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The elongation factor G (EF-G)–catalyzed translocation of mRNA
and tRNA through the ribosome is essential for vacating the ribo-
somal A site for the next incoming aminoacyl-tRNA, while precisely
maintaining the translational reading frame. Here, the 3.2-Å crystal
structure of a ribosome translocation intermediate complex contain-
ing mRNA and two tRNAs, formed in the absence of EF-G or GTP,
provides insight into the respective roles of EF-G and the ribosome in
translocation. Unexpectedly, the head domain of the 30S subunit is
rotated by 21°, creating a ribosomal conformation closely resembling
the two-tRNA chimeric hybrid state that was previously observed
only in the presence of bound EF-G. The two tRNAs have moved
spontaneously from their A/A and P/P binding states into ap/P and
pe/E states, in which their anticodon loops are bound between the
30S body domain and its rotated head domain, while their acceptor
ends have moved fully into the 50S P and E sites, respectively. Re-
markably, the A-site tRNA translocates fully into the classical P-site
position. Although the mRNA also undergoes movement, codon–an-
ticodon interaction is disrupted in the absence of EF-G, resulting in
slippage of the translational reading frame. We conclude that, al-
though movement of both tRNAs and mRNA (along with rotation
of the 30S head domain) can occur in the absence of EF-G and GTP,
EF-G is essential for enforcing coupled movement of the tRNAs and
their mRNA codons to maintain the reading frame.
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During protein synthesis, the mRNA and tRNAs must be
moved synchronously through the ribosome, to vacate the A

site for the next incoming aminoacyl-tRNA while preserving the
translational reading frame. This process, called translocation, is
catalyzed by the GTPase elongation factor G (EF-G) (1, 2).
Following peptide bond formation, the deacylated acceptor end
of the P-site tRNA moves into the 50S subunit E site, forming
the P/E binding state, and the peptide-bearing acceptor stem of
the A-site tRNA moves into the 50S P site, creating the A/P state
(3–5). The P/E and A/P states are called hybrid binding states,
because the tRNAs are bound to different sites with respect to
the 30S and 50S subunits. These movements can occur in the
absence of EF-G or GTP (3, 6–9) and are accompanied by an
∼7° rotation of the 30S subunit relative to the 50S subunit (10–
13). There is no translocation of the mRNA or the anticodon
ends of the tRNAs on the 30S subunit during this step.
Unlike hybrid-state formation, completion of translocation

requires the action of EF-G (3, 9, 14–16). This phase of trans-
location involves movement of the mRNA, which must be tightly
coordinated with movement of the associated tRNA anticodon
ends through the 30S subunit to preserve the translational
reading frame. The discovery that EF-G can catalyze trans-
location of tRNAs in the absence of mRNA suggests that the
mechanism of translocation acts primarily on the tRNAs, and
that the mRNA moves passively, via its base-paired interactions
with the tRNA anticodons (17, 18). Accordingly, preservation of
codon–anticodon pairing during movement is crucial.
Structural studies of trapped EF-G–bound translocation in-

termediates (19–22), stopped-flow ensemble FRET experiments
(23–25), and single-molecule FRET studies (9) reveal that this
movement is coupled to large-scale (∼21°) rotation of the head

domain of the 30S subunit (Fig. 1). During head rotation, the
anticodon stem loop (ASL) of the P-tRNA remains bound to P-
site elements of the 30S head domain, moving into a position
that is nearly juxtaposed with E-site elements of the 30S body,
while its acceptor end moves fully into the 50S E site; accord-
ingly, this has been called the pe/E chimeric hybrid state (19, 20).
P-tRNA movement is exactly coupled to head rotation, but
trapped complexes containing two tRNAs and EF-G show that
the A-site tRNA moves further toward the P site than would be
predicted simply from head rotation (21, 22). The anticodon end
of the transiting A-tRNA is positioned roughly between the A
site of the 30S head and P site of the body, while its CCA end is
bound in the 50S P site; this state is called the ap/P chimeric
hybrid state (21). In another trapped intermediate, termed the
ap/ap state, the acceptor end of the EFG-bound tRNA made
simultaneous contacts with the A and P loops of the 50S subunit,
facilitated by rearrangements in the conformations of the tRNA
binding sites themselves (22).
Previously, the presence of two tRNAs in the chimeric hybrid

state has only been observed in the presence of bound EF-G.
Here, we present the 3.2-Å crystal structure of a translocation
intermediate prepared in the absence of EF-G, GTP, or antibi-
otics. The complex, containing a defined mRNA and two tRNAs
bound initially to the A and P sites of the 70S ribosome, was
crystallized under conditions expected to stabilize the hybrid
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state. Unexpectedly, the structure reveals that the tRNAs have
moved spontaneously into ap/P and pe/E chimeric hybrid states,
along with an ∼21° rotation of the head domain of the 30S ribo-
somal subunit, closely resembling, but not identical to, previously
determined structures of trapped chimeric hybrid-state intermedi-
ates containing bound EF-G (21, 22). Most interestingly, trans-
location of the tRNAs has become uncoupled from that of their
mRNA codons in the absence of EF-G. These findings have strong
implications for the respective roles of EF-G and the ribosome in
translocation.

Results
Complexes were constructed from Thermus thermophilus 70S
ribosomes, using a 40-nucleotide defined mRNA designed to
position a Val GUA codon in the P site and a Tyr UAC codon in
the A site. Deacylated tRNAVal and tRNATyr were bound and
incubated at a magnesium-ion concentration (5 mM) that was
expected to stabilize hybrid-state binding (3, 26). Under these
conditions, the complex was fully occupied with tRNA and
mRNA and capable of EF-G–dependent translocation (SI

Appendix, Fig. S1). The complex crystallized in the P212121 space
group and was solved by molecular replacement at 3.2-Å reso-
lution (Methods and SI Appendix, and Table S1). The asymmetric
unit contains two ribosome complexes (A and B); since no
electron density is present for tRNATyr in the A complex, we
focus here on our findings for the B complex.
Unexpectedly, the 30S subunit head domain has undergone

spontaneous large-scale (21°) rotation (Fig. 1), virtually identical
to that previously seen in trapped translocation intermediates
containing two tRNAs and EF-G (21, 22); this is accompanied by
a modest (2°) rotation of the 30S body, relative to the 50S sub-
unit. The L1 stalk of the 50S subunit moves inward, creating a
stacking contact between the noncanonical G2112–A2169 pu-
rine–purine base pair of 23S rRNA and the tertiary Watson–
Crick G19–C56 pair in the elbow of the pe/E tRNA, similar to
that seen in EF-G–containing hybrid-state (13, 27–29) and chi-
meric hybrid-state translocation intermediates (21, 22, 30) (SI
Appendix, Fig. S2).
Both tRNAs undergo spontaneous large-scale translocation into

ap/P and pe/E chimeric hybrid states. As observed for previous
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Fig. 1. Spontaneous movement of the translocation complex into a chimeric hybrid state. (A) Classical-state ribosome complex (32). (B and C) Chimeric state
formed (B) in the presence of EF-G (22) or (C) spontaneously (this work). The spontaneous chimeric hybrid-state translocation intermediate (C) has the same
overall conformation as that obtained in the presence of bound EF-G, including a 21° rotation of the head domain of the 30S subunit. Components are 23S
rRNA (white), 16S rRNA (cyan), 5S rRNA (light blue), 50S proteins (magenta), 30S proteins (blue), P/P-tRNA and pe/E intermediate (red), A/A-tRNA and ap/ap or
ap/P intermediates (yellow), and mRNA (green). Arrow indicates direction of rotation of the 30S subunit head domain.
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Fig. 2. Movement of tRNA ASLs in chimeric hybrid-state complexes. Closeup views of the positions of the tRNA ASLs in the 30S subunit, viewed from the
subunit interface. (A) Classical-state complex (32). (B) EF-G–containing chimeric hybrid state (22). (C) Spontaneous chimeric hybrid state (this work). In both
chimeric hybrid structures, the P-tRNA ASL moves precisely with rotation of the 30S head domain, but in the no–EF-G complex (C), the A-tRNA (a/p) moves
further than in the EF-G complex (B). Structures were aligned relative to the 30S subunit body domain.
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EF-G–containing complexes, the P- tRNAVal moves precisely
with rotation of the 30S head domain, due to its tight binding to
16S rRNA residues G1338 and A1339 and other P-site elements
of the head domain (Fig. 2). Its position is identical to the pe/E
state seen in the EF-G complexes (20, 22) (Fig. 3B).
The anticodon end of the A-site tRNATyr translocates even

further toward the P site than in the ap/ap–tRNA–EF-G–con-
taining chimeric-hybrid complex (22), moving into contact with
the pe/E tRNAVal (Figs. 2–4). Remarkably, this movement re-
sults in complete translocation, moving the A-site tRNATyr into a
position that is virtually indistinguishable from that of the
classical-state P-site tRNA (31, 32), using the 50S subunit as the
frame of reference (Fig. 3A), and is similar to that of the ap/P-
tRNA seen in the presence of EF-G (21).
The CCA acceptor ends of both tRNAs are fully translocated

into the P and E sites of the 50S subunit, respectively. C74 and
C75 of the ap/P-tRNATyr are base paired with G2252 and G2251,
respectively, of the P loop of 23S rRNA, as in the classical P/P
state (SI Appendix, Fig. S3). The 2′-hydroxyl of ribose 76 of the
pe/E tRNAVal H bonds to the N3 and O2 positions of C2394 of
23S rRNA, and its adenosine 76 is stacked between bases G2421
and A2422 of 23S rRNA (SI Appendix, Fig. S4). The N-terminal
β-hairpin of protein L28 contacts the backbone of the CCA tail
of the tRNAVal around position 74.
Contacts between P-site elements of 16S rRNA and the

wobble nucleotide (position 34) at the apex of the anticodon
loops of the two tRNAs are rearranged from those seen pre-
viously for either the classical or chimeric hybrid states. In the
classical state, nucleotide 34 of the P-site tRNA is held in posi-
tion by stacking of 16S rRNA C1400 on the wobble base and
packing of G966 against its ribose moiety (33, 34). In the EF-G–

containing chimeric hybrid intermediate (22), these contacts are
rearranged, so that both G966 and C1400 contact the anticodon
loop of the ap/ap chimeric hybrid tRNA. Here, in the absence of
EF-G, we observe a third configuration, in which C1400 stacks
on wobble base 34 of the ap/P-tRNA, as in the EF-G chimeric-
state structure, but G966 remains packed against ribose 34 of the
pe/E-tRNA (Fig. 5). G966 in the 30S head domain has moved
with the P-site tRNA with rotation of the head, whereas C1400,
in the body, makes contact with the translocating A-tRNA as it
moves into the P site of the 30S body domain.
The conformations of the 16S rRNA bases A1492 and A1493,

which contact the minor groove of the A-tRNA codon–antico-
don duplex in the 30S decoding site, also differ from those seen
previously (SI Appendix, Fig. S5). In this structure, both bases are

flipped out from their stacked positions in helix 44 seen in ri-
bosomes with a vacant A site, but do not reach to make contact
with G530, as in ribosomes containing a bound cognate A-tRNA.
Furthermore, 23S rRNA base A1913 assumes the same tucked-
in conformation as seen in ribosomes with a vacant A site (SI
Appendix, Fig. S5). The positions of A1492 and A1493 more
closely resemble those of an EF-G–containing chimeric hybrid-
state complex (22), which, however, were likely stabilized by the
presence of neomycin. Thus, in the absence of antibiotics,
A1492, A1493, and A1913 assume a conformation intermediate
to those seen in vacant or A-site-bound classical complexes.
The mRNA can be traced from its 5′ end (position −15) to the

decoding site, after which it becomes abruptly disordered, but is very
well ordered from positions −11 to +5) (SI Appendix, Fig. S6).
Shine–Dalgarno pairing is formed between the mRNA GGAGG
sequence (residues −10 to −6) and the 16S rRNA sequence
CCUCC (residues 1535–1539). Base A1503 of 16S rRNA is in-
tercalated between adjacent mRNA bases at positions −1 and −2
(SI Appendix, Fig. S7) as was previously observed in EF-G–con-
taining chimeric hybrid-state structures (20, 22). As in the previous
EF-G–containing complexes (20, 22), the bulged G926 contacts
phosphate +3 (residue 18) of the mRNA (SI Appendix, Fig. S8)
instead of phosphate +1 as in the classical-state complex (32, 33)
indicating a net movement of the mRNA by two nucleotides (rel-
ative to the 30S body domain) as the P-site tRNA nears completion
of its translocation into the 30S E site.
Although the backbone positions of the first two nucleotides

of the GUA Val codon and the pe/E-tRNAVal anticodon are
roughly juxtaposed for pairing, the codon and anticodon bases
are pulled apart and are no longer precisely aligned, resulting in
slippage of the P-codon register by about one-half position (Fig.
6). A kink in the mRNA backbone following U+2 orients the
wobble base A+3 of the Val codon to diverge from the path of its
5′-GU to stack on U+4 of the following Tyr UAC codon (Fig.
6A). Thus, G+1 of the Val codon is aligned between C36 and
A35 of the tRNAVal anticodon, and U+2 between A35 and
cmU34 (Fig. 6C and SI Appendix, Fig. S9B). This leads to a
nonpairing coplanar juxtaposition of the tRNATyr anticodon with
the resulting AUA triplet (nucleotides 18–20), creating a −1
slippage of the reading frame (Fig. 6B and SI Appendix, Fig.
S9A). These codon–anticodon slippages are summarized sche-
matically in Fig. 7. The result is consistent with the overall dif-
ference in movement of mRNA and tRNA relative to the 30S
body domain. As described above, G926 of 16S rRNA is juxta-
posed with phosphate +3 of the mRNA (SI Appendix, Fig. S8),
instead of phosphate +4 (which would correspond to trans-
location by one full codon), whereas the A-site tRNA has moved
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the ap/P (orange) and pe/E (red) spontaneous chimeric hybrid-state tRNAs
compared with (A) classical-state P/P (cyan) and E/E (blue) tRNAs (32) and (B)
EF-G–containing ap/ap (cyan) and pe/E (blue) chimeric hybrid-state tRNAs
(22). (A) In the absence of EF-G, the A-site tRNATyr (orange) moves into the
ap/P chimeric hybrid state, resulting in direct contact (circle) with the pe/E-
tRNAVal. Note that its position is identical to that of the fully translocated
classical P/P-tRNA (32). (B) In the absence of EF-G, the P-site tRNAVal moves
into the same position as the pe/E-tRNA observed in the presence of EF-G
(22). Structures were aligned relative to the 50S subunit.
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fully into the position of classical P-site tRNA (Fig. 3A). Thus,
movement of the A-site tRNA (and to a lesser extent the P-site
tRNA) in the absence of EF-G appears to be uncoupled from
movement of the mRNA, in contrast to that seen in the EF-G–

containing chimeric hybrid-state complex (Fig. 7 and SI Appen-
dix, Fig. S10) (22).

Discussion
Previous studies have shown that the ribosome is capable of
complete translocation in the absence of EF-G or GTP, albeit at
greatly reduced rates (35–37) or if stimulated by antibiotics (38,
39), or in reverse (40). Here, a pretranslocation complex as-
sembled under conditions intended to favor hybrid-state for-
mation, appears to have moved spontaneously into a chimeric
hybrid state (Fig. 1). Since this occurred during the several-day
period of crystallization, the rate of this translocation event is
unknown. This fortuitous trapping of the complex in the chimeric
intermediate state may be due to the relatively low (∼5 mM)
Mg2+ concentration conditions, compared with the higher (∼10–
15 mM) concentrations used in many studies where complete
spontaneous translocation was observed. In any case, toeprinting
analysis shows that in the initial complex, the tRNAs were bound
to the A and P sites and were competent for EF-G–catalyzed
translocation (SI Appendix, Fig. S1).
The structure of a ribosome complex containing two tRNAs

bound in chimeric hybrid states in the absence of EF-G or
GTP provides an unexpected window into the role of EF-G in
the mechanism of translocation. If we ask which steps of
chimeric hybrid-state formation do not require EF-G, we can
begin to narrow down the list of essential functions of EF-G,

and so distinguish them from those that are defined by the
ribosome itself.
It has been known for some time that movement of tRNA into

the A/P and P/E hybrid states, coupled to intersubunit rotation,
can occur independently of EF-G and GTP (3, 6, 7). We can now
add the following major structural changes that can also take
place spontaneously in the absence of EF-G: (i) release of the
codon–anticodon duplex from the decoding site; (ii) large-scale
(21°) rotational movement of the 30S subunit head domain; (iii)
complete translocation of the A-site tRNA into the position of
the classical P-site tRNA, relative to the 50S subunit; (iv)
translocation of the P-site tRNA into the pe/E chimeric hybrid
state; and (v) intercalation of the universally conserved A1503 of
16S rRNA between mRNA bases −1 and −2. In light of this
newly expanded list of EF-G–independent functions, we can
now revisit the question, Which steps of translocation actually
require EF-G?
Extensive evidence shows that domain IV of EF-G is struc-

turally mobile (21, 22, 27, 28, 41–45) and required for trans-
location (16, 46). One model is that domain IV acts early in
translocation to release the A-tRNA from the decoding site by
disrupting codon–anticodon interaction with 16S rRNA bases
1492 and 1493 (19, 45, 47–50), freeing the 30S subunit head to
rotate. Our structure shows that EF-G is not required to release
the A-tRNA, although it may catalyze the event.
Another possibility is that movement of domain IV of EF-G

pushes the A-site tRNA toward the P site, possibly powered by
GTP hydrolysis (16, 22, 25, 51–53). However, our structure
shows that in the absence of EF-G the A-tRNA actually moves
further than in the EF-G–containing complex, to the point of
physically contacting the P-tRNA, in apparent contradiction of
this model (Figs. 2 and 4). This finding suggests the possibility
that domain IV actually restricts movement of the A-tRNA, to
avoid potential slippage of the reading frame.
Previously determined structures of trapped EF-G–containing

complexes showed that the tip of domain IV of EF-G maintains
contact with the minor groove of the A-site codon–anticodon
duplex as it moves from the hybrid state (27) into the chimeric
hybrid ap/P or ap/ap states (21, 22) and into the post-
translocation P/P state (45). These and other observations have
led to a proposal for yet another crucial role for domain IV:
preserving codon–anticodon pairing (and thus the translational
reading frame) during the vulnerable transition between the 30S
A and P sites, when the weak triplet helix cannot rely on its in-
teractions with the ribosome for stabilization (21, 22, 45).
Our findings provide direct evidence for a role for EF-G in

maintaining the reading frame during translocation by stabili-
zation of pairing between the A-tRNA anticodon and its mRNA
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codon. In the absence of EF-G, movement of the A-site tRNA is
uncoupled from that of its mRNA codon, resulting in a −1
slippage of the reading frame (Figs. 6 and 7), presumably due to
the absence of stabilization by domain IV of EF-G. Codon–an-
ticodon interactions are also disrupted for the P-tRNA, although
slipping by less than one full position.
The structure presented here, unlike previously determined

EF-G–containing chimeric hybrid-state structures, was trapped
in the absence of antibiotics or nonhydrolyzable GTP analogs, so
must represent a stable state. One further role for EF-G must
then be to move the ribosome out of the chimeric hybrid state
toward completion of translocation. In particular, the mech-
anism of release of the E-site tRNA from the ribosome, which
is likely coupled to completion of translocation, remains

poorly understood. One possibility is suggested by the so far
unexplained intercalation of 16S rRNA base A1503 between
bases −2 and −1 of the mRNA (SI Appendix, Fig. S6) (20, 22),
which correspond to bases 2 and 3 of the E-site codon. This
intercalation, which has so far only been observed in chimeric
hybrid-state complexes, would likely destabilize codon–anti-
codon pairing and thus favor release of the E-site tRNA.
A recent ribosome structure by Dunham and coworkers (54)

shows that binding of a frameshift-inducing tRNA containing an
eight-nucleotide anticodon loop can also lead to a spontaneous
large-scale rotation of the 30S subunit head. In this structure,
containing a single tRNA bound in the e*/E state, A1503 is not
intercalated within the mRNA, suggesting a possible role for this
base in reading-frame maintenance.
Although the P-tRNA moves into the pe/E state, it remains a

few ångstroms short of its full classical E-site position. For the A-
tRNA, which now occupies the position of the classical P site in
our structure (Fig. 3A), translocation is essentially complete ex-
cept for reverse rotation of the 30S head domain. We still have no
clear explanation for how the 30S head domain undergoes reverse
rotation without reversing the movement of tRNA and mRNA.
This event, which represents the final step of translocation, must
embody a true (yet unexplained) ratchet-like behavior.
As our understanding of the basic molecular mechanisms of

protein synthesis evolves, it becomes ever clearer that, despite
the involvement of numerous essential factors, translation is
fundamentally based on the properties of the ribosome itself.
Moreover, as we examine the basis for these ribosome-specific
mechanisms, we discover that they appear to be, virtually ex-
clusively, functions of ribosomal RNA, in keeping with the idea
that the ribosome emerged from an RNA world.

Materials and Methods
Complexes were constructed from T. thermophilus 70S ribosomes, a 40-
nucleotide mRNA, tRNAVal and tRNATyr, and crystallized as described in SI
Appendix, in the P212121 space group. Diffraction data were integrated and
scaled, and the structure was solved by molecular replacement and refined
at a resolution of 3.2 Å. Small subunit head and body rotation were calcu-
lated as described by Mohan et al. (11).

All other details are as described in SI Appendix.
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