we used 1B7, a VHH that recog-
nizes a Toxoplasma gondii kinase, as a negative (nonspecific) control
(16). The lentiviral vector backbone is derived from murine stem
cell virus and encodes the CAR construct in addition to an internal
ribosomal entry site (IRES)-driven green fluorescent protein (GFP)
or mCherry cassette to gauge transduction efficiency (Fig. 1A).
Before transduction, T cells obtained from spleen were activated
with plate-bound anti-mouse CD28 and anti-mouse CD3 (Fig. 1B).

By gating on those cells that were successfully transduced [GFP
or mCherry-positive, typically 40 to 80% transduced (SI Appen-
dix, Fig. S1)], we assessed CAR expression and functionality by
binding of suitably labeled CAR ligands. Immunoblots with Enh
CAR lysate developed with an anti-Enh serum show a poly-
peptide of ∼40 kDa, the expected size of the Enh CAR (Fig. 1C).
The Enh CAR, when transduced into T cells, retained the ability
to bind GFP, as evident from a FACS-based assay (Fig. 1D). We
likewise showed that the anti−PD-L1 CAR, based on the A12
VHH, recognized a recombinant PD-L1−Fc fusion, as detected
by fluorescently labeled anti-mouse IgG (Fig. 1E). In all cases,
binding of antigen to CAR T cells was blocked by inclusion of a
molar excess of the corresponding free VHH as competitor, in-
dicating specificity of ligand binding. We conclude that VHHs
are readily displayed as CAR recognition modules with full re-
tention of antigen-binding specificity.

In Vitro Activity of CAR T Cells: Cytokine Production and Cytotoxicity.
Having shown the binding specificity of VHH-based CARs, we
next determined the functional properties of VHH-based CAR
T cells. Upon incubation of GFP-specific CAR T cells with plate-
bound GFP, we observed an increase in IL-2 and IFNγ pro-
duction in the culture supernatants (Fig. 2 A and B). Even
though GFP in solution is a monomer, the plate-bound config-
uration allows multivalent engagement and ensures activation.
Cytotoxicity of the PD-L1−targeted A12 CAR T cells was
assessed on B16 melanoma cells, which express PD-L1. The A12
CAR T cells killed the B16 melanoma in a dose-dependent
manner (Fig. 2C). IFNγ production from the CAR T cells in re-
sponse to exposure to the B16 melanoma likewise increased at
higher E:T ratios (Fig. 2D). PD-L1 is overexpressed on a number of
different tumor types. We showed that the A12 PD-L1−targeted
CAR can elicit cytotoxicity against several different cancer cell lines
that express PD-L1, including C3.43 (Fig. 2 E and F), an HPV16-
transformed cell line, and MC38 (Fig. 2 G and H), a colon
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adenocarcinoma, suggesting applicability across a spectrum of
cancers. Cytotoxicity and IFNγ secretion again occurred in a
dose-dependent manner. Both cytotoxicity (Fig. 2I) and IFNγ
production (Fig. 2J) were blocked by inclusion of the corre-
sponding soluble blocking VHH (B3), thus occluding other
possible docking sites on the B16 melanoma for the CAR T cells
to engage. We therefore conclude that cytotoxicity of the CAR
T cells was specific for the target ligand.

Anti−PD-L1 CAR T Cells Are Generated More Effectively in a PD-
L1−Deficient Background. The design of CARs that recognize
antigens expressed differentially on tumors versus normal cells
poses a complication if the antigen is also expressed endogenously
on the very same T cells programmed to display those CARs. This
is the case for PD-L1, a possibly attractive target of solid tumors but
expressed also at low levels on antigen-experienced T cells. We
observed constitutively elevated IFNγ production when PD-L1−
specific CARs were introduced into wild-type (WT), PD-L1−
proficient T cells (Fig. 3A). Follicular T helper cells engage the
PD-1/PD-L1 axis for proper function in the germinal center re-
action (23). Consequently, “self”-activation of PD-L1−specific
CAR T cells before they experience their targets could be prob-
lematic. Indeed, in the course of development of A12 CAR T cells,
these cells showed enhanced expression of exhaustion markers such
as PD1, TIM3, and LAG-3 (Fig. 3B), presumably due to chronic
activation by PD-L1 engagement either in cis or in trans. Through
introduction of PD-L1 CARs into PD-L1−deficient, activated
T cells, such premature activation was avoided. PD-L1−/− anti−PD-
L1 CAR T cells also persisted better in vivo. PD-L1−/− A12 PD-L1
CAR T cells or WT A12 PD-L1 CAR T cells were introduced into
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Fig. 2. In vitro activity of CAR T cells: cytokine production and cytotoxicity.
T cells were transduced with Enh CAR. (A) IL-2 and (B) IFNγ levels in the
supernatant of CAR T cells cultured for 24 h with GFP or an irrelevant protein
(TIM3−Fc). (C–J) T cells were transduced with A12 CAR targeted to PD-L1. (C
and D) A12 CAR T cells recognized and killed B16 tumors. Coculture of anti−
PD-L1 A12 CAR and a nonspecific control 1B7, recognizing a T. gondii
calcium-dependent protein kinase, with B16 cells. Cells were cultured for 48
h at various effector:target (E:T) ratios. (C) A Cell Titer Glo assay was per-
formed to measure cytotoxicity. (D) Supernatants were collected and IFNγ
levels were measured. (E and F) A12 PD-L1−targeted cells were also effective
in killing C3.43 HPV-transformed cancer cell lines. C3.43 cells were cultured
with A12 CAR T cells at various E:T ratios. (E) C3.43 killing was measured by
Cell Titer Glo, and (F) CAR activation was measured by IFNγ secretion. (G and
H) A12 CAR T cells were cytotoxic against MC38 colon adenocarcinoma cells.
A12 CAR T cells were cocultured with MC38 cells at various E:T ratios, and (G)
MC38 killing and (H) A12 CAR T cell activation and cytokine secretion were
measured. (I and J) Blocking experiments were performed using the B16
coculture setup. Cytotoxicity assay mixtures were incubated with varying
concentrations soluble A12 VHH, B3 VHH, or an irrelevant 96G3M VHH (14).
B3 binds PD-L1 with higher affinity than does A12. Higher levels of target
antigen blockade lead to (I) better B16 survival and (J) less IFNγ secretion,
indicating specificity. ****P ≤ 0.0001.
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RAG−/− mice bearing B16 tumors, using 1B7 CAR T cells as
controls (Fig. 3C). After 14 d of culture, spleens, tumors, and
tumor-draining lymph nodes were harvested and probed for the
presence of GFP+ CAR T cells. We saw that the A12 CAR CD4
and, to a lesser degree, CD8 T cells generated in a PD-L1−/−

background expanded more in spleen and lymph nodes than A12
CAR T cells obtained from WT mice (Fig. 3 D–F). We also saw
increased infiltration of PD-L1−/− CD8+ CAR T cells in the tumor
compared with WT A12 CAR T cells or 1B7 (nonspecific) CAR
T cells (Fig. 3 E and F). We conclude that persistent antigen rec-
ognition in the course of CAR T cell generation compromises ac-
tivity and persistence of WT A12 CAR T cells in vivo. Interestingly,
upon injection of varying amounts of A12 PD-L1−/− CAR T cells
into WT hosts, we did not notice significant changes in the level of
endogenousWT T cells, but did notice a decrease in CD45+CD11b+
cells in the spleen (SI Appendix, Fig. S2). This suggests that the
level of PD-L1 expression, as well as the number of CAR T cells
introduced, may determine whether cell killing occurs, or whether
these T cells become exhausted.

In Vivo Application of Anti−PD-L1 CAR T Cells Slows Growth of Solid
Tumors. Since PD-L1 is up-regulated on several cancer types, we
determined whether A12 CAR treatment would affect growth of
various tumor models known to overexpress PD-L1. The first
model we tested was the highly aggressive B16 melanoma (Fig.
4A). C57BL/6 PD-L1−/− mice were inoculated with both WT B16
cells and B16 cells transfected to overexpress PD-L1 under the
control of a CMV promoter (SI Appendix, Fig. S3). PD-L1−/−

anti PD-L1 CAR T cells were injected into tumor-bearing mice
once a week, for a total of three injections (9 × 106 to 14 × 106

cells per injection), using 1B7 CAR T cells as negative controls.
Transduction rates of both CAR T cells were around 40% (SI
Appendix, Fig. S1). TA-99, an anti-TRP1 monoclonal antibody
that recognizes an antigen highly expressed on (a subset of)
melanomas (30), was used in combination with CAR T cell
treatment to enhance immune infiltration and delay tumor
growth to allow the CAR T cells sufficient time to exert an effect.
This aggressive melanoma model more accurately recapitulates
human disease compared with standard NOD scid gamma
(NSG) models, as the tumors are syngeneic and develop in the
presence of a fully intact immune system, but with an ineffective
immune response directed against the tumor. Mice treated with
the A12 CAR T cells showed a statistically significant decrease in
tumor growth rate and an increase in survival in both the B16
WT tumor model (P < 0.0001) and the PD-L1 overexpressing
B16 model (P = 0.02) (Fig. 4 B–G). These experiments not only
provide a system for studying CAR T cells in a syngeneic im-
munocompetent host but also avoid immune-depleting chemo-
therapy. We next tested A12 CAR T cell efficacy in the syngeneic
MC38 model, in fully immunocompetent C57BL/6 mice (Fig. 4
H–J). Mice were inoculated with tumors and were left untreated
or treated with either the A12 CAR T cells or the nonspecific
1B7 CAR T cells once a week, starting on day 5, for a total of
three injections of 1 × 107 to 1.6 × 107 cells per injection. A12
CAR T cell treatment increased survival (P = 0.003), as well as
decreasing tumor growth compared with either no treatment or
untargeted treatment. Low levels of immunogenicity against
the A12 CAR were seen in a few mice, but no visible side ef-
fects developed upon repeated administration. Immunogenicity
did not adversely affect survival (SI Appendix, Fig. S4). Com-
pared with mice actively immunized with VHHs, the levels of
immunogenicity upon repeated CAR T cell injections are much
lower (27, 28). A PD-L1−targeted VHH CAR T cell thus
provides a significant survival benefit in several different tumor
models. Immune checkpoints such as PD-L1 may serve as vi-
able targets for CAR T cell therapy.

Exhaustion of CAR T Cells Due to Persistent Activation Is Overcome by
PD-L1 Blockade in Culture. Chronic PD-L1 exposure in the course
of generating A12 CAR T cells decreases their persistence and
proliferation. We reasoned that this phenomenon could be
prevented by blocking PD-L1 exposure during culture. To pre-
vent chronic activation of the A12 CAR T cells in culture, WT
anti−PD-L1 CAR T cells were generated in the continuous
presence of VHH B3, a high-affinity anti−PD-L1 VHH that
blocks A12 binding of PD-L1 (27, 28). Indeed, blocking PD-L1
exposure in the course of CAR T cell generation decreases ex-
pression of exhaustion markers such as LAG3, TIM3, and PD-1
(Fig. 5A). We generated CAR T cells in either the WT or the
PD-L1−/−background cultured with VHH B3 PD-L1 to prevent
activation. We then introduced these A12 CAR T cells into WT
C57BL/6 mice bearing a B16 tumor. After 2 wk, we harvested the
spleens to determine persistence of CAR T cells. CD4 and, to a
lesser extent, CD8 A12 CAR T cells generated in the presence of
a PD-L1–blocking VHH expand more effectively in vivo than
those generated in its absence (Fig. 5B). However, PD-L1−/−

CAR T cells still proliferate more effectively. We next asked if
decreasing the exhaustion level of these CAR T cells in the
course of their production would improve an antitumor response
in vivo. Mice inoculated with B16 tumors were treated with PD-
L1−targeted CAR T cells generated in the WT background, but
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Fig. 4. In vivo application of anti−PD-L1 CAR T cells slows growth of solid
tumors. (A) PD-L1 KO mice were inoculated with B16 tumor cells. On days 2,
7, and 14, mice were treated with A12 CAR T cells (n = 10) or 1B7-irrelevant
CAR T cells (n = 5) or left untreated (n = 5). All mice were given an anti-TRP1
antibody, TA99, in combination with CAR T cell treatment. (B) Kaplan−Meier
curves showing survival of each treatment condition (P < 0.0001, Mantel−
Cox log-rank test). (C) The average tumor area with SEM and (D) individual
tumor area of each mouse was measured. Treatment with the A12 CAR
T cells delayed tumor growth (none/A12 P = 0.0296, 1B7/A12 P = 0.04). (E)
PD-L1 KO mice were inoculated with B16 tumor cells engineered to express
high levels of PD-L1 under the control of a CMV promoter (n = 5). (F) Kaplan−
Meier curve showing survival of each group (P = 0.0233, Mantel−Cox log
rank). Mice treated with A12 CAR T cells showed improved survival. (G)
Average tumor area (none/A12 P = 0.0029, 1B7/A12 P = 0.0422, unpaired
t test with Bonferroni correction) and individual tumor area for each group
were measured. SEM is shown. (H) PD-L1 KO mice were inoculated with
MC38 colon adenocarcinoma. Mice were either left untreated (n = 5),
treated with irrelevant CAR T cells (n = 5), or treated with PD-L1−targeted
CAR T cells (n = 8). (I) Survival was measured and plotted on a Kaplan−Meier
curve, showing that A12 CAR treatment improved survival (P = 0.003). (J) The
tumor area average for each group was monitored (none/A12 P = 0.003, 1B7/
A12 P = 0.009, unpaired t test with Bonferroni correction).

Xie et al. PNAS | April 16, 2019 | vol. 116 | no. 16 | 7627

M
ED

IC
A
L
SC

IE
N
CE

S
IN
A
U
G
U
RA

L
A
RT

IC
LE

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1817147116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1817147116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1817147116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1817147116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1817147116/-/DCSupplemental


cultured in the presence of excess soluble anti−PD-L1 VHH to
prevent chronic activation (Fig. 5C). Since the in vitro data
showed inferiority, we did not test the PD-L1−targeted CARs
generated in the WT background without PD-L1 blocking. We
observed a delay in B16 tumor growth in mice that received WT
anti−PD-L1 CAR T cells generated in the presence of the PD-
L1–blocking VHH (P = 0.04) (Fig. 5 D and E), showing that the
prevention of early activation in culture is a viable means of
allowing a PD-L1−targeted CAR T cell to be deployed in a
patient setting.

Anti-EIIIB Fibronectin-Targeted CAR T Cells Slow B16 Melanoma
Growth in Vivo. EIIIB is an alternatively spliced domain of fi-
bronectin strongly expressed in tumors and during angiogenesis,
but not in most normal tissues (26). We targeted CAR T cells
specifically to the tumor microenvironment (stromal ECM and
neovasculature) through recognition of the fibronectin EIIIB+

splice variant. We used VHH NJB2, which targets EIIIB (29), to
generate B2 CAR T cells, and transduction rates of the B2 CAR
were around 80% (SI Appendix, Fig. S1). We determined display
of the B2 CAR by flow cytometry, using recombinant EIIIB-GST
as the ligand and probing with rabbit anti-GST and fluorescently
labeled anti-rabbit (Fig. 6A). Coculture of B2 CAR T cells with
aortic endothelial cell lines that either contain or lack the EIIIB
domain (gift from R.O.H.) confirm their specificity and cyto-
toxicity in vitro (Fig. 6B). Immunohistochemistry (IHC) and PET

imaging of B16 tumors show that EIIIB is present in their tumor
stroma and neovasculature (29). We therefore used the B16
melanoma model to show that treatment with B2 CAR T cells
delays tumor growth. Mice were injected s.c. with 1 × 105 B16
melanoma cells without prior lymphodepletion. Four days after
tumor inoculation, a total of three CAR T cell injections [1 × 107

to 1.5 × 107 cells] were given at weekly intervals (Fig. 6C). The
B2 CAR T cells successfully delayed tumor growth and improved
survival (P = 0.0001) compared with treatment with nonspecific
CAR T cells (Fig. 6D). The B2 CAR T cell treatment was then
combined with the anti-TRP1 antibody, TA99, to try to further
enhance innate immune infiltration (SI Appendix, Fig. S6). Low
levels of immunogenicity against the B2 CAR were seen in a few
mice, but no visible side effects developed upon repeated ad-
ministration, and immunogenicity was not related to survival (SI
Appendix, Fig. S4). B2 CAR T cell treatment was also tested in a
B16 model in immunocompromised RAG−/− mice to determine
the contribution of the endogenous adaptive immune system in
the efficacy of treatment (Fig. 6E). We saw no significant increase
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in survival or delay in tumor growth when tumor-bearing mice
lacking adaptive immunity were treated with the B2 CAR T cells,
despite efficient expansion of the B2 CAR T cells (SI Appendix,
Fig. S7), indicating that the CAR treatment synergizes with the
endogenous adaptive immune system to show efficacy in these
immunocompetent tumor models. To further test the degree of
efficacy of B2 CAR T cells in tumors with lower expression levels
of EIIIB, we also investigated the MC38 colon carcinoma model.
From immunohistological examination of excised MC38 tumors,
we observed only low levels of EIIIB expression compared with
the levels on B16 tumors (SI Appendix, Fig. S8). Mice inoculated
with MC38 tumors and treated with B2 CAR T cells showed
minimal effects on survival or tumor growth (Fig. 6F). We
therefore suggest that the poor efficacy of B2 CAR T cells in the
MC38 model is likely due to this lower expression level of EIIIB
and that, for the B2 CAR T cells to be effective, a minimum level
of EIIIB expression is required. These results show that targeting
CAR T cells selectively to tumor ECM and neovasculature can
be very effective in suppressing tumor growth. We conclude that
we can apply VHHs to generate CAR T cells that are effective
in vivo against targets in the tumor microenvironment in fully
immunocompetent mice.

Treatment with Anti-EIIIB Fibronectin-Targeted CAR T Cells Leads to
Tumor Immune Infiltration and Necrosis. To more closely analyze
the mechanisms of B2 CAR treatment, we performed IHC on
tumors excised while undergoing treatment. WT C57BL/6 mice
were inoculated with B16 tumors, and mice were either treated
with B2 CAR T cells or left untreated. At day 16, when there was
a significant difference in tumor sizes between the treated and
control group (Fig. 7 A and B), tumors were excised, fixed, and
subjected to IHC. Tumor samples were then stained with sec-
ondary only (control) or for EIIIB, CD31, CD3, CD4, and CD8
to determine how ECM, vasculature, and immune cell pop-
ulations were affected by the B2 CAR T cell treatment. The
structure of the untreated tumors appeared healthy and intact,
while the treated tumors showed clear signs of disruption. In the
untreated samples, we saw expression of EIIIB in the tumor
stroma and capsule, as well as around the vasculature, as in-
dicated by its partial colocalization with CD31 (Fig. 7C). Ex-
pression of EIIIB in the tumor stroma appeared heterogeneous.
In contrast, two of the three smaller treated tumors were highly
necrotic, as indicated by the lack of healthy nuclear staining and
disintegration of the matrix (Fig. 7D). Furthermore, these two
treated samples showed decreased levels of CD31-positive vas-
culature compared with controls. Since B2 CAR T cells are
targeted to EIIIB, which is expressed in tumor stroma and on
neovasculature, the necrotic nature and lack of CD31 expression
in the treated samples is perhaps to be expected. The third
treated tumor was slightly larger (Fig. 7B) and was heteroge-
neous, showing a mixture of live, healthy tumor and necrotic,
damaged tissue (Fig. 7E, Top). The healthy tumor regions
expressed EIIIB and showed heavy T cell infiltration throughout
the tissue, compared with untreated tumors. CD31 staining of
this heterogeneous tumor indicated the presence of intact vas-
culature in the healthy sections with immune cell infiltration,
while the necrotic regions displayed a lack of vasculature with
less T cell infiltration (Fig. 7E, Bottom). Averaging across all
tumors, those treated with B2 CAR T cells had elevated levels of
immune cells (Fig. 7F). The heterogeneous treated tumor
showed many more infiltrating immune cells in those regions
that were still alive (Fig. 7G). A reasonable interpretation is that
the B2 CAR T cells infiltrate the tumors and possibly also recruit
additional immune cells. These data further corroborate the
ability of B2 CAR T cells to infiltrate and damage EIIIB-
expressing tumors. Tumors rely on support and nutrients de-
livered by their stroma and vasculature, and, by compromising
these interactions, the B2 CAR T cells markedly delay tumor growth.

Discussion
Although CAR T cells have shown success in treating several
types of hematological cancers, their deployment will require
further refinement for an attack on solid tumors. Limitations in
biomarker availability, insufficient delivery of CAR T cells, and
an increased immunosuppressive environment within the tumor
may account for poor CAR T cell performance in the treatment
of solid tumors (31). Physical barriers, such as a dense ECM that
encapsulates the tumor, or properties of the vasculature that
preclude adhesion and diapedesis of CAR T cells could likewise
compromise their efficacy (31). Indeed, many solid tumors
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Fig. 7. Treatment with anti-EIIIB fibronectin-targeted CAR T cells leads to
tumor immune infiltration and necrosis. (A) WT mice were inoculated with
tumors on day 0 and either left untreated (N = 2) or treated with B2 CAR
T cells (n = 3) twice, on days 4 and 11. On day 16, tumors were harvested,
fixed, and embedded for IHC and stained for EIIIB, CD31, CD3, CD4, and CD8.
(B) The tumor area average measurements and values for individual mice are
plotted. (C) Tumor samples were stained with PBS and secondary only
(control), NJB2 VHH, anti-CD31, anti-CD3, anti-CD4, and anti-CD8. One rep-
resentative image is shown. A 20× magnification of the edge (E), capsular
region (Top) of the tumor is shown. A similar magnification of a core (C)
(Bottom) regions of the tumor is shown. EIIIB is present in the tumor capsule,
tumor stroma, and surrounding the tumor vasculature, as inferred from
colocalization with CD31 staining. In untreated samples, tumors appeared
healthy and live, with intact matrix throughout the tissue. Little T cell and
immune infiltration was apparent. (D) Necrotic B2 CAR T cell-treated tumors.
Two of the three smaller treated tumors were highly necrotic, with a dis-
integrated matrix. CD31 staining shows a lack of tumor vasculature with
little immune infiltration. (E) One treated tumor appeared to be hetero-
geneous and showed both (Bottom) necrotic [dead (D)] and (Top) live (L)
sectors. The live tissue showed CD31 staining and was heavily infiltrated by
CD3-, CD4-, and CD8-positive cells. (F) The number of CD3-, CD4-, and CD8-
positive cells was quantified for both treated and untreated tumors. (G) The
number of CD3-, CD4-, and CD8-positive cells was quantified for both the live
and dead sections of the treated and untreated tumors.
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suppress immunity through expression of checkpoint proteins
such as PD-L1, which engage corresponding inhibitory receptors
on T cells (23). PD-L1 has not been exploited as a target for
CAR T cells in vivo.
Establishing a more inflammatory local environment might

be beneficial to overcoming immune suppression. Monoclonal
antibodies that inhibit development of the tumor vasculature by
targeting VEGF, or cytokine therapies such as provision of IL2
or IL-12, can increase inflammation in the tumor for more effective
immune control (27, 32–34). Cytokine release by activated CAR
T cells might help establish the requisite local conditions, in addition
to exerting their cytolytic effects. We therefore generated CAR
T cells that either target the checkpoint protein PD-L1 or the tumor
stromal ECM and neovasculature through EIIIB, a fibronectin splice
variant strongly expressed in both murine and human tumors, both
recognized by NJB2 VHH (25, 29). A major difficulty in developing
CAR T cells for solid tumor treatment is the lack of targetable
antigens. Most antigens proposed as CAR T cell targets to treat solid
tumors are exclusive to a specific cancer type, and limited in-
formation on cancer-specific antigens for the vast majority of solid
tumors puts many tumors out of reach for CAR T cell therapy (35).
By targeting markers in the tumor microenvironment that are
expressed in a variety of tumors, the CAR T cells described here
show versatility for several different tumor models. They have the
potential to target other cancers that lack identified tumor-specific
antigens. PD-L1 is overexpressed on a majority of tumors and on
immune cells within the tumor microenvironment (36). EIIIB is
expressed in the neovasculature and tumor stroma of a range of
tumor subtypes (25). The EIIIB-targeted VHH has already been
tested against a panel of multiorgan human tissue metastasis biopsies
and reacts with a diverse set of tumor samples, further demon-
strating the possible broad applicability of the B2 CAR T cells (29).
We optimized the production of VHH-based CAR T cells and

verified their function in vitro and in vivo by direct ligand-
binding assays, cytotoxicity, cytokine production, and inhibition
of tumor growth. VHH-based CAR T cells that recognize PD-L1
show ligand-specific cytotoxicity and are effective in highly ag-
gressive, syngeneic tumor models in immunocompetent mice
without prior immunodepletion. As long as the immune system
contributes to eradication of solid tumors, as in the case of
melanoma, lymphodepletion may have significant deleterious
effects. We suggest that the mode of action for these PD-L1
targeted CAR T cells is at least twofold. First, anti−PD-L1 CAR
T cells exert direct cytotoxicity and produce cytokines. Second,
binding of a CAR to the relevant checkpoint molecules should
block their interaction with natural ligands on host T cells,
resulting in less immune suppression and exhaustion. In vitro,
PD-L1−targeted CAR T cells show cytotoxicity against several
types of solid tumors, including B16 melanoma, MC38 colon
adenocarcinoma, and C3.43 HPV-transformed cell lines. In vivo,
PD-L1−targeted CAR T cells significantly inhibit growth of B16
and MC38 tumors and provide a survival benefit.
The production of anti−PD-L1 CAR T cells is complicated by

the fact that WT T cells express low, endogenous levels of PD-
L1. Anti−PD-L1 CAR T cells generated in the WT background
therefore constantly experience low levels of antigen exposure.
This leads to some degree of T cell exhaustion and impairs
function, in vivo persistence, and proliferation of the CAR
T cells. This phenomenon is not unique to the PD-L1 target, as
several desirable tumor antigens are also expressed at low levels
elsewhere in the tumor, because, with the exception of neo-
antigens, very few truly tumor-specific antigens exist. We found
two ways to overcome this hurdle. First, mice treated with anti−
PD-L1 CAR T cells generated in a PD-L1−deficient back-
ground showed a delay in tumor growth, indicating that these
VHH-based CAR T cells are indeed effective in tumor treat-
ment. Second, by generating anti−PD-L1 CAR T cells in the
continuous presence of a saturating dose of an anti−PD-L1

VHH in solution, engagement of the PD-1/PD-L1 axis is blocked,
and the resulting CAR T cells retain efficacy in vivo. Genetic
ablation of PD-L1 using CRISPR-Cas9 in the course of CAR
generation would likewise be possible, but involves genetic mod-
ifications in addition to provision of the CAR construct (37). We
therefore preferred provision of the CAR ectodomain in soluble
form in the course of generating anti−PD-L1 CAR T cells. In our
experiments, we saw no obvious untoward effects upon transfer of
these CAR T cells at our injection levels. We noticed a decrease in
CD11b+ cells, which were highly PD-L1−positive, but did not see
significant changes in other immune populations. Generation of
the PD-L1−targeted CAR T cells in a WT background did not
result in fratricide, possibly due to sequestering of the PD-L1 li-
gand by PD1 on the T cell surface in cis, as reported for antigen
presenting cells (APCs) (38), or an insufficient level of PD-L1
expression to induce killing.
Targeting the tumor ECM or neovasculature in the tumor mi-

croenvironment rather than the tumor directly may serve as another
method to target multiple tumor types. Since most solid tumors
require angiogenesis to provide nutrients for survival, targeting
stromal and neoangiogenic markers may be a viable strategy (39).
Indeed, an EIIIB+ fibronectin CAR (B2 CAR) T cell targeted to
tumor ECM and the neovasculature inhibited growth of the ag-
gressive B16 melanoma in an immunocompetent mouse. B16 tu-
mors are strongly positive for EIIIB as assessed by IHC. B2 CAR T
cell-treated B16 tumors are largely necrotic and show vascular and
stromal damage, delaying tumor growth, as fewer nutrients can be
delivered to support tumor growth. Treated tumor tissue that is not
already necrotic shows immune cell infiltration, suggesting that B2
CAR T cells and possibly other endogenous immune cells localize to
damaged tumor ECM and vasculature. In contrast, the MC38 tu-
mor, which showed less expression of the EIIIB fibronectin splice
variant, failed to respond to treatment with anti-EIIIB CAR T cells.
Even though solid tumors may share a need for ECM and angio-
genesis, not all tumors display the FN EIIIB variant equally. It may
be possible to identify other vascular and stromal markers that might
serve a similar purpose. These B2 CAR T cell models further
highlight the importance of using syngeneic animal models for CAR
T cell treatment. When RAG−/− mice inoculated with B16 were
treated with B2 CAR T cells, the survival benefit was lost, highlighting
the importance of the endogenous immune system in synergizing with
CAR treatment. Unlike the B2 CAR T cell treatment, when the A12
CAR T cell treatment was tested in RAG−/− mice, we noticed a sur-
vival benefit. As PD-L1 is expressed by the actual tumor cells, unlike
EIIIB, a survival benefit would be expected. However, with the EIIIB-
targeted CAR T cell treatment, it may be possible that compromising
the matrix allows for greater immune infiltration and buildup of an
endogenous immune response to antigens directly on the tumor
itself, explaining why treatment was effective in immunocompe-
tent mice but not in immunodeficient mice.
Targeting the tumor neovasculature and tumor stroma with EIIIB-

targeted CAR T cells may not only compromise the blood supply of
the tumor, it might also serve as a means for improving tumor ac-
cessibility for small-molecule drugs and other therapies that can be
used in combination with the CAR T cells, even if only transiently.
Much like therapies that combine different checkpoint-blocking an-
tibodies, the most likely route forward for solid tumors lies in com-
binations of CART cells with antibodies, radiation, or small-molecule
drugs. From our experiments with both the PD-L1–targeted
and EIIIB-targeted CAR T cells, we conclude that the VHH-
based CAR approach is highly modular and broadly applicable to
various tumors. Once a VHH of the appropriate specificity has been
identified, it can be slotted into the CAR backbone for expression
without the need for modification and optimization of linkers that
connect VH and VL, which are an integral part of scFv-based CAR
T cells. A platform for producing VHH-based CAR T cells expands
the range of syngeneic tumors targetable by CAR T cells in a fully
immunocompetent murine model. VHHs are appealing as antigen
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recognition domains for CAR T cells, as they are easily express-
ible and have no obvious stability concerns (9, 11, 40–42).
Immunodeficient mouse models are still largely the most com-

monly used models in CAR T cell research (43–45). They are
beneficial in that human tumor models and CAR T cells can be
studied, but also suffer from a number of drawbacks. Without the
presence of intact innate and adaptive immunity, these animal
models do not accurately depict the potential of immune suppres-
sion that may occur in the clinic. The use of immunocompetent
mice as a tumor model has the added benefit of endogenous im-
munity and more accurately depicts clinical effects and recapitulates
the degree of efficacy. Development of therapies that do not require
immune depletion would seem further desirable, as endogenous
antitumor immunity plays a large role in tumor surveillance (46).
Compared with xenograft models, immunocompetent models also
allow for better assessment of the safety profile of treatment.
The results from these models demonstrate feasibility and

efficacy of CAR T cells that target the tumor microenvironment
against aggressive solid tumors in a fully immunocompetent
system. Our models show generalizability across multiple tumor
types. Future efforts should be directed at incorporation of
combination therapies, including checkpoint blockade and cy-
tokine therapies to further improve treatment of solid tumors.

Materials and Methods
CAR T cells were generated through retroviral infection of primary murine
T cells. In vitro assays were performed using Cell Titer Glo (Promega) and IFNγ
and IL-2 ELISAs (BD). All animal procedures performed were in accordance
with institutional guidelines and approved by the Institutional Animal Care
and Use Committee of Boston Children’s Hospital (IACUC Protocol 16-12-
3328). A detailed description of the materials and methods used in this study
is provided in SI Appendix, Supplementary Materials and Methods.
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