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Abstract

Advances in high-throughput genotyping and next generation sequencing coupled with larger 

sample sizes brings the realization of precision medicine closer than ever. Polygenic approaches 

incorporating the aggregate influence of multiple genetic variants can contribute to a better 

understanding of the genetic architecture of many complex diseases and facilitate patient 

stratification. This review addresses polygenic concepts, methodological developments, 

hypotheses, and key issues in study design. Polygenic risk scores (PRS) have been applied to 

many complex diseases and here we focus on Alzheimer’s disease (AD) as a primary exemplar. 

This review was designed to serve as a starting point for investigators wishing to employ PRS in 

their research and those interested in enhancing clinical study designs through enrichment 

strategies.
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Introduction

Polygenic Landscape of Complex Diseases

The hypothesis of multifactorial etiology of complex diseases originated in Fisher’s 1918 

quantitative demonstration that human variability in traits such as height and other biometric 
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characteristics can be explained by the additive effect of multiple genetic factors [9]. Unlike 

the single-gene etiology of Mendelian diseases, complex diseases are influenced by multiple 

gene variants and environmental factors [10]. The individual effects of these variants are 

usually very small [11] making determination of the genetic architecture of complex 

diseases challenging. Combinatorial genetic metrics such as the PRS and its variations are 

designed to address these challenges. A variation of PRS using a different type of single 

nucleotide polymorphism weights (SNP, see Glossary) is the polygenic hazard score (PHS) 

[3], with the latter utilizing hazard ratios (HR) instead of odds ratios (OR) as SNP weights in 

the score. Whereas the focus of this review is disease specific, the combinatorial genetic 

metrics described here are also generalizable to all types of quantitative traits.

The PRS expresses the cumulative genetic risk for an individual as an additive function of 

the effect of each genetic marker. Polygenic methods have been widely utilized to investigate 

many diseases, e.g., congenital malformations [12], breast cancer [4, 13], type 2 diabetes 

(T2D) [14], schizophrenia and other psychiatric disorders [15, 16], and Alzheimer’s disease 

(AD) [3, 17]. Use of PRS for risk stratification and classification is contributing toward the 

goals of precision medicine. This is enabled by advances in high-throughput genotyping and 

next generation sequencing (NGS) and the availability of large-scale genome-wide 

association studies (GWAS), which continuously expand the list of disease-related genetic 

markers [18]. Additional PRS applications include patient stratification [3, 14, 19, 20], 

exploration of genetic architecture [13, 21, 22], and studies of genetic overlap between traits 

[4, 15, 23].

Several review articles have been dedicated to facets of research on PRS [23– 28]. Some of 

the methodological aspects that influence PRS in the context of psychiatric disorders were 

discussed in [27]. In [25], the authors systematically reviewed the association of 

schizophrenia-related PRS with different phenotypes; others mainly focus on disease-

specific findings (e.g., [23, 24, 26]) or do not examine methodological factors related to the 

development and application of PRS.

Here, we review key methodological issues to assist researchers interested in employing 

PRS for studies of complex diseases and clinicians interested in potential future clinical 

applications in precision medicine. We overview the state-of-the-art methods for PRS 

construction and discuss study design and disease characteristics related to performance. 

Finally, we provide an overview of the contributions of PRS to a wide spectrum of diseases 

and a detailed overview of applications to Alzheimer’s disease.

Calculation of Polygenic Composite Scores

By combining the influence of each SNP into a single measure, the PRS represents the 

aggregate influence of the genetic variation. There are two approaches for PRS calculation: 

1) simple sum of SNPs, and 2) weighted sum of SNPs (Figure 1 and Box 1). The first 

approach [4, 14, 29, 30] assumes that the disease risk is equally influenced by each SNP. 

That is rarely realistic as some variants carry a much larger contribution to disease 

heritability (e.g., the APOE ε4 allele in AD [31]). In the weighted sum approach, each SNP 

is weighted by its estimated disease effect size, therefore accounting for its unique 

contribution to disease risk or outcome [1–8, 13–17, 19–21, 32–53] (See Table S1 for 

Chasioti et al. Page 2

Trends Genet. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



examples of methods with publicly available software). Next, we discuss extensively two 

critical methodological aspects for the PRS development: SNP selection and weight 

estimation.

SNP selection

The candidate SNP selection is critical because they constitute the PRS’s building blocks. A 

simple strategy is to retain all the SNPs without filtering. This may be effective for 

genetically underexplored diseases with many small to moderate SNP effects. However, the 

PRS’s performance may suffer by incorporating many non-informative or very weakly 

associated SNPs. Alternatively, one can retain a subset of SNPs based on predefined criteria 

(e.g., those passing an arbitrary p-value threshold in the GWAS results). This ad-hoc cut-off 

selection, however, may omit some informative markers with small effect size. Thus, the 

PRS-disease association may significantly vary under different thresholds [15, 35, 51]. 

Another challenge is redundancy of informativeness of variants, especially in the presence of 

linkage disequilibrium (LD) where nearby SNPs have highly similar associations. This can 

be addressed by SNP filtering techniques such as LD pruning followed by p-value 

thresholding. The majority of the SNPs in a LD block are removed by random pruning or 

clumping (see Box 2). The remaining SNPs are further filtered by thresholding their p-

values. PRSice is an example of a software approach employing LD pruning for automated 

calculation of the PRS [54]. It allows SNP selection under a range of p-value thresholds 

offering a more precise cut-off choice. One caution is that overfitting issues may arise based 

on threshold selection criteria [55, 56].

Stepwise regression can also be used for SNP selection [3, 5, 7, 8]. It retains a SNP 

depending on whether it significantly improves the model’s predictive ability. This purely 

statistical approach has the disadvantage of ignoring prior knowledge of LD structure and 

possible disease-variant relations.

SNP-weight calculation

Another key factor for PRS performance is the choice of SNP weights. GWAS-derived 

statistics or risk estimations (e.g., ORs) on an independent sample are commonly used as 

PRS weights [3, 5, 8, 13, 57]. An extension of this approach that has been promising in AD 

research is PHS [3, 5, 8, 13, 57]. The PHS is also derived as a weighted sum of SNPs but in 

this case each SNP’s weight is expressed by an HR estimated using a survival model where 

SNPs are entered as predictors.

GWAS genotypes in a PRS discovery sample may not be representative of those in the 

validation or application set leading to attenuated performance of the PRS. Other factors that 

influence performance are LD and regression to the mean or “winner’s curse”. Adjusting 

SNP weights may help address these concerns. Next, we consider the two main approaches 

to optimized SNP re-weighting: 1) those based on Bayesian inference and 2) those based on 

frequentist inference.

LDpred [58] (Supplementary materials) uses known LD structure as a prior to derive new 

SNP weights, without requiring raw genotype data or p-value thresholds. When applied on 

simulation data, LDpred demonstrated improved trait prediction accuracy compared to 
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traditional methods without LD information [58]. AnnoPred [59] (Supplementary materials) 

further improved LDpred, by assuming that each SNP’s biological identity contributes to the 

SNP-specific heritability. With this additional assumption and tested on 5 diseases, 

AnnoPred achieved higher precision in weight estimation (using functional annotation as a 

prior), better prediction accuracy of disease status, and better risk stratification ability, 

compared to LDpred [59]. Another Bayesian based method [44] is the doubly-weighted PRS 

(Supplementary materials), which addresses the “winner’s curse”. It weights each SNP by 

both its estimated effect on the trait and the probability that its p-value is less than a cut-off. 

In a study of prevalent T2D, inclusion of the doubly-weighted PRS in a logistic model 

showed significantly better fit than the model with the conventional GWAS-based weighted 

PRS. Although evidence was not presented in their study, the authors propose that, their 

method reduces “winner’s curse” bias compared to the conventional GWAS-based weighted 

PRS. The efficiency of the aforementioned methods is highly dependent on parameter 

tuning. An alternative Bayesian method that requires no parameter tuning [56] 

(Supplementary materials), corrects a SNP effect by utilizing GWAS z-statistics and by 

assigning a probability for the SNP being not causal (Supplementary materials).

Frequentist approaches, including shrinkage regression (e.g., Least Absolute Shrinkage and 

Selection Operation (Lasso) [60]) and linear mixed models (LMM) (e.g., GeRSI [61]), have 

also been utilized for PRS calculation. Shrinkage methods, which penalize the SNP effect 

estimates to avoid overfitting, show higher precision and power, compared to univariate tests 

[62]. They successfully handle LD, SNP interactions, and non-genetic covariates [63]. Lasso 

estimates minimize the sum of squared residuals and assign a penalty on the absolute sum of 

the predictors’ coefficients. Hence, less informative predictors are assigned smaller weights 

or removed from the model. Lassosum [64] is an example that applies a Lasso-type formula 

for SNP effect estimation. Despite the need for parameter tuning, it is computationally 

appealing and outperforms both pruning-thresholding and LDpred methods [64]. LMM, by 

contrast, treats the most significant SNPs as fixed effects with regard to disease status, and 

less significant SNPs as having random effects [61]. Here, the fixed effect SNPs are treated 

as parameters that need to be individually estimated, whereas the random effect SNPs do not 

require individual estimation since they are considered to be random variables with a 

common distribution. Both methods, however, are based on distributional assumptions of the 

genetic effects. Specifically, the shrinkage methods assume a skewed effect distribution, 

where the majority of the SNPs have small effects and only few have large effects; LMM 

assumes a normal distribution of effects. If these assumptions are violated, the PRS 

performance may suffer. To overcome this issue, “hybrid” methods such as Bayesian sparse 

linear mixed model (BSLMM) [65, 66] and LMM-Lasso [65, 66] were developed that 

combine the LMM and regularization methodologies.

Both Bayesian and frequentist methods can be further improved by embedding non-genetic 

information. For example, age-specific OR was used in [67] as APOE weight in the PRS and 

showed significantly improved discriminative power compared to a simple weighted score. 

In [3] PHS approach employed age-specific PRS weights. Although SNP selection and 

weighting are key elements in PRS performance, other factors also play an important role. 

We next consider factors influencing power and accuracy.
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Power and accuracy of polygenic composite score

In addition to the methodological factors discussed above, PRS performance is also 

influenced by study design. As a screening tool, PRS performance should be assessed by the 

appropriate metrics [28]. More specifically, polygenic composites should not be considered 

diagnostic tests and the metrics for evaluation are those for a susceptibility screening rather 

than diagnostic instrument. Thus, the area under the curve (AUC) might be for example 

more appropriate for assessing the PRS stratification performance on diagnostic markers, 

and not on disease status directly [28]. Here, we describe some of the factors that could 

influence analysis results (Fig 2).

Although heritability, as a population metric, is not directly relevant to personal prediction, 

several aspects of PRS performance are strongly influenced by heritability, necessitating 

application of PRS in an appropriate population context. For example, while power and 

accuracy are positively correlated with sample size [59, 68], they are also influenced by the 

disease heritability. Thus, sample size requirements for achieving the maximum possible 

AUC, vary based on the heritability [18]. However, heterogeneity problems may arise as the 

sample size increases [18]. An alternative strategy for power improvement addresses 

variation of the p-value thresholds for SNP selection. The optimal p-value threshold is 

determined by the underlying genetic architecture of the disease and the sample size [18, 

69]. For example, loosely defined traits (e.g., heterogeneous psychiatric disorders) will 

benefit more by a relaxed p-value threshold, compared to strictly defined traits (e.g., diseases 

with a small number of informative SNPs, such as myocardial infarction or stroke) [68]. The 

heritability of loosely defined traits spreads among a larger number of genetic markers and a 

relaxed cut-off allows more heritability to be explained. However, threshold increment 

should be made cautiously as it is usually accompanied by Type I error increase and power 

reduction [69], which may lead to biased effect estimates with high levels of LD. In contrast, 

a strict p-value cut-off will be more beneficial for strictly defined traits by eliminating non-

informative SNPs [18]. In some cases, the desired performance for a given trait cannot be 

achieved using only genetic data and incorporation of additional information (e.g., 

functional annotation of the PRS markers [59] and pathway specific PRS [70]) may be 

beneficial.

As in all research, study goals should be clearly and operationally defined. Since PRS is 

used either for association analysis or for individual prediction, the sample requirements 

vary in each case. In [18] it is suggested that sample sizes are adequate to ensure a well 

powered association study when independent datasets for training and testing are available. 

If the latter is not possible, 1:1 splitting ratio between the two sets is advised [18]. In 

contrast, individual prediction requires a significantly larger training set compared to the 

testing set [18]. PRS may be unable to successfully discriminate risk groups when there are 

limited training sample sizes, which attenuates precision in the PRS-explained variation 

[18].

Additionally, false positive results can occur from the presence of population stratification, 

due to systematic genetic differences among populations [15, 71]. Mainly implemented 

using European populations due to greater availability of samples, polygenic scores have 
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ancestry-specific characteristics that limit application across populations. Thus, in multi-

ethnic samples, population structure should be controlled to avoid such bias.

Polygenic risk score applications

Existing research using PRS mainly focuses on two problems: 1) association analysis and 2) 

outcome prediction. Although use of PRS has not achieved clinical accuracy levels yet, its 

use has led to some interesting discoveries and shown potential in diseases like cancer [2, 4, 

7, 13, 47], psoriasis [19], rheumatoid arthritis (RA) [19], multiple sclerosis (MS) [32], 

mental disorders [15, 16], atherosclerosis [46], T2D [2, 14, 30, 44], asthma [29], Parkinson 

disease (PD) [21, 41], and cardiovascular diseases (CVD) [20] including coronary heart 

disease (CHD) [1].

Association analysis quantifies the relation between two sets of features such as phenotype 

and genotype (e.g., SNPs). In this context, PRS is used to assess the differential biology 

between disease types or stages [13, 16, 48], to identify risk strata [19, 72], to assess 

treatment response [46, 73] and to identify genetic overlap between diseases [4, 15]. 

Association of a simple sum PRS with T2D risk indicated that, men and women in the 

highest PRS quantile had ~2.8 and ~2.2 times higher risk of developing T2D respectively, 

compared to those in the lowest PRS quantile [14]. Similar findings were reported with a 

GWAS weighted PRS [14]. Another study showed that adopting a healthy lifestyle can 

reduce the CVD risk, regardless of the individual’s genetic background [20]. High genetic 

risk participants with healthy lifestyle had 46% lower risk of CVD, compared to those with 

unhealthy lifestyle [20].

For breast cancer patients, significant PRS differences were observed between screen-

detected and interval breast cancer cases, indicating the possibility of differential biology 

underlying the two breast cancer subtypes [13].

PRS also can help with therapy selection for disease prevention. In [46], statin therapy 

significantly reduced the relative CHD risk in high genetic risk patients (>80th percentile) as 

compared to patients with low genetic risk.

The PRS has also been employed to explore genetic overlap between different diseases (e.g., 

application of schizophrenia-specific PRS to bipolar disorder [15]), where the PRS derived 

from one disease is evaluated in another disease. Motivated by this, the recently proposed 

multi-polygenic score (MPS) [74], combines multiple PRSs from different GWASs, for 

outcome prediction. Compared to a single PRS, this method explained more variability when 

applied to three traits (i.e., BMI, educational achievement and cognitive ability). The 

increased predictive power that MPS achieves should be useful in situations of modest 

sample size [74].

As an individual prediction tool, PRS has also shown potential in screening studies. For 

example, in a study on aggressive prostate cancer (PCa), using PHS it was observed that, 

males in high genetic risk (>98th centile) have almost triple PCa hazard, compared to those 

in average genetic risk [7]. For PCa patients who had undergone radical prostatectomy, PCa 

recurrence was predicted with AUC= 88.8% [47]. Moreover, the 10-year recurrence-free rate 
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for those in high genetic risk is almost half (46.3%), compared to people in the lowest 

genetic risk group (81.8%).

Although PRS approaches are still experimental, future application in public health and 

preventative and therapeutic medicine holds significant potential including quantitating the 

overall burden of genetic risk factors in various subpopulations (primary prevention), 

identifying high risk individuals who warrant screening for disease (secondary prevention) 

or serving as a stratification biomarker for treatment optimization (tertiary prevention).

Polygenic risk score in Alzheimer’s disease

Late onset AD (LOAD) is a highly prevalent neurodegenerative dementia characterized 

pathologically by brain accumulation of amyloid beta (Aβ) plaques and neurofibrillary 

tangles composed of hyperphosphorylated tau. These classic pathological hallmarks of AD 

are only the most obvious manifestation and belie a broad array of pathophysiological 

changes affecting numerous systems within the brain and periphery. A small percent of AD 

cases, typically with an early onset (EOAD) and aggressive course, are monogenic with an 

autosomal dominant inheritance pattern. Over 95% of AD is genetically complex, highly 

heritable, and therefore well-suited to polygenic investigation including analysis of 

heterogeneity and subgroups to support development of a precision medicine approach. 

Since the mechanistic drivers of LOAD remain unclear, substantial effort is being dedicated 

to genetic risk score modelling for individual risk prediction and to a systems approach to 

understanding disease pathogenesis.

APOE ε4, the strongest genetic variant associated with increased risk and earlier onset of 

LOAD, only partially accounts for the estimated heritability [31]. The contribution of other 

genetic markers has frequently been highlighted by PRS [49, 67, 75–77] (for a list of SNPs 

included in published AD PRS, see Table S2 in Supplementary materials). One PRS study 

including 19 non-APOE SNPs successfully stratified APOE ε4 carriers into risk subgroups 

where those with the highest scores exceeded the risk of those with the lowest score by 62% 

[57]. Another PRS study using 31 non-APOE SNPs found that age at onset (AAO) of AD is 

modulated by the genetic score [3]. APOE ε3/ε3 carriers in the highest AD risk stratum, 

could progress to AD as many as 10 years faster than those in the lowest group [3]. In [77] it 

was shown that, the PRS predictive accuracy in a neuropathologically confirmed sample 

does not change significantly after removing APOE ε4 and ε2 carriers, indicating similar 

genetic architecture among the APOE genotypes. Non-APOE PRS has also been associated 

with disease stage and progression (e.g., MCI-converters [34] and cognitively normal 

individuals [3, 36]), suggesting that genetic contributions to AD manifest in a stage-specific 

manner [36]. Furthermore, non-APOE PRS have been used for AD-patient classification [3, 

8, 49, 57, 67, 75, 76, 78–80] and AD-subtype discrimination [36], which has helped to 

reveal diverse mechanisms underlying various AD subtypes.

In addition to clinical indicators of disease status, endophenotypes such as cerebrospinal 

fluid (CSF) and MRI and PET imaging measures are important AD biomarkers. In most 

studies, their relation to the genetic composite score was either driven by the APOE [38] or 

could not be established [35, 38, 70, 81] (possibly due to low statistical power and a small 

number of SNPs in the PRS [39, 74, 81]). One study [17] observed that relaxing the SNP 
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inclusion threshold from the conventional GWAS-based p<5×10−8 to a nominal p<0.01 led 

to several associations becoming significant, even after excluding APOE. This result, 

however, was not replicated in other studies [36, 74]. The optimal threshold remains an open 

question and may be related to multiple factors as discussed above.

Accepted CSF biomarkers for AD include Aβ1–42, total tau (t-tau), and phosphorylated tau 

(p-tau). However, the relation between genetic scores and these CSF biomarkers has not 

been consistent. Genetic association studies of Aβ1–42 with non-APOE PRS were not 

successful in the past [67, 70]. The evidence for the PRS’s relation to p-tau [67], t-tau [3, 67] 

and p-tau/ Aβ1–42 ratio [76] remains limited. Recently, it was observed [82] that PHS is 

associated with increased intracranial Aβ plaque accumulation over time (p-value = 

1.28×10−7). In another study [37], the variability explained for Aβ1–42 was increased by 

1.8%, when in addition to APOE other markers were included in PRS.

For neuroimaging measures, many studies have failed to detect a significant association of 

PRS with baseline AD imaging phenotypes (e.g., hippocampal volume) in cognitively 

normal older adults [81], young adults and older individuals with MCI [80]. However, when 

older adults from 4 cohorts where combined into one large sample (>1,600 individuals), the 

same analysis revealed significant association of the PRS with the mean hippocampal 

volume at the baseline [80]. In a more recent study [3], PRS was associated with 

longitudinal volume loss, in both hippocampal and entorhinal cortex areas. In cognitively 

normal adults, a PRS was marginally associated with annual cortical thinning rates [53] and 

significantly associated with bi-annual hippocampal complex thinning rates [81].

Currently, PRS seems to be a useful tool for predicting the AAO of AD [3, 5, 67, 75, 76] for 

both sporadic late and early onset [76], even after excluding APOE. However, the degree of 

prediction varies across studies. One unit increase in the non-APOE PRS is estimated to 

accelerate the AAO by 8 months to a year [75, 76]. Another study with >1,300 AD patients 

suggested that, a unit increase in PRS (22 IGAP SNPs, including APOE) decreases the AAO 

by up to 2.4 years [67]. As above, APOE e3/e3 homozygotes showed PRS strata differences 

in AAO can reach 10 years [3].

Other important PRS applications include subtype stratification and prediction of disease 

trajectory. Prediction analysis requires larger sample sizes compared to association analysis 

[18] but the goal of prognostic prediction may be within range. The AD heritability 

explained by additive genetic effects as captured by GWAS is estimated to be 24%−33% 

[31, 83] with the majority attributed to APOE [82]. The sample size required to observe 

reliable PRS effect for prediction is a function of disease heritability [18]. The largest AD 

GWAS [84] included 25,580 AD cases and 48,466 controls. As sample sizes continue to 

increase rapidly, PRS performance is expected to soon reach levels acceptable for clinical 

application in a susceptibility screening framework. Ongoing efforts to improve the accuracy 

and interpretability of PRS can also be expected to advance our knowledge about AD 

pathogenesis and help to identify new combinatorial diagnostic/biomarker strategy for the 

early intervention (for a hypothesis-based list of AD-PRS studies, see Table S3 in 

Supplementary materials).
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Concluding Remarks

Polygenic composite score approaches have been used to identify optimized sets of SNPs 

whose cumulative genetic effect can better identify susceptibility and predict AAO and 

phenotypic features that characterize complex diseases. With applications in a wide range of 

diseases, PRS, the most common genetic composite score, has promise for patient screening 

and genetic enrichment for therapeutic intervention trials. As sample sizes continue to 

increase rapidly, PRS performance is expected to soon reach levels sufficient for clinical 

application in susceptibility screening and stratification for clinical trials within appropriate 

populations. Although PRS is neither designed to be a diagnostic test nor sufficiently 

accurate for clinical diagnosis, important applications of PRS in addition to risk stratification 

include subtype stratification and prediction of disease trajectory. PRS used in this matter are 

consistent with FDA draft guidance on enrichment strategies [85] and could be used to 

improve clinical trials by decreasing heterogeneity, increased prognostic accuracy, and 

enhanced prediction of treatment response. In AD research, PRS have contributed to risk 

stratification for early detection and helped to elucidate the genetic contribution to disease 

endophenotypes.

Despite the advances in PRS methodologies discussed above, current polygenic composite 

score approaches have limitations, including extent of ability to account for disease 

heritability and insufficient development for full clinical deployment in precision medicine. 

A number of strategies may lead to better PRS performance (see Outstanding Questions). 

While current methods focus on additive effects and common variants, future approaches 

may incorporate the potential role of epistasis and gene-environment interactions, 

transcriptomic and epigenetic variation, and other patient information through combinatorial 

strategies. Recent advances in machine learning can be expected to improve PRS models. 

Another limitation is interpretability. PRS reflect enriched pathways but the downstream 

mechanisms through which they influence disease is not identified. New computational 

biology tools and databases can be expected to enhance interpretation of polygenic effects. 

Future polygenic models developed in relation to quantitative endophenotype data from 

disease specific biomarkers hold promise for clinically and mechanistically useful 

prediction. We can look forward to further development of these methods to support the 

evolving precision medicine of complex disease.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Glossary

Apolipoprotein E (APOE)

Chasioti et al. Page 9

Trends Genet. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



APOE is the gene which codes for the synthesis of the protein apolipoprotein E. Specific 

mutation in this gene has been found to increase the risk of Alzheimer’s disease as much as 

12 times.

Area under the curve (AUC)
AUC expresses the predictive accuracy of a test on a binary trait. A value of 1 represents a 

perfect test, while 0.5 shows a test with no better accuracy than chance. In a clinical setting, 

AUC ≥0.75 is required for screening patients at risk, while AUC ≥0.99 for screening the 

general population.

Cerebrospinal Fluid (CSF)
Fluid found in and around the brain and spinal cord that reflects the biochemical changes in 

the brain and is an important biomarker for AD and other brain disorders. Three most 

commonly studied CSF biomarkers are for AD include: total tau (t-tau), phospho-tau (p-tau), 

and the 42 amino acid form of β-amyloid (Aβ42).

Late Onset Alzheimer’s Disease (LOAD)
Late onset AD, usually defined as onset after age 65, is the most common form of AD. 

LOAD is genetically complex and highly heritable. Although no deterministic genetic 

variants have been found, APOE e4 allele is currently the strongest genetic risk factor.

Linkage Disequilibrium (LD)
The non-random association between alleles at different loci on the same chromosome. 

Alleles in LD appear together more (or less) often than expected by chance.

Single nucleotide polymorphism (SNP)
The most common DNA variation. It occurs when a nucleotide in the genome (Adenine: A, 

Guanine: G, Cytocine: C, Thymine: T) is replaced by another nucleotide. These variations 

are commonly used in the gene-trait association studies.

Winner’s curse
Inflated estimation of the effect of genetic variants selected based on a specific threshold. 

SNPs that pass the threshold in any given study are typically overestimated compared to the 

true effect size. This overestimated effect is sample-specific and sample size dependent and 

frequently leads to difficulty replicating association studies.
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Highlights

• Combinatorial metrics including the polygenic risk score (PRS) summarize 

the aggregate influence of multiple common genetic variants.

• Recent methodological advances include optimized variant selection and 

weighing algorithms.

• Despite considerable progress, current polygenic approaches have limitations 

in their ability to account for heritability and in readiness for clinical 

implementation.

• Late onset Alzheimer’s disease is a highly heritable complex disease that is 

particularly well-suited for polygenic analysis of heterogeneity and subtypes 

to support development of a precision medicine approach.

• Polygenic models and metrics based on disease specific biomarkers or 

endophenotypes hold promise for prognostic prediction and enhanced 

mechanistic understanding. Eventually sets of PRS employed in combination 

may help prioritize therapeutic targets on a personalized basis.
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Outstanding Questions

• How can the SNP selection process for PRS and other polygenic composite 

scores be improved?

Potential strategies include enhanced algorithms including machine learning 

and incorporation of prior biological knowledge. However, inclusion of non-

informative markers will add noise, increase variability and decrease 

performance accuracy. Penalization approaches may help optimize the signal 

to noise in PRS development. Methods to optimally incorporate longitudinal 

disease trajectory in SNP weight estimation also warrant investigation.

• Would strategies for incorporating non-additive genetic (and other) effects 

improve PRS performance?

Most current composite models are based on additive genetic effects of 

common variants. Genetic interaction, both epistasis and gene by environment 

influences, are neglected, as are rare variants.

• Is there a need for development of sex and ancestry-specific composite 

scores?

Individual characteristics such as sex and racial ancestry significantly modify 

PRS performance. Research is needed to determine whether one model or 

separate composite scores are needed.

• Can performance be improved by including other omics data such as 

transcriptomics and epigenetic markings?

Similarly, incorporating other endophenotypes such as medical imaging or 

biomarker results might improve the precision and utility of polygenic scores, 

perhaps in the context of a clinical decision support system.

• How can we enhance the interpretability of genetic composite scores?

Interpretability of genetic composite scores remains a challenge with current 

models as they are not constructed to reveal how selected markers interact 

mechanistically to affect disease outcomes. Precision medicine requires 

identification of actionable test results that indicate specific therapeutic 

targets and are clinically meaningful at the individual level. Enhanced genetic 

counseling approaches addressing the results of composite risk scores vs. 

single markers are needed to help explain test implications to patients and 

families.
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Box 1

Main PRS calculation categories

There are multiple mathematical formulas for PRS calculation. The simplest way to 

derive a PRS for an individual i is by calculating the sum over the risk-allele frequencies 

(dij) of each SNP j.

PRSi =
j ∈ SNPs

di j

Most PRS models assume that SNPs have an additive effect on the disease risk. In this 

case, the frequency (dij) takes values 0, 1 or 2, depending on the number of risk alleles 

present in the gene. Since one can’t assume SNP influences are equal, a weighted version 

of this formula has been proposed.

PRSi =
j ∈ SNPs

β jdi j

Here, the PRS is expressed as the sum over the weighted number of alleles per SNPs. 

Depending on the type and the goal of the study, different weights can be utilized. The 

most commonly used weight is the GWAS odds ratio (OR), or the univariate linear 

regression coefficient. Recent studies [1–8] have introduced the Cox-derived hazard ratio 

(HR) as alternative weight, to account for the time to event, which is otherwise ignored 

when using the GWAS-OR.
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Box 2

Pruning and clumping

LD pruning is the process of genetic marker selection based on their LD. The aim is the 

final set markers to contain those that are nearly uncorrelated.

While clumping retains one SNP per LD block, pruning can end up with multiple SNPs 

or no SNPs at all for a region.

Specifically, for LD pruning, the pairwise correlation between the markers in a specific 

range of the genome (window) is calculated. This region is then scanned and if for any 

pair of markers, the correlation is greater than the specified threshold, the marker with the 

smallest minor allele frequency (MAF) is discarded, otherwise both markers are retained. 

In case both markers have the same MAF, the one in the latter position is pruned. The 

process continues until the whole genome has been scanned. LD clumping, in contrast, 

identifies all SNPs with GWAS p values meeting a prespecified value (p1; default 

0.0001). For each of these index SNPs, clumps are generated. The clumps are constituted 

by those SNPs that have an LD (r2; default 0.5) that is at least equal to a prespecified 

value, lie within a prespecified physical distance from the index SNP, and their GWAS p 
value is less than a second significance threshold (p2; default 0.01). Each index SNP is 

used as representative of the corresponding LD region.
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Figure 1. 
Key Figure. Polygenic risk score calculation. Step1) SNP selection (with or without 

filtering), Step 2) weight calculation: Candidate SNPs can be assigned a weight of 1 (PRS is 

a simple sum of SNP alleles) or weighed using existing GWAS-derived effect sizes. 

Alternatively, one can re-calculate the SNP weights (re-weighting), that is, estimate new 

weights by including the SNPs in a regression model (e.g., Cox). Penalization techniques 

(either frequentist e.g., Lasso or Bayesian e.g., LDpred) can also be used for re-weighting. 

These methods can achieve SNP selection and weight estimation simultaneously, by setting 

some of the SNP weights to zero. Penalization methods can be either applied on the filtered 

or on the original SNP list.
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Figure 2. 
Factors affecting PRS accuracy. Disease related factors (e.g., heritability, functional 

annotation, LD structure, and number of informative SNPs) as well as study design aspects 

(e.g., sample size, p-value threshold for SNP selection, and sampling variability), affect the 

power and performance of PRS. Depending on the hypothesis tested and the disease 

characteristics, improved PRS performance is possible via the appropriate sample size, SNP 

selection threshold and LD control.
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